2
An Introduction to Manipulability

2.1 Set Preferences and Manipulability

It has long been known that a voter can sometimes achieve a preferred election
result by casting a ballot that misrepresents his or her actual preferences. Overa
century ago, C. L. Dodgson referred to a tendency of voters to “adopt a principle
of voting which makes it more of a game of skill than a real test of the wishes of
the electors” (Black, 1958, p. 232). Dodgson went on to say that in his opinion,
it would be “better for elections to be decided according to the wishes of the
majority than of those who happen to have most skill at the game” (Black, 1958,
p- 233).

The most famous manipulability quote in the history of social choice, how-
ever, predates Dodgson by a century or so. It was Jean Charles de Borda’s
famous reply to a colleague who had pointed out to him how easy it was to ma-
nipulate his (Borda’s) method of marks (i.e., the Borda count). “My scheme,”
Borda replied, “is only intended for honest men!” (Black, 1958, p. 182).

Alas, the practice of manipulation today is not restricted to men or women
we would consider dishonest. For example, in his 1986 book, The Art of Po-
litical Manipulation, the late William H. Riker (considered by many to be the
intellectual founding father of positive political theory) provides a dozen stories
that illustrate the extent to which

politicians are continvally poking and pushing the world to get the results they
want. The reason they do this is they believe (and rightly so) that they can change
outcomes by their efforts. It is often the case that voting need not have turned out
the way it did.

This poking and pushing is the issue we now address.

In a study of manipulation of voting systems, there are two rather distinct
types of questions. With the first, one begins with an explicitly given aggregation
procedure and attempts to find the ways in which a voter can secure a more

37



38 2 An Introduction to Manipulability

favorable election outicome by a unilateral change in his or her ballot. With the
second, one starts with an explicit notion of what it means for a voter to prefer
one outcome to another and attempts to find all the aggregation procedures (of
a certain kind) that are manipulable in this sense. The first kind of question is
generally felt to be considerably easier than the second,’ and it is largely what
we pursue in this chapter. The remainder of the book is devoted to the second
kind of question.

Throughout this chapter, we assume that ballots are linear. Our starting point
is to address the question of how one formalizes the notion of manipulability.

Intuitively, a voting system is manipulable if there exists an election in which
some voter can secure an outcome that he or she prefers by unilaterally changing
his or her baliot. The ballots of the other voters are held fixed. This corresponds
to the assumption that this particular voter has complete knowledge of how ev-
eryone else voted (or perhaps better: will vote) and can capitalize on this knowl-
edge to secure a better outcome — better, that is, fror his or her point of view — by
submitting an insincere ballot. We are, by the way, considering only the kind of
manipulation that involves a ballot change by a single voter. Group manipula-
tion, also called coalitional manipulability, is discussed in Sections 6.3 and 6.4.

More precisely, a voting rule V is manipulable if there are two profiles P
and P’ and a voter i such that PN — {i} = PN — {i} and voter i, whose true
preferences we take to be P;, “prefers” V(P') to V(P). If V(P') and V(P) are
singletons, say V(P') = {x} and V(P) = {y}, then there is no doubt what we
mean when we say that voter i prefers V(P') to V(P); it simply means that xP; y.
The issue, as we've said earlier, is deciding what it means to say that a voter
prefers a set X of alternatives to another set Y.

Almost all the major theorems on manipulability that we present in Chap-
ters 3-8 involve formalizations of set preferences based on one or more of the
following ideas:3

(1) The case where X and Y are singletons, as we just discussed.

(2) The idea of one set X “weakly dominating” another set Y in the sense that
everything in X is at least as good as everything in Y, and something in X
is better than something in Y.

7 Pve heard the distinction referred to as low secial choice theory versus high social choice
theory, but the truth might be that investigators have simply asked (and answered) harder
instances of the second question than the first.

