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4 Decisions under risk

Decisions under risk differ from decisions under ignorance in that the
decision maker knows the probabilities of the outcomes. If you play roulette
in Las Vegas you are making a decision under risk, since you then know
the probability of winning and thus how much you should expect to lose.
However, that you know the probability need not mean that you are in a
position to immediately determine the probability or expected outcome. It is
sufficient that you have enough information for figuring out the answer after
having performed a series of calculations, which may be very complex. In this
process your ‘tacit knowledge’ is made explicit. When you play roulette in Las
Vegas and bet on a single number, the probability of winning is 1/38: There
are 38 equally probable outcomes of the game, viz. 1-36 and 0 and 00, and
if the ball lands on the number you have betted on the croupier will pay
you 35 times the amount betted, and return your bet. Hence, if you bet $1, the

expected payout is $(35+1) - 318 +30 - g—-: =

you can expect to lose about $1 - $0.947 = $.053 for every dollar betted.
According to the principle of maximising expected monetary value it

$2—g =z $0.947. This means that

would obviously be a mistake to play roulette in Las Vegas. However, this

does not show that it is irrational to play roulette there, all things considered.
First, the expected monetary value need not correspond to the overall value
of a gamble. Perhaps you are very poor and desperately need to buy some
medicine that costs $35. Then it would make sense to play roulette with
your last dollar, since that would entitle you to a chance of winning just
enough to buy the medicine. Second, it also seems clear that many people
enjoy the sensation of excitement caused by betting. To pay for this is not
irrational. (It is just vulgar!} Finally, one may also question the principle of
maximising expected value as a general guide to risky choices. Is this really
the correct way of evaluating risky acts?



4,1 Maximising what?

In what follows we shall focus on the last question, i.e. we shall dis-
cuss whether it makes sense to think that the principle of maximising
expected value is a reasonable decision rule to use in decisions under
risk. Somewhat surprisingly, nearly all decision theorists agree that this
is the case. There are no serious contenders. This is thus a significant differ-
ence compared to decision making under ignorance. As explained in
Chapter 3, there is virtually no agreement on how to make decisions
under ignorance.

That said, there is significant disagreement among decision theorists
about how to articulate the principle of maximising expected value. The
main idea is simple, but substantial disagreement remains about how to
define central concepts such as ‘value’ and ‘probability’, and how to account
for the causal mechanisms producing the outcomes. In this chapter we shall
take a preliminary look at some aspects of these controversies, but it will
take several chapters before we have acquired a comprehensive under-
standing of the debate.

It is worth noting that many situations outside the casino, i.e. in the
‘real’ world, also involve decision making under risk. For example, if
you suffer from a heart disease and your doctor offers you a transplant
giving you a 60% chance of survival, you are facing a decision under risk
in which it seems utterly important to get the theoretical aspects of the
decision right. It would thus be a mistake to think that decision making
under risk is essentially linked to gambling. Gambling examples just hap-
pen to be a convenient way of illustrating some of the major ideas and
arguments.

4.1 Maximising what?

The principles of maximising expected monetary value must not be confused
with the principle of maximising expected value. Money is not all that mat-
ters, at least not to all of us. However, in addition to this distinction, we shall
also introduce a new distinction between the principle of maximising
expected value and the principle of maximising expected utility. The latter is a
more precise version of the former, in which the notion of value is more
clearly specified. This gives us three closely related principles, all of which
are frequently mentioned in the literature.
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1. The principle of maximising expected monetary value
2. The principle of maximising expected value
3. The principle of maximising expected utility

It is helpful to illustrate the difference between these principles in an example.
Imagine that you are offered a choice between receiving a million dollars
for sure, and receiving a lottery ticket that entitles you to a fifty per cent
chance of winning either three million dollars or nothing (Table 4.1).

The expected monetary value (EMV) of these lotteries can be computed
by applying the following general formula, in which p, is the probability of
the first state and m, the monetary value of the corresponding outcome:

EMV =p;-my+pa-Ma+ 4 Pp-thy (1)

By applying (1) to our example, we find that the expected monetary values
of the two lotteries are:

EMV (Lottery A) = % -$1M + % $1M = $1M.

EMV(Lottery B) = % L$3M + % $0 = $1.5M

However, even though EMV(Lottery B) > EMV(Lottery A), many of us
would prefer a million for sure. The explanation is that the overall value
to us of $3M is just slightly higher than that of $1 M, whereas the value of
$1M is much higher than the value of $0. Economists say that the marginal
value of money is decreasing. The graph in Figure 4.1 describes a hypo-
thetical relationship between money and value, for a poor person playing
the National Lottery.

Note that the graph slopes upwards but with decreasing speed. This
means that winning more is always better than winning less. However,
the more one wins, the lower is the value of winning yet another million.
That said, it is of course not a universal truth that the marginal value of

Table 4.1

1/2 12

Lottery A 1M $1M
Lottery B $3M $0
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Decreasing marginal value of money
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money is decreasing. For people with very expensive habits the marginal
value may be increasing, and it is even conceivable that it is negative for
some people. Imagine, for instance, that you are a multi-billionaire. If you
accidentally acquire another billion this will perhaps decrease your well-
being, since more money makes it more likely that you will get kidnapped
and you cannot stand the thought of being locked up in a dirty basement
and having your fingers cut off one by one. If one is so rich that one starts to
fear kidnappers, it would perhaps be better to get rid of some of the money.

Clearly, the principle of maximising expected value makes more sense
from a normative point of view than the principle of maximising expected
monetary value. The former is obtained from the latter by replacing m for
vin the formula above, where v denotes value rather than money.