8 There is a vast literature regarding the derivation of subset preferences from preferences over
single elements of a set; see, for example, deFinetti (1937), Savage (1954), Fishburn (1986),
and Burani and Zwicker (2000). Only some of the resulting ideas have played a prominent role
in the study of manipulation of voting systems. Those that have played such a role arise, in one
way or another, from an intuition based on the supposition that a single winner will eventually
be selected — by a lottery, by a machine, by a person, etc. - from the group initially chesen.
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(3) The ideaof comparing max; (X, P) and/or min;(X, P) with max; (Y, P) and/or
min; (Y, P).

(4) The idea of one set X having a higher “expected utility” than another set Y
where the calculation is done using some real-valued utility function that
represents a voter’s preferences and one or more probability functions that
provide a measure of the likelihood that a given alternative will ultimately
be selected from a given set.

We comment on each of these in turn, and then cull four explicit forms of
manipulability from these notions. In the next section of this chapter, we return
to our twenty voting rules given in the last chapter and illustrate these different
forms of manipulability in that concrete setting.

The first idea above - the case where X and Y are singletons — requires no
further comment. The second idea above, that of weak dominance, arises in
game theory where one speaks of a strategy for a player as weakly dominating
another strategy for that player if the former always yields an outcome at least
as good for that player as the latter and sometimes yields an outcome that is
strictly better. In point of fact, an election can be thought of as a game in which
a strategy for a player (voter) is a choice of ballot, and the outcome of the game
is the set of winners in the election.

Thus, we can say that a set X of alternatives is preferred by voter i to a set
Y of alternatives in the sense of weak dominance if

Ve XVye YR, y)9 and 3v € X3y € Y(xP;y).

Because ballots are linear, this means that for a set X to weakly dominate a
set Y they must have at most one element in common: That is, min; (X, P) R,
max; (Y, P) and X # Y. This, however, allows us to split weak dominance into
a “max-version” and a “min-version.” In the former, we have

Ve XVy e Y(xR;y) and max;(X, P) P; max;(Y, P),
and in the latter we have
Ve XVyeY(xR;y) and min;(X, P)P; min;(Y, P).

For the third idea, suppose we are given a ballot P; (in a profile P) that we
take to represent the true preferences of voter i. A naive approach yields four
ways to use the max; and min; functions to assert that one set X of alternatives
is preferred by voter | to another set Y of alternatives:

(1) max;(X, P) P; min;(Y, P)
(i) min;(X, P) P; max;(Y, P)

9 Recall that we are assuming that ballots are linear, so xR; y means xP;y or v = y.
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(iii) max;(X, P) P; max;(Y, P)
(iv) mini(X, P) P; min;(Y, P)

It turns out that (i) and (ii) are not very satisfactory in terms of giving
useful notions of manipulability. In particular, (i) is too weak — max; (X, P)
P; min;(Y, P) being neither transitive nor irreflexive on sets with more than
one element, and (ii) is strong enough so as to be somewhat redundant —
manipulations resulting in min; (X, P) P; max; (Y, P) most commonly achievable
only when the sets X and Y can, in fact, be taken to be singletons.

However, there are some reasonably good intuitions behind the use of (iii)
and (iv) in manipulability investigations. For example, let’s assume that, when
the dust settles, society will need to have a single winner, and that this single
winner will be selected in some way (randomly, by some commiittee, elc.) from
those tied for the win according to our voting rule.

Now, if a voter is sufficiently optimistic, and if he or she ranks a over b over
c over d, then he or she will prefer an election outcome of {a, 4} to an election
outcome of {4, c}. This is because he or she will assume — optimistically — that
a (his or her top choice overall) will result from an election outcome of {a, d},
while b (his or her second choice overall) will result from an election outcome
of {b, c}. In general, a sufficiently optimistic voter will compare two election
outcomes (that is, two sets of alternatives) by asking which has a larger max
according to the voter’s true preference ranking of the alternatives — that is, by
using (iii).

On the other hand, if a voter is sufficiently pessimistic, and if he or she
ranks a over b over ¢ over d, then he or she will prefer an election outcome of
{b, c) to an election outcome of {a, d}. This is because he or she will assume —
pessimistically — that d (his or her worst choice overall) will result from an
election outcome of {a, d}, while ¢ (his or her third choice overall) will result
from an election outcome of (b, c}. In general, a sufficiently pessimistic voter
will compare two election outcomes (that is, two sets of alternatives) by asking
which has a larger min according to his or her true preference ranking of the
alternatives (that is, by using (iv)).