EV=pi-vi+pr-Vat+ - +PnVn (2)

Unfortunately, not all concepts of value are reliable guides to rational
decision making. Take moral value, for instance. If a billionaire decides to
donate his entire fortune to charity, the expected moral value of doing so
might be very high. However, this is because many poor people would
benefit from the money, not because the billionaire himself would be any
happier. (By assumption, this billionaire is very greedy!) The expected moral
value of donating a fortune is far higher than the sort of personal value
decision theorists are primarily concerned with. In most cases, moral value
is not the sort of value that decision theorists think we should base instru-
mental, ends-means reasoning on. Therefore, in order to single out the kind
of value that is the primary object of study in decision theory - the value of
an outcome as evaluated from the decision maker's point of view - it is
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helpful to introduce the concept of utility. Utility is an abstract entity
that cannot be directly observed. By definition, the utility of an outcome
depends on how valuable the outcome is from the decision maker’s point of
view. The principle of maximising expected utility is obtained from the
principle of maximising expected value by replacing v for u in equation (2).

EU=p1 -1 +p2-tz+---+Pa-Un (3)

In the remainder of this chapter we shall focus on the principle of max-
imising expected utility, rather than any other versions of the expectation
thesis. It is worth noticing that the expected utility principle can be applied
also in cases in which outcomes are non-monetary. Consider the following
example. David and his partner Rose are about to deliver a sailing yacht
from La Corufia (in the north of Spain) to English Harbour, Antigua {in
the West Indies). Because of the prevailing weather systems, there are
only two feasible routes across the Atlantic, either a direct northern route
or a slightly longer southern route. Naturally, the couple wish to cross
the Atlantic as quickly as possible. The number of days required for the
crossing depends on the route they choose and the meteorological situa-
tion. Weather-wise, the decisive factor is whether or not a high pressure
zone develops over the Azores after they have set off from the coast of Spain.
There are reliable meteorological data going back more than a hundred
years, and the probability that a high pressure zone will develop is 83%.
By studying the meteorological data and the charts, they figure out that the
decision problem they are facing is that shown in Table 4.2,

Since David and Rose wish to make the crossing in as few days as
possible, the utility of the outcomes is negatively correlated with the number
of days at sea. Hence, the utility of sailing for 27 days, which we write as
u(27), is lower than the utility of sailing for 18 days, u(18). For simplicity, we
assume that in this particular case the utility function is linear with respect

Table 4.2
High pressure zone over  No high pressure zone over
the Azores (83%) the Azores (17%)

Northern route 27 days 14 days

Southern route 18 days 21 days




4.1 Maximising what?

to the number of days spent at sea. It then follows that the expected utilities
of the two alternatives are as follows.

EU(Northern route) = 0.83 - u(27) + 0.17 - u(14) = u(24.79)
EU(Southern route) = 0.83 - u(18) + 0.17 - u(21) = u(18.51)

Clearly, David and Rose ought to choose the southern route, since
u(18.51) > 1(24.79), according to our assumption about the correlation
between utility and the number of days spent at sea.

Box 4.1 Arisky decision

Placebo Pharmaceuticals is eager to expand its product portfolio with a
drug against cardio-vascular diseases. Three alternative strategies have
been identified. The first is to hire a research team of 200 people to
develop the new drug. However, to develop a new drug is expensive
{about $50M) and it is also far from certain that the team will manage
“to successfully develop a drug that meets the regulatory requirements
enforced by the Food and Drug Administration; the probability is esti-
mated to be about one in ten. The second alternative is to acquire a small
company, Cholesterol Business Inc., that has already developed a drug
that is currently undergoing clinical trials. If the trials are successful the
| Food and Drug Administration will of course license the product rather
| rapidly, so this alternative is more likely to be successful. According to
| the executive director of Placebo Pharmaceuticals the probability of
| success is about 0.8. The downside is that the cost of taking over
Cholesterol Inc. is very high, about $120M, since several other big phar-
maceutical companies are also eager to acquire the company. The third
alternative is to simply buy a licence for $170M from a rival company to
produce and market an already existing drug. This is the least risky
option, since the board of Placebo Pharmaceuticals knows for sure for
‘what it pays. Finally, to complete the list of alternatives also note that
there is a fourth alternative: to do nothing and preserve the status quo.
In order to make a rational decision, Placebo Pharmaceuticals decides
| 'to hire a decision analyst. After conducting series of interviews with the
[ board members the decision analyst is able to establish that Placebo
| Pharmaceuticals’ utility of a profit greater than zero is linear and directly
Proportional to the profit, whereas its disutility of losses L {i.e. a profit

equal to or smaller than zero ) is determined by the formulau=2 - L. The
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0.3/0.7 High demand _550M+$200M

Low demand ~$50M+5100M

0.3/0.7

-550M

Hire research leam No new drug High demand -$120M+5200M

New drug

Low demand ~S120M+5100M

No new drug ~S5120M

Take over Cholesierol Inc.

Buy licence
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0.3/0.7 ngh demand $170M+$200M
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Do nothing

30

Figure 4.2

decision analyst also concludes that the revenue will depend on future
demand of the new drug. The probability that demand will be highis 0.3,
in which case the revenue will be $200M. The probability that demand
is low is 0.7, and the revenue will then be $100M. To explain her findings
to the executive director the decision analyst draws the decision tree
shown in Figure 4.2.

It can be easily verified that the four alternatives illustrated in the
decision tree may lead to nine different outcomes.

Hire research team: +$150M with a probability of 0.1 - 0.3
+$50M with a probability of 0.1 - 0.7
~$50M with a probability of 0.9

Take over Cholesterol Inc.: +$80M with a probability of 0.8 - 0.3
~$20M with a probability of 0.8 - 0.7
-$120M with a probability of 0.2

Buy licence: +$30M with a probability of 0.3
~§70M with a probability of 0.7

Do nothing: $0 with a probability of 1




4.2 Why is it rational to maximise expected utility?

In order to reach a decision, the executive director now applies the
principle of maximising expected utility. She recalls that the utility of
lossesisu=2-L.

Hire research team: +150M - 0.03+50M - 0.07 - (2 - 50M) - 0.9
=-82M utility units

Take over Cholesterol Inc.: +80M - 0.24 —(2 - 20M) - 0.56 — (2 - 120M) -
0.2=-51.2M utility units

Buy licence: +30M - 0.3 - (2 - 70M) - 0.7 = —89M utility
units
Do nothing: 0 utility units

Based on the calculations above, the executive director of Placebo
Pharmaceuticals decides that the rational thing to do is to do nothing,
i.e. to abandon the plan to expand the product portfolio with a drug

against cardio-vascular diseases.

4.2 Why is it rational to maximise expected utility?

Decision theorists have proposed two fundamentally different arguments
for the expected utility principle. The first argument is based on the law
of large numbers; it seeks to show that in the long run you will be better off
if you maximise expected utility. The second argument aims at deriving
the expected utility principle from some more fundamental axioms for
rational decision making, which make no reference to what will happen
in the long run. We shall return to the axiomatic approach in the next
section.

The law of large numbers is a mathematical theorem stating that every-
one who maximises expected utility will almost certainly be better off in
the long run. In this context the term ‘almost certainly’ has a very precise
meaning. If a random experiment (such as rolling a die or tossing a coin)
is repeated n times and each experiment has a probability p of leading to a
predetermined outcome, then the probability that the percentage of such
outcomes differs from p by more than a very small amount ¢ converges to 0
as the number of trials n approaches infinity. This holds true for every ¢ > 0,
no matter how small. Hence, by performing the random experiment suffi-
ciently many times, the probability that the average outcome differs from
the expected outcome can be rendered arbitrarily small.
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Imagine, for instance, that you are offered 1 unit of utility for sure or a
lottery ticket that will yield either 10 units with a probability of 0.2, or
nothing with a probability of 0.8. The expected utility of choosing the
lottery ticket is 2, which is more than 1. According to the law of large
numbers, you cannot be sure that you will actually be better off ifyou choose
the lottery, given that the choice is offered to you only once. However, what
you do know for sure is that if you face the same decision over and over
again, then the probability that you will not be better off by choosing the
lottery can be made arbitrarily small by repeating the same decision over
and over again. Furthermore, if you repeat the decision in question infin-
itely many times, then the probability that the average utility and the
expected utility differ by more than ¢ units decreases to zero.

Keynes famously objected to the law of large numbers that, “in the long
run we are all dead” (1923: 80). This claim is no doubt true, but what should
we say about its relevance? Keynes’ point was that no real-life decision maker
will ever face any decision an infinite number of times; hence, mathematical
facts about what would happen after an infinite number of repetitions are
therefore of little normative relevance. A different way to express this con-
cern is the following: Why should one care about what would happen if some
condition were to be fulfilled, given that one knows for sure at the time of
making the decision that this condition is certain not to be fulfilled?
Personally I think Keynes was right in questioning the relevance of the law
of large numbers. But perhaps there is some way in which it could be saved?

It is also worth pointing out that the relevance of the law of large
numbers is partially defeated by another mathematical theorem, known
as gambler's ruin. Imagine that you and I flip a fair coin, and that I pay you $1
every time it lands heads up, and you pay me the same amount when it
lands tails up. We both have $1,000 in our pots as we start to play. Now, if we
toss the coin sufficiently many times each player will at some point encounter
a sequence of heads or tails that is longer than he can afford, i.e. longer than
the number of one dollar bills in his pot. If you encounter that very long
sequence first, you will go bankrupt. Otherwise [ will go bankrupt first. It is
mathematically impossible that both of us can ‘survive’ infinitely many
rounds of this game, given that each player starts with pots containing finite
amounts of money. This means that the law of large numbers guarantees
that you will be better off in the long run by maximising expected utility
only if your initial pot is infinite, which is a rather unrealistic assumption.
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4.3 The axiomatic approach

An additional worry about the law of large numbers is that it seems
perfectly reasonable to question whether decision makers ever face the same
decision problem several times. Even if you were to play roulette in a Las
Vegas casino for weeks, it seems obvious that each time the croupier drops
the ball on the roulette wheel she will do it a little bit differently each time,
and to some extent it also seems reasonable to claim that the physical
constitution of the wheel will change over time, because of dust and wear
and tear. Hence, it is not exactly the same act you perform every time you play.

That said, for the law of large numbers to work it is strictly speaking not
necessary to assume that the agent is facing the same decision problem, ina
literal sense, over and over again. All we need to assume is that the proba-
pility of each outcome is fixed over time. Note, however, that if this is the
correct way of understanding the argument, then it will become sensitive to
the definition of probability, to be discussed in Chapter 7. According to
some theories of probability, the probability that you win when playing
roulette is the same over time, but according to other theories this need not
necessarily be the case. (For example, if probabilities are defined as relative

frequencies, or as subjective degrees of beliefs, then they are very likely to

change over time.)

A final worry about the relevance of the law of large numbers is that
many decisions under risk are unique in a much stronger sense. It might
very well hold true that the probability that John would become happy if he
was to marry his partner Joanna is 95%. But so what? He will only marry
Joanna once (or at least a very limited number of times). Why pay any
attention to the law of large numbers in this decision? The same remark
seems relevant in many other unique decisions, i.e. decisions that are made
only once, such as a decision to start a war, or appointing a chief executive,
or electing a new president. For instance, if the probability is high that the
republican candidate will win the next presidential election, the expected
utility of investing in the defence industry might be high. However, in this
case we cannot justify the expected utility principle by appealing to the law
of large numbers, because every presidential election is unique.

4.3 The axiomatic approach

The axiomatic approach to the expected utility principle is not based on
the law of large numbers. Instead, this approach seeks to show that the
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expected utility principle can be derived from axioms that hold independ-
ently of what would happen in the long run. If successful, an axiomatic
argument can thus overcome the objection that it would not make sense to
maximise expected utility in a decision made only once. Here is an extreme
example illustrating this point. You are offered to press a green button, and
if you do, you will either die or become the happiest person on Earth. If you
do not press the button, you will continue to live a rather mediocre life. Let
us suppose that the expected utility of pressing the green button exceeds
that of not pressing it. Now, what should a rational decision maker do?
Axiomatic arguments should entail, if successful, that one should maximise
expected utility even in this case, even though the decision is taken only
once and the outcome may be disastrous.