Another way to view this notion of manipulation by an optimist or a pessimist
is to return to our example in Chapter 1 wherein we had ten faculty members inan
academic department trying collectively to choose from among five candidates
for a position in the department. Any of the voting rules that come to mind
(plurality, Hare, Borda, etc.) will produce ties upon occasion, and one option is
10 let the dean break any ties that arise. Here, optimism and pessimism need not
be any kind of general state of mind. An optimist is simply a department member
who feels that the dean shares his or her values (e.g., the relative importance
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attached to effective teaching versus a prominent research profile); a pessimist
is one who feels just the opposite.

Finally, our fourth notion is based on the idea that one might want to say
that a voter prefers a set X of alternatives to a set Y of alternatives if his or her
“expected utility” from X is greater than his or her “expected utility” from Y.
Although we put expected utility in quotes for good reason, the intuition here
is quite clear; the expected utility of a set X of alternatives to a voter should be
the sum, over all x € X, of the product of the following two numbers:

(1) The “value” or “utility” of alternative x to that voter.
(2) The probability with which that voter sees alternative x emerging as the
eventual winner from the set X.

For this kind of arithmetic calculation to make sense, we want the *util-
ity referred to in (1) to be a number. This is achieved if each voter has a
so-called wtility function u mapping the set A of alternatives to the set i of
real numbers (denoted u: A — N) that represents his or her preferences (for
individual alternatives) in the sense that for every x, y € A, xP;y iff u(x) >
1(y). Additionally, (2) requires that each voter has, for every set X of alterna-
tives, a probability function on X, that is, a function p: X — [0, 1] such that
> {p(x) : x € X} = 1. Here again there are two natural ways in which p might
arise:

(I) The probability function p might depend on the particular voter and his or
her knowledge or suppositions about how ties will ultimately be resolved.
In this case, the nature of p might vary from voter to voter and from set
to set.

(2) The probability function p might be determined by the procedure itself. For
example, if the procedure were to specify that ties must be broken randomly,
then we would have p(x) = 1/|X] for every x € X.

There are six expected-utility notions of manipulability arising from the
situation described in (1), and all of these have combinatorial equivalents that
make use of the min; and max; functions (sometimes in ways that are quite
different from what we had above for optimists and pessimists). This material
is presented in Section 4.4.

For the moment, however, we want to focus on (2) and the notion of manip-
ulability arising from saying that a set X of alternatives is preferred (or perhaps
better, can be preferred) to a set Y of alternatives by voter i if there exists a
utility function u representing P; such that, if p(x) = 1/{X| for every x € X, and
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p(y) = U|Y] for every y € Y, then
Yl u) i x €X) > ) () - u(y) :y € YO

This notion was introduced by Feldman, and we illustrate it in the course of
proving Theorem 2.3.1 in this chapter. Notationally, if « is a utility function
representing P;, then we let

E.i(X) = ) _{ulx) :x € X}/IXI.

Thus, in the special case where p(x) = 1/|X]| for every x € X, the “expected
utility of X” might also be called the “mean (or average) utility of X.”

This completes our discussion of the four fundamental ideas underlying the
sense in which a voter might prefer one set of alternatives to another. These
ideas, in turn, give rise to the four primary notions of manipulability that we
need to analyze the specific voting rules from the last chapter and to summarize,
in Section 2.3, some of the main results presented in other chapters. These four
notions of manipulability (with comments to follow that allow for slightly finer
distinctions) are collected in the following definition.!!

Definition 2.1.1. In the context of linear ballots, a voting rule is:

(1) single-winner manipulable if there exist profiles P and P’ and a voter {
such that PN — {/} = P'IN — {i} and voter /, whose true preferences we
take to be given by his or her ballot in P, prefers the election outcome X
from P’ to the election cutcome Y from P in the following sense:

X=|[x} and Y={(y} and xP;y.