Decision theorists have proposed two fundamentally different strategies
for axiomatising the expected utility principle. Some axiomatisations are
direct, and some are indirect. In the indirect approach, which is the domi-
nant approach, the decision maker does not prefer a risky act to another
because the expected utility of the former exceeds that of the latter. Instead,
the decision maker is asked to state a set of preferences over a set of risky
acts. It is irrelevant how these preferences are generated. Then, if the set of
preferences stated by the decision maker is consistent with a number of
structural constraints {axioms), it can be shown that her decisions can be
described as if she were choosing what to do by assigning numerical prob-
abilities and utilities to outcomes and then maximising expected utility. For
an example of such a structural constraint, consider the plausible idea that
ifact A is judged to be better than act B, then it must not be the case that B is
judged to be better than A. Given that this constraint is satisfied, as well asa
number of more complex and controversial constraints, it is possible to
assign numbers representing hypothetical probabilities and utilities to out-
comes in such a way that the agent prefers one act over anotherifand only if
the hypothetical expected utility attributed to that alternative is higher
than that of all alternatives. A detailed overview of some influential axio-
matic constraints on preferences will be given in Chapters 5 and 7.

In the remainder of this section we focus on the direct approach. It is
easier to understand, although it should be stressed that it is less influential
in the contemporary literature. The direct approach seeks to generate
preferences over acts from probabilities and utilities directly assigned
to outcomes. In contrast to the indirect approach, it is not assumed




4.3 The axiomatic approach

that the decision maker has access to a set of preferences over acts before he
starts to deliberate. Now, it can be shown that the expected utility principle
can be derived from four simple axioms. The presentation given here is
informal, but the sceptical reader can rest assured that the argument can be
(and has been) formalised.

We use the term utility for referring both to the value of an act and to the
value of its outcomes. The aim of the axiomatisation is to show that the
utility of an act equals the expected utility of its outcomes. Now, the first
axiom holds that if all outcomes of an act have utility u, then the utility of the
act is u. In Table 4.3 axiom 1 thus entails that the utility of act a, is 5,
whereas the utility of acta; is 7.

The second axiom is the dominance principle: If one act is certain to lead to
outcomes with higher utilities under all states, then the utility of the former
act exceeds that of the latter (and if both acts lead to equal cutcomes they
have the same utility). Hence, in Table 4.3 the utility of a, exceeds that of a;.
Note that this axiom requires that states are causally independent of acts. In
Chapter 9 we discuss a type of decision problem for which this assumption
does not hold true. The present axiomatisation thus supports the expected
utility principle only in a restricted class of decision problems.

The third axiom holds that every decision problem can be transformed
into a decision problem with equiprobable states, by splitting the original
states into parallel ones, without affecting the overall utility of any of the
acts in the decision problem; see Table 4.4.

The gist of this axiom is that a, and a; in the leftmost matrix are exactly
as good as a, and a; in the rightmost matrix, simply because the second

Table 4.3
51 32 53 54 S5
i 5 5 5 5 5
a; 7 7 7 7 7
Table 4.4
02 08 02 02 02 02 02
a 1 3 a; 1 3 3 3 3
a; 6 2 a, 6 2 2
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matrix can be obtained from the first by dividing the set of states corre-
sponding to the outcomes slightly differently.

The fourth and last axiom is a trade-off principle. It holds that if two
outcomes are equally probable, and if the best outcome is made slightly
worse, then this can be compensated for by adding some (perhaps very large)
amount of utility to the other outcome. Imagine, for instance, that Adam
offers you to toss a fair coin. If it lands heads up you will be given 10 units of
utility, otherwise you receive 2 units. If you refuse to take part in the gamble
you receive 5 units. Before you decide whether to gamble or not, Adam
informs you that he is willing to change the rules of the gamble such that
instead of giving you 10 units of utility if the coin lands heads up he will give
you a little bit less, 10 — &;, but compensate you for this potential loss by
increasing the other prize to 2 + £; units (Table 4.5). He adds that you are free
to choose the value of &, yourself! The fourth axiom does not say anything
about whether you should choose 5 units for sure instead of the gamble
yielding either 2 or 10 units of utility, or vice versa. Such choices must be
determined by other considerations. The axiom only tells you that there is
some number § > 0, such that forall &,, 0 < & < 4, there is a number &; such
that the trade-off suggested by Adam is unimportant to you, i.e. the utility of
the original and the modified acts is the same.

If a sufficiently large value of &, is chosen, even many risk-averse decision
makers would accept the suggested trade-off. This means that this axiom
can be accepted by more than just decision makers who are neutral to risk-
taking. However, this axiom is nevertheless more controversial than the
others, because it implies that once ¢, and &, have been established, these
constants can be added over and over again to the utility numbers repre-
senting this pair of outcomes. Put in mathematical terms, it is assumed
that &, is a function of ¢;, but not of the initial levels of utility. (The axiom
can be weakened, however, such that e, becomes a function of more fea-
tures of the decision problem, but it is beyond the scope of this book to
explore this point any further here.)

Table 4.5
0.5 0.5 0.5 0.5
a, 5 5 a4 5 5
233 2 10 as 2+e 10— &

e
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The axioms informally outlined above together entail that the utility of
an act equals the expected utility of its outcomes. Or, put in slightly differ-
ent words, the act that has the highest utility (is most attractive) will also
‘have the highest expected utility, and vice versa. This appears to be a strong
reason for letting the expected utility principle guide one’s choices in
aedsions under risk. A more stringent formulation of this claim and a
proof is provided in Box 4.2.

[Box4.2 A direct axiomatisation of the expected utility
principle
| Consider the following four axioms.

EU1 Ifall outcomes of an act have utility u, then the utility of the act is u.
EU 2 If one act is certain to lead to better outcomes under all states
than another, then the utility of the first act exceeds that of the
latter; and if both acts lead to equal outcomes they have the same
utility.
] _ EU 3 Every decision problem can be transformed into a decision
| problem with equally probable states, in which the utility of all
: acts is preserved.
| EU4 Iftwo outcomes are equally probable, and if the better outcome is
| made slightly worse, then this can be compensated for by adding
some amount of utility to the other outcome, such that the overall
utility of the act is preserved.

Theorem 4.1 Let axioms EU 1-4 hold for all decision problems under
| misk. Then, the utility of an act equals its expected utility.

; :iEruaf The proof of Theorem 4.1 consists of two parts. We first show that
l !-81 = g, (see page 76) whenever EU 4 is applied. Consider the three decision
problems in Table 4.6, in which u, and u, are some utility levels such that u,
' s higher than u,, while their difference is less than «,. (That is, u, — u, < £1.)

| Table 4.6

i s 5 s s’ 5 s'
B

(% o u a; i Uz a; i u;

lﬂz Hp Uy Az Uy—& Uptes ay Up—gtey UytEs—g
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In the leftrnost decision problem a, has the same utility as a,, because
of EU 2. The decision problem in the middie is obtained by applying EU 4
to act a;. Note that the utility of both acts remains the same. Finally, the
rightmost decision problem is obtained from the one in the middle by
applying EU 4 to a, again. The reason why ¢, is subtracted from u, + ¢, is
that the utility of the rightmost outcome of a, now exceeds that of the
leftmost, since the difference between u, and u, was assumed to be less
than &,. By assumption, the utility of both acts has to remain the same,
which can only be the case if &; = £,. To see why, assume that it is not the
case that £, = ¢;. EU 2 then entails that either a, dominates a,, or a,
dominates a,, since —e, + £, = &3 — £;.

In the second step of the proof we make use of the fact that ¢, = ¢,
whenever EU 4 is applied. Let D be an arbitrary decision problem. By
applying EU 3 a finite number of times, D can be transformed into a
decision problem D* in which all states are equally probable. The utilities
of all acts in D* are equal to the utility of the corresponding acts in D.
Then, by adding a small amount of utility ¢, to the lowest utility of a
given act and at the same time subtracting the same amount from its
highest utility (as we now know we are allowed to do), and repeating this
operation a finite number of times, we can ensure that all utilities of
each act over all the equally probable states will be equalised. Since all
states are equally probable, and we always withdraw and add the same
amounts of utilities, the expected utility of each act in the modified
decision problem will be exactly equal to that in the original decision
problem. Finally, since all outcomes of the acts in the modified decision
problem have the same utility, say u, then the utility of the act is u,
according to EU 1. It immediately follows that the utility of each ac
equals its expected utility. '

4.4 Allais’ paradox

The expected utility principle is by no means uncontroversial. Naturally,
some objections are more sophisticated than others, and the most sophis-
ticated ones are referred to as paradoxes. In the following sections we shall
discuss a selection of the most thought-provoking paradoxes. We start with
Allais’ paradox, which was discovered by the Nobel Prize winning econo-
mist Maurice Allais. In the contemporary literature, this paradox is directed
both against the expected utility principle in general, as well as against one
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4.4 Allais” paradox

Table 4.7
Ticketno.1  Ticketno.2-11  Ticket no. 12-100
Gambile 1 $1M $1M $1M
Gamble2  $0 $SM S1M
Gamble3  $1M $1M 50
Gambled 30 $5M 50

em——

of the axioms frequently used in (indirect) axiomatisation of it. In this
section we shall conceive of the paradox as a general argument against
the expected utility principle. Consider the gambles in Table 4.7, in which
exactly one winning ticket will be drawn at random.

In a choice between Gamble 1 and Gamble 2 it seems reasonable to
choose Gamble 1 since it gives the decision maker one million dollars for
sure ($1M), whereas in a choice between Gamble 3 and Gamble 4 many
people would feel that it makes sense to trade a ten-in-hundred chance of
getting $5M, against a one-in-hundred risk of getting nothing, and conse-
quently choose Gamble 4. Several empirical studies have confirmed that
most people reason in this way. However, no matter what utility one assigns
to money, the principle of maximising expected utility recommends that
the decision maker prefers Gamble 1 to Gamble 2 if and only if Gamble 3 is
preferred to Gamble 4. There is simply no utility function such that the
principle of maximising utility is consistent with a preference for Gamble 1
to Gamble 2 and a preference for Gamble 4 to Gamble 3. To see why this is so,
we calculate the difference in expected utility between the two pairs of
gambles. Note that the probability that ticket 1 will be drawn is 0.01, and
the probability that one of the tickets numbered 2-11 will be drawn is 0.1;
hence, the probability that one of the tickets numbered 12-100 will be
drawn is 0.89. This gives the following equations:

1(G1) — u(G2) = u(1M) — [0.01u(0M) + 0.1u(5M) + 0.89u(1M))

— 0.11u(1M) — [0.011(0) + 0.1u(5M)] (1)

u(G3) — u(G4) = [0.11u(1M) + 0.89u(0)] — [0.9u(0M) + 0.1u(5M)]

= 0.114(1M) — [0.01u(0) + 0.1u(5M)] (2)

Equations (1) and (2) show that the difference in expected utility between
G1 and G2 is precisely the same as the difference between G3 and G4. Hence,
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no matter what the decision maker’s utility for money is, it is impossible to
simultaneously prefer G1 to G2 and to prefer G4 to G3 without violating the
expected utility principle. However, since many people who have thought
very hard about this example still feel it would be rational to stick to the
problematic preference pattern described above, there seems to be some-
thing wrong with the expected utility principle.

Unsurprisingly, a number of decision theorists have tried to find ways
of coping with the paradox. Savage, a pioneer of modern decision theory,
made the following point:

if one of the tickets numbered from 12 through 100 is drawn, it does not
matter, in either situation which gamble I choose. I therefore focus on the
possibility that one of the tickets numbered from 1 through 11 will be drawn,
in which case [the choice between G1 and G2 and between G3 and G4] are
exactly parallel ... It seems to me that in reversing my preference between
[G3 and G4] I have corrected an error. (Savage 1954: 103)

Savage’s point is that it does not matter which alternative is chosen
under states that yield the same outcomes, so those states should be
ignored. Instead, decision makers should base their decisions entirely on
features that differ between alternatives. This idea is often referred to as the
sure-thing principle; we will discuss it in more detail in Chapter 7. That said,
some people find the sure-thing principle very hard to accept, and argue
that this principle is the main target of the paradox. In their view, Savage
has failed to explain why sure-thing outcomes should be ignored.