(2) weak-dominance manipulable if there exist profiles P and P’ and a voter i
such that PN — {{} = P'|N — {i} and voter i, whose true preferences we
take to be given by his or her ballot in P, prefers the election outcome X
from P’ to the election outcome Y from P in the following sense:

VyxeXVye Y(xR;y) and 3x € X3y € Y(xP,y).

(3a) manipulable by optimists if there exist profiles P and P’ and a voter i such
that PN — {i} = P’|N — {/} and voter /, whose true preferences we take

10 1f we demanded that the utility function take on only positive real values, then the notion of X
being preferred to Y in the sense of expected utility would be unchanged. See Exercise 7.

' Attempts to organize the various kinds of manipulability that suggest themselves date back at
least to Giirdenfors (1979). Our own experience with this began with several undergraduate
theses we supervised, including that of Ryan Kindl and Matthew Gendron. Related material
can be found in Bartholdi and Orlin (1991) and Smith (1999).
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to be given by his or her ballot in P, prefers the election outcome X from
P’ to the election outcome Y from P in the following sense:

max; (X, P) P; max;(Y, P)

(3b) manipulable by pessimists if there exist profiles P and P’ and a voter i such
that P|N — {i} = P'|N — {{} and voter i, whose true preferences we take
to be given by his or her ballot in P, prefers the election outcome X from
P’ to the election outcome Y from P in the following sense:

min;(X, P) P,' min,- (Y, P)

)

(4) expected-utility manipulable if there exist profiles P and P’ and a voter i
such that P|N — (i} = P'|N — {i} and voter i, whose true preferences we
take to be given by his or her ballot in P, prefers the election outcome X
from P’ to the election outcome Y from P in the following sense: There
exists a utility function u representing P; such that, if p(x) = 1/|X] for
every x € X, and p(y)= 1/|Y| for every y € Y, then Y Ap(x) - ulx):x €
X} > Y{p(y) - u(y):y € Y}ie, B i(X) > Epi(Y).

Ty

TETT

Exercise 2 at the end of the chapter asks for verification that the conditions
imposed on X and Y in the definition of weak-dominance manipulability hold
iff at least one of the following is true:

(i) X ={x}and Y = (y) and xP;y
(i) max;(X, P) P; min;(X, P) R; max;(Y, P)
(iii) min;(X, P) R; max;(Y, P) P; min;(Y, P)

In case (ii) we will use the phrase “max-weak-dominance manipulable,” and
in case (iii) the phrase “min-weak-dominance manipulable.” Exercise 3 asks
for a proof that single-winner manipulability implies weak-dominance manip-
ulability, weak-dominance manipulability implies manipulability by optimists
or pessimists, and manipulability by optimists or pessimists implies expected-
utility manipulability.

We show in Section 4.4 that the set preference notion used in the definition
of manipulation by optimists or pessimists is equivalent to some expected-
utility notions that differ from what is given above in a couple of important
ways. Conversely, the version of expected-utility manipulation given above has
a very nice combinatorial equivalent, but not in terms of the max; and min;
functions. Roughly, it says that a set X is preferred to a set Y if there is some
alternative z such that voter i has a larger fraction of X than Y at or above z on
his or her ballot (see Exercise 4). But let us now turn to the twenty voting rules
introduced earlier and see how they stack up in terms of inducing honesty.
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2.2 Specific Examples of Manipulation

The fourkinds of manipulability that we have athand, from strongest to weakest,
are single-winner manipulability, weak dominance manipulability, manipula-
bility by optimists and/or pessimists, and expected-utility manipulation. Our
first result illustrates these varying levels of manipulability with several of the
voting rules presented in the last chapter. Notice that the procedures in (i)-(iv)
below are anonymous, neutral, monotone, and non-imposed.

Theorem 2.2.1. 12
(i) For A=1{a,b,c,d}, the Borda countfor (A,4}is single-winner manipulable.

(i) For A = {a, b, c}, the plurality rule for (A, 4) is weak-dominance manip-
ulable. However, it is never single-winner manipulable.

(iii) For A = (a, b, ¢}, the Condorcet rule for (A, 3) is manipulable by
both optimists and pessimists. However, it is never weak-dominance
manipulable.

(iv) For A= {a,b,c}, the nomination-with-second rule for (A, 4) is manipulable
by optimists (but never by pessimists if |A| < n), and the near-unanimity
rule for (A, 3) is manipulable by pessimists (but never by optimists).

(v) For A= (a,b,c}, the Pareto rule for (A, 3) is expected-utility manipulable.
However, it is never manipulable by optimists or pessimists.

(vi) Dictatorships and duumvirates are never expected-utility manipulable.

Let us make a couple of comments before turning to the proof. First, parts
(iv) and (vi) of the theorem involve procedures that few would advocate forreal-
world adoption, but the results are important for the theory in other chapters.
Second, of the four “real-world voting systems” in the theorem, we have that
the Borda count is (in one sense, at least) most manipulable, followed by the
plurality rule, Condorcet’s rule, and the Pareto rule in that order.

Each time we need to show that a voting rule is manipulable in some sense,
we produce a positive integer n, a set A of alternatives, and two linear (A, n)-
profiles P and P’ that provide an instance of manipulation by voter 1 (who is at
the far left) when we regard his or her true preferences to be given by his or her
ballot in P. We leave the verification that the election winners are what we say
they are to the exercises. For notation, we let F(x, P) = |{i € N: Top,(P) = x}l,
where we think of “F" as standing for “first.”

12 For a finer analysis of the manipulability of these procedures, see the exercises at the end of
the chapter. For example, Exercise 8 gives an example of a voting rule that is single-winner
manipulable for (A, n) when {A] =3 and # = 3, and Exercise 10 asks for a proof that the
Borda count is not single-winner manipulable when [A| = 3.
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Proof: For (i), let A = {a, b, c, d}, let n = 4, and consider the following profiles
Pand P

P P’
a b d c b b d C
b d ¢ a a d c a
c c a b d c a b
d a b d c a b d

If V is the Borda count, then V(P) = {c¢] and V(P') = {b), so voter 1 has
improved the election outcome from being his or her third choice to being his
or her second choice.

For (ii), let A = {a, b, c}, let n = 4, and consider the following profiles P
and P’

P P’
a ¢ c b b ¢ ¢ b
a a a a a a
¢ b b c ¢ b b c

If V is the plurality rule, then V(P) = {c} and V(P’) = {b, c}, so voter 1 has
improved the election outcome from being his or her third choice to being his
or her second and third choices. This shows that th= plurality rule is max weak-
dominance manipulable. The plurality rule can also be min weak-dominance
manipulable, depending on the number of alternatives and the number of voters;
see Exercise 13.

For the second claim, we will show that, with the plurality rule, no voter
can ever simultaneously improve the min and the max of the set of winners.
From this it follows that the plurality rule is not single-winner manipulable. In
fact, we’ll show that if PN — {i} = P'|N — (i}, then either V(P) € V(P') or
V(P') € V(P).

Assume for contradiction that PN — {i} = P'|N — {i} and that we can
choose v € V(P) — V(P') and y € V(P') — V(P). Without loss of generality,
assume that yP;x, and let F(x, P) = k. Notice that because x is not at the
top of voter /’s ballot, we also have F(x, P’) > k. Because x € V(P) and y ¢
V(P), we know that F(y, P) < & — 1. But now, because PIN — {i} = P'|N -
{i}, we know that F(y, P') < &. It now follows that because y € V(P’), we have
x € V(P') because it also has at least & first-place votes in P’, and this is the desired
contradiction.



46 2 An Introduction to Manipulability

For (iii), let A = [a, b, c}, let n = 3, and consider the following profiles P
and P": .

P P

b c a b c
(5 c a b (G a
b a b c a b

If V is the Condorcet rule, then V(P) = {c) and V(P') = {a, b, ¢}, so voter |
has improved the max of the election outcome from being his or her second
choice to being his or her first choice. This shows that the Condorcet rule is
manipulable by optimists. For the proof that it is also manipulable by pessimists,
see Exercise 15.

For the second claim, assume that PIN — {i} = P'|N — {{}, that V(P) = Y,
that V(P') = X, and that X weakly dominates Y with respect to P;, which we
take to be voter i’s true preferences. Notice first that if Y and X are singletons,
say Y = {y} and X = {x}, then we must have xP; y for X to weakly dominate
Y. But this is impossible, because then y would still defeat x one-on-one after
voter i’s ballot change.

It thus follows that one of X and Y is a singleton, and the other is the whole
set A. If X = {x}, then x must be at the top of voter i’s ballot in P in order
to have X dominate Y. But V(P) = A, and so x was not a Condorcet winner.
Clearly, no change in voter i’s ballot can covert his or her top choice from not
being a Condorcet winner to being a Condorcet winner. Similarly, if Y = {y},
then y must have been at the bottom of voter i’s ballot in P in order to have X
dominate Y. But then y will remain a Condorcet winner no matter how voter i
changes his or her ballot. With the Condorcet rule, it also turns out that a voter
can never simultaneously improve the max and the min of the set of winners;
see Exercise 24,

For (iv), let A = {a, b, c}, let n = 4, and consider the following profiles P
and P’ (which are the same as in (ii)):

P P’
a (e c b b c C b
a a a a a a
¢ b b c ¢ b b

If V is the nomination-with-second rule, then V(P) = {c} and V(P") = {b, c},
so voter 1 has improved the election outcome from being his or her third
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choice to being his or her second and third choices. This shows that the
nomination-with-second rule is manipulable by optimists (in fact, max weak-
dominance manipulable).

For the second claim regarding the nomination-with-second rule, we have
{A| < n, so there is always at least one alternative with at least two first-place
votes. So the min for voter / is either his or her top choice, or it is at the top of
two other voter’s ballots, in which case he or she can never make it a loser.

For the near-unanimity rule, let A = {a, b, ¢}, let # = 3, and consider the
following profiles P and P':

P P
a b ¢ b b c
b a a a a
I ¢ b G c b

If V is the near-unanimity rule, then V(P) = {a, b, ¢} and V(P') = {b}, so voter 1
has improved the min of the election outcome from being his or her third choice
to being his or her second choice. This shows that the near-unanimity rule is
manipulable by pessimists.

To show that the near-unanimity rule is not manipulable by optimists, notice
that the max for voter i is either his top choice, or it is some single alternative at
the top of every other voter’s ballots, in which case he or she can never change
the election outcome.

For (v), let A = {a, b, c}, let n = 3, and consider the following profiles
Pand P

P P
d a C a ¢
b c c ¢ b
c b a b b a

If V is the Pareto rule then V(P) = {a, b, ¢} and V(P') = {g, ¢}. Now let u be
any utility function representing voter 1’s preferences in P with the average of
u(a) and 1(c) greater than u(b). For definiteness, let’s take u(a) = 18, u(b) =9
and u(c) = 6. Then the expected utility from {a, b, c} is

(1/3)-184+(1/3)-94+(1/3)- 6 =6+3+2 =11,
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and the expected utility from (a, c} is
(1/2)-18+(1/2)-6 =943 =12

This shows that the Pareto rule is expected-utility manipulable.

It’s easy to see that the Pareto rule can’t be manipulated by optimists, since
top;(P) € V(P) for every i/ € N. To see that it can’t be manipulated by pes-
simists takes a little more work. Let y = min;(Y) where Y = V(P). If y is at
the bottom of voter i’s ballot, then y will certainly remain a winner no matter
how voter / changes his or her ballot. So we can assume that there are alter-
natives z,,..., z; that voter / has below y on his or her ballot and that are
non-winners. For voter { to make y a loser, he or she must do it by raising at
least one of the z’s over y so that, when this is done, every voter will have that
z overy.

Choose z, to be such that voter 7 has z; below y, but every other voter has z,
above y. Because z{ is a non-winner (being below y on voter /’s ballot), we can
choose some z» such that every voter has z> over z;, and, in particular, every
voter except voter i has z» above y. But because y is a winner, voter i must have
z; below y. But now z, has the same properties as did z, and we can continue
to produce z3, z4, etc., forever.

Finally the statement in (vi) is trivial, and this completes the proof of Theo-

rem 2.2.1. -

In addition to the Borda count, eight of our other voting rules are also single-
winner manipulable. The following theorem gives seven; finding the eighth is
left to the reader (Exercise 27).

Theorem 2.2.2. For each of the following, there exists ann > 1 and a set A of
alternatives such that the voting rule for (A, n) is single-winner manipulable:

(1) The plurality runoff rule

(2) The weak Condorcet rule
{3) Copeland’s rule

(4) The sequential pairwise rule
(5) The Hare system

(6) The Coombs rule

(7) The iterated plurality rule

Proof: In each of the seven cases, we again produce a positive integer n,
a set A of alternatives, and two linear (A, n)-profiles P and P’ that pro-
vide an instance of single-winner manipulation by voter 1 (who is at the far
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left) when we regard his or her true preferences to be given by his or her
ballot in P.

(1) The plurality runoff rule: Let A = {a, b, ¢}, let n = 5, and consider the
following profiles P and P":

P P
a a c (& b b a G c

a a G a b a a G
c c b b a ¢ c b b

If V is the plurality runoff rule, then V(P) = {c} and V(P") = {b}, so voter 1
has improved the election outcome from being his or her third choice to
being his or her second choice.

(2) The weak Condorcet rule: Let A = {a, b, ¢, d}, let n = 4, and consider the
following profiles P and P':

P P’
a c b d b & b d
b a d c a a d e
c b c a d b G a
d d a b ¢ d a b

If V is the weak Condorcet rule, then V(P) = {c} and V(P’) = [b}, so voter 1
has improved the election outcome from being his or her third choice to
being his or her second choice.

(3) Copeland’s rule: Let A = {a, b, c, d, e}, let n = 4, and consider the follow-
ing profiles P and P":

P P’
a ¢ a d c ¢ a d
b € e b a ¢ e b
c d d e b d d e
d b c c e b c c
€ a b a d a b a

If V is Copeland’s rule, then V(P) = {d} and V(P") = {c}, so voter 1 has
improved the election outcome from being his or her fourth choice to being
his or her third choice.



50 2 An Introduction to Manipulability

(4) The sequential pairwise rule: Let A = (a, b, ¢}, let n = 3, and consider the
following profiles P and P':

P P’
a b c b b c
b c a a ¢ a
c a b C a b

If V is the sequential pairwise rule with the ordering of the alternatives
being abc, then V(P) = {c} and V(P') = {b}, so voter | has improved the
election outcome from being his or her third choice to being his or her
second choice.

(5) The Hare system: Let A = {a, b, ¢, d}, let n = 5, and consider the follow-
ing profiles P and P":

P P’
a b & c d b b c C e
b a b b b a a b b b
c ¢ a a ¢ c G a a &
d d d d a d d d d a

If V is the Hare system, then V(P) = {c} and V(P') = {b}, so voter 1 has
improved the election outcome from being his or her third choice to being
his or her second choice.

(6) The Coombs rule: Let A = {a, b, ¢}, let 1 = 5, and consider the following
profiles P and P":

PI

=)
N . -
oo
o
Ly
Q6 o
[
(]
oon

If V is the Coombs rule, then V(P) = {c} and V(P’) = {a}, so voter | has
improved the election outcome from being his or her third choice to being
his or her first choice.

(7) The iterated plurality rule: See Exercise 26.

This completes the proof of Theorem 2.2.2. O
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The manipulability of the last four of our voting rules — the unanimity and
nomination rules and the oligarchies and triumvirates — is left to the reader (See
Exercises 29-32).

2.3 Summary of the Main Results

All four notions of manipulability — single-winner manipulation, weak dom-
inance manipulation, manipulation by optimists or pessimists, and expected-
utility manipulation — arise in one or more of the general theorems that we
elsewhere present in this book. These results all assert that a large class of vot-
ing systems are susceptible to manipulation in that particular sense. By way of
summary, we give the statement (but not the proof) of some of those theorems
here.

Single-winner manipulation is a very strong notion indeed, and it is precisely
the notion addressed by the seminal Gibbard-Satterthwaite theorem. Unfortu-
nately, the