Another type of response to Allais’ paradox is to question the accuracy of
the formalisation of the decision problem. The outcome of getting $0 in G2
is very different from the outcome of getting $0 in G4. The disappointment
one would feel if one won nothing instead of a fortune in G2 is likely to be
substantial. This is because in the choice between G1 and G2 the first
alternative is certain to yield a fortune, whereas in the choice between G3
and G4 no alternative is certain to yield a fortune. A more accurate decision
matrix would therefore look as in Table 4.8. Note that it no longer holds true
that the expected utility principle is inconsistent with the preference pat-
tern people actually entertain.

A drawback of this response is that it seems difficult to tell exactly how
fine-grained the description of outcomes ought to be. In principle, it seems
that every potential violation of the expected utility principle could be
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Table 4.8
Ticket no. 1 Ticket no. 2-11 Ticket no. 12-100
Gamble1 $1M $1M $iM
Gamble 2 $0 and disappointment $5M $1IM
Gamble 3 $1M $1M $0
Gamble 4 $0 §5M $0

rejected by simply making the individuation of outcomes more fine-grained.
However, this would make the principle immune to criticism, unless one
has some independent reason for adjusting the individuation of outcomes.

4.5 Elisberg’s paradox

This paradox was discovered by Daniel Elisberg when he was a Ph.D. student
in economics at Harvard in the late 1950s. Suppose the decision maker is
presented with an urn containing 90 balls, 30 of which are red. The remain-
ing 60 balls are either black or yellow, but the proportion between black
and yellow balls is unknown. The decision maker is then offered a choice
between the following gambles:

Gamble 1 Receive $100 if a red ball is drawn
Gamble 2 Receive $100 if a black ball is drawn

When confronted with these gambles you may reason in at least two
different ways. First, you may argue that it would be better to choose G1
over G2, since the proportion of red balls is known for sure whereas one
knows almost nothing about the number of black balls in the urn. Second,
you may believe that there are in fact many more black than red balls in the
urn, and therefore choose G2. The paradox will arise no matter how you
reason, but for the sake of the argument we assume that you prefer G1 to
G2. Now, after having made a choice between G1 and G2 you are presented
with a second set of gambles.

Gamble 3 Receive $100 if a red or yellow ball is drawn
Gamble 4 Receive $100 if a black or yellow ball is drawn.

Do you prefer G3 or G4? All four gambles are illustrated in Table 4.9.
When confronted with the new pair of gambles, it seems that a person who
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Table 4.9

30 60

Red Black Yellow
Gamble 1 $100 $0 30
Gamble 2 50 $100 50
Gamble 3 $100 50 %100
Gamble 4 $0 $100 $100

g e e A _

prefers G1 to G2 is likely to prefer G4 to G3, since G4 is a gamble with
known probabilities. The probability of winning $100 in G4 is known for sure
to be 60/90.

The point of Ellsberg’s example is the following. No matter what the
decision maker's utility for money is, and no matter what she believes about
the proportion of black and yellow balls in the urn, the principle of max-
imising expected utility can never recommend G1 over G2 and G4 over G3, '
or vice versa. This is because the expected utility of G1 exceeds that of G2©
if and only if the expected utility of G3 exceeds that of G4. To show this,
we calculate the difference in expected utility between G1 and G2, as well!
as the difference between G3 and G4. For simplicity, we assume that the
utility of $100 equals M and that the utility of $0 equals ¢ on your personal
utility scale. (Since utility is measured on an interval scale, these assump-
tions are completely innocent.) Hence. if you believe that there are B black:
balls in the urn, the difference in expected utility between the gambles is°

T S )

as follows.
eu(G1) — ew(G2) = 30/90M — B/90M = 30M — BM

eu(G3) — eu(G4) = 30/90M + (60 — B)/90M — 60/90M
— 30M + (60 — B)M — 60M = 30M — BM

Note that the paradox cannot be avoided by simply arguing that G2
ought to be preferred over G1, because then it would presumably ma
sense to also prefer G3 over G4; such preferences indicate that the decisioll
maker seeks to avoid gambles with known probabilities. As shown above,
eu(G1) - eu(G2) = eu(G3) - eu(G4), so G2 can be preferred over G1 ifando "
if G4 is preferred over G3.
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The Ellsberg paradox is in many respects similar to the Allais paradox. In
both paradoxes, it seems reasonable to violate Savage’s sure-thing principle;
that is, it does not make sense to ignore entire states just because they have
parallel outcomes. However, the reason why it seems plausible to take into
account outcomes that occur for sure under some states is different. In the
Allais paradox, G1 is better than G2 because it guarantees that one gets
a million dollars. In the Ellsberg paradex G1 is better than G2 because
one knows the exact probability of winning $100 although no alternative
is certain to lead to a favourable outcome. Arguably, this shows that the
intuitions that get the paradoxes going are fundamentally different. The
Ellsberg paradox arises because we wish to avoid epistemic uncertainty
about probabilities, whereas the Allais paradox arises because we wish to
avoid uncertainty about outcomes.

4.6 The St Petersburg paradox

The St Petersburg paradox is derived from the St Petersburg game, which is
played as follows. A fair coin is tossed until it lands heads up. The player then
receives a prize worth 2" units of utility, where n is the number of times the coin
was tossed. So if the coin lands heads up in the first toss, the player wins a prize
worth 2 units of utility, butifit lands heads up on, say, the fourth toss, the player
wins 2% =2 -2 - 2 - 2 = 16 units of utility. How much utility should you be willing
to ‘pay’ for the opportunity to play this game? According to the expected
utility principle you must be willing to pay any finite amount of utility,

4
this is absurd. Arguably, most people would not pay even a hundred

: 1 1 1 = 1\" ..
because - 2+ 4+ -8+ =1+1+1+---=> (] -2"=00. But
2 8 2.\2

units. The most likely outcome is that one wins only a very small amount
ofutility. For instance, the probability that one wins at most 8 units is 0.5 +
0.25+0.125=0.875.

The St Petersburg paradox was discovered by the Swiss mathematician

- Daniel Bernoulli (1700-1782), who was working in St Petersburg for a couple
ofiyears at the beginning of the eighteenth century. The St Petersburg paradox
5, of course, not a paradox in a strict logical sense. No formal contradiction is
deduced. But the recommendation arrived at, that one should sacrifice any
. finite amount of utility for the privilege of playing the St Petersburg game,
~ appears to be sufficiently bizarre for motivating the use of the term paradox.

B3
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In 1745 Buffon argued in response to Bernoulli that sufficiently improb-
able cutcomes should be regarded as “morally impossible”, i.e. beyond
concern. Hence, in Buffon’s view, a rational decision maker should simply
disregard the possibility of winning a very high amount, since such an
outcome is highly improbabie. Buffon's idea is closely related to the princi-
ple of de minimis risks, which still plays a prominent role in contemporary
risk analysis. (Somewhat roughly put, the de minimis principle holds that
sufficiently improbable outcomes, such as comet strikes, should be
ignored.) From a mathematical point of view, it is obvious that if probabil-
ities below a certain threshold are ignored, then the expected utility of the
St Petersburg gamble will be finite. That said, this resolution of course
seems to be ad hoc. Why on earth would it be rational to ignore highly
improbable outcomes?

Other scholars have tried to resolve the St Petersburg paradox by impos-
ing an upper limit on the decision maker’s utility scale, From a historical
perspective, this is probably the most prominent resolution of the paradox.
The eighteenth-century mathematician Cramer, who discussed Bernoulli's
original formulation of the paradox in which the prizes consisted of ducats
instead of utility, suggested that “any amount above 10 millions, or (for the
sake of simplicity) above 2** =16677216 ducats [should] be deemed ... equal
in value to 2?4 ducats” (in Bernoulli 1738/1954: 33). More recently, Nobel
Prize winner Kenneth Arrow has maintained that the utility of wealth
should be “taken to be a bounded function.... since such an assumption is
needed to avoid [the St Petersburg] paradox” (Arrow 1970: 92). In order to see
how the introduction of an upper limit affects the paradox, let L be the finite
upper limit of utility. Then the expected utility of the gamble would be
finite, because:

=
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A common reaction to Arrow’s proposal is that the introduction of an
upper limit is also ad hoc. Furthermore, even if one could overcome this
objection, the introduction of a bounded utility scale may not resolve the
paradox anyway. This is because the paradox has little to do with infinite




4.6 The St Petersburg paradox

utility. Arguably, the paradox arises whenever the expected utility of a
gamble is unreasonably high in comparison to what we feel would be reason-
able to pay for entering the gamble. To see this, note that a slightly modified
version of the St Petersburg paradox arises even if only small finite amounts
of utility are at stake, as in the following gamble.

Gamble1 A faircoin is tossed until it lands heads up. The player thereafter
receives a prize worth min {2" - 107'%, L} units of utility, where n is the
number of times the coin was tossed.

Suppose L equals 1. Now, the expected utility of Gamble 1 has to be
greater than 332 - 107" units of utility (since 2*** is approximately equal to
10'%). However, on average in one out of two times the gamble is played,
you win only 2 - 107'% units, and in about nine times out of ten you win no
more than 8 - 107 units. This indicates that even though the expected utility
of Gamble 1 is finite, and indeed very small, it is nevertheless paradoxically
high in comparison to the amount of utility the player actually wins.

Another resolution of the St Petersburg paradox was suggested by
Richard C. Jeffrey. He claimed that, “anyone who offers to let the agent
play the St. Petersburg game is a liar, for he is pretending to have an
indefinitely large bank”™ (1983: 154). This is because no casino or bank can
possibly fulfil its commitments towards the player in the case that a very
large number of tails precedes the first head; hence, the premises of the
gamble can never be valid. A possible reply to Jeffrey’s argument is to point
out that all sorts of prizes should, of course, be allowed. Suppose, for
instance, that after having played the St Petersburg gamble you will be
connected to Robert Nozick's experience machine. By definition, the expe-
rience machine can create any experience in you, e.g. intense happiness or
sexual pleasure. The fact that there is a limited amount of money in the
world is therefore no longer a problem.

There is also another response to Jeffrey’s proposal. As before, the main
idea is to show that a slightly modified version of the St Petersburg paradox
arises even if we accept Jeffrey's restriction, i.e. if we assume that the
amount of utility in the bank is finite. Consider Gamble 1 again, and let L
equal the total amount of utility available in the bank. Now, Jeffrey’s
requirement of a finite amount of utility in the bank is obviously satisfied.
Arguably, the most important point is that if a new paradoxical conclusion
can be obtained just by making some minor alterations to the original
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problem, then the old paradox will simply be replaced by a new one,
and nothing is gained. The following gamble is yet another illustration of
this point, which raises a more general issue that goes beyond Jeffrey’s
proposal.

Gamble?2 Amanipulated coin, which lands heads up with probability 0.4, is
tossed until it Jands heads up. The player thereafter receives a prize worth 2"
units of utility, where n is the number of times the coin was tossed.

Common sense tells us that Gamble 2 should be preferred to the original
St Petersburg gamble, since it is more likely to yield a long sequence
of tosses and consequently better prizes. However, the expected utility of
both gambles is infinite, because f (0.4)" - 2" = oo. Hence, the principle

n=1

of maximising expected utility recommends us to judge both gambles as
equally valuable. This is also absurd. Any satisfactory account of rationality
must entail that Gamble 2 is better than the original St Petersburg gamble.

4.7 The two-envelope paradox

The two-envelope paradox arises from a choice between two envelopes,
each of which contains some money. A trustworthy informant tells you
that one of the envelopes contains exactly twice as much as the other, but
the informant does not tell you which is which. Since this is all you know
you decide to pick an envelope at random. Let us say you pick envelope A.
Just before you open envelope A you are offered to swap and take envelope
B instead. The following argument indicates that you ought to swap. Let x
denote the amount in A. Then envelope B has to contain either 2x or x/2
dollars. Given what you know, both possibilities are equally likely. Hence,

. .1 1 x 5 . 5
the expected monetary value of swapping to Bis 5 2x+ 3°5°3% Since 2 X

is more than , it is rational to take B instead of A.

However, just as you are about to open envelope B, you are offered to
swap back. The following argument indicates that you ought to take enve-
lope A. Let y denote the amount in envelope B. It then follows that envelope
A contains either 2y or y/2 dollars. As before, both possibilities are equally
likely, so the expected monetary value of swapping is %-2y+ L Ey.

.5 .
Since 2V is more than y you ought to swap.
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4.7 The two-envelope paradox

Table 4.10

o 1/2 1/2 Expected value
Envelope A X X X

Envelope B 2x 1/2x 5xf4

Table 4.11

F 12 1/2 Expected value
Envelope A 2y 1/2y Sy/4

Envelope B ¥y y y

Clearly, there must be something wrong with the reasoning outlined
here. It simply cannot hold true that the expected monetary value of choos-
ing A exceeds that of choosing B, at the same time as the expected monetary
value of choosing B exceeds that of choosing A. Consider Table 4.10 and
Table 4.11.

The present formulation of the paradox presupposes that there is no
upper limit to how much money there is in the world. To see this, suppose
that there indeed is some upper limit L to how much money there is in the
world. It then follows that no envelope can contain more than (2{3)L, in
which case the other envelope would be certain to contain (1/3)L. (If, say,
envelope A contains (2/3)L, then it would clearly be false that envelope B
contains either 2 - (2/3)L or 1/2 - (2/3)L. Only the latter alternative would be a
genuine possibility.) Hence, for the paradox to be viable one has to assume
that the amount of money in the world is infinite, which is implausible.
That said, the paradox can easily be restated without referring to monetary
outcomes; if we assume the existence of infinite utilities the paradox will
come alive again.

The two-envelope paradox can also be generated by starting from the
St Petersburg paradox: A fair coin is flipped n times until it lands heads up.
Then a prize worth 2" units of utility is put in one of the envelopes and
either half or twice that amount in the other envelope. It follows that, for
every finite n, if the first envelope contains 2" units of utility, one always has
reason to swap to the other envelope, since its expected utility is higher.
However, as we know from the discussion of the St Petersburg paradox, the
expected utility of the contents in each envelope is infinite.
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At present there is no consensus on how to diagnose the two-envelope
paradox. A large number of papers have been published in philosophical
journais. Most attempt to show that the probability assignments are illegit-
imate, for one reason or another. However, it has also been argued that the
way the outcomes are described does not accurately represent the real
decision problem. I leave it to the reader to make up her own mind about 1

this surprisingly deep problem.

Exercises
4.1 Consider the decision problem illustrated below.
12 1/4 1/4
a1 $49 $25 $25
az $36 $100 50
az $81 30 50

4.2

4.3

(a) The decision maker’s utility u of money is linear. Which act should
be chosen according to the principle of maximising expected mon-
etary value?

(b) The decision maker's utility u of money x is given by the formula
u(x) = /x. Which act should be chosen according to the principle of
maximising expected utility?

Iam in my office in Cambridge, but I have to catch a flight from Heathrow

this afternoon. I must decide whether to go to Heathrow by coach, which

comes relatively cheap at £40, or buy a train ticket for £70. If I take the
coach I might get stuck in an intense traffic jam and miss my flight. I would
then have to buy a new ticket for £100. According to the latest statistics,

the traffic jam on the M25 to Heathrow is intense one day in three. (a)

Should I travel by train or coach? {b) This description of my decision

problem overlooks a number of features that might be relevant. Which?

(a) You are in Las Vegas. The probability of winning a jackpot of $350,000
is one in a million. How much should you, who find no reason to
reject the principle of maximising expected utility, be prepared to
pay to enter this gamble? Your utility of money is u(x) = In(x + 1).

(b) This time the probability of winning the jackpot of $350,000 is one
in a thousand. How much should you, who find no reason to reject
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Solutions

the principle of maximising expected utility, be prepared to pay to
enter this gamble? Your utility of money is u{x) = In(x + 1).

(c) Why is the difference between the amount you are willing to pay in
(a) and (b) so small?

(d) Why did we assume that your utility function is u{x) =In(x + 1), rather
than just u{x} = In{x)?

4.4 (a) What is the law of large numbers?

(b) How is the law of large number related to the theorem known as
gambler’s ruin?

4.5 (a) Explain why Allais” and Ellsberg’s paradoxes pose difficulties for the
principle of maximising expected utility. {b) Explain the difference
between the two paradoxes — they arise for two different reasons.

4.6 Suppose that you prefer Gamble 1 to Gamble 2, and Gamble 4 to
Gamble 3. Show that your preferences are incompatible with the
principle of maximising expected utility, no matter what your utility
of money happens to be.

1/3 1/3 1/3
Gamble 1 $50 $50 $50
Gamble 2 $100 $50 $0
Gamble 3 $50 50 $50
Gamble 4 $100 50 $0

4.7 (a) Explain why the St Petersburg paradox poses a difficulty for the
principle of maximising expected utility.
(b) Construct a new version of the St Petersburg paradox, in which
the player rolls a six-sided die instead of tossing a coin.
4.8 There is an interesting connection between the St Petersburg and the
two-envelope paradox - explain!

Solutions

4.1 (a) a; {b) a4

4.2 (a) If money is all that matters, and my utility of money is linear,
I should buy a train ticket. It will cost me £70, but the expected mone-
tary cost of going by coach is £73.33. (b) Arguably, money is not all that
matters. For instance, travelling by train is more comfortable and if
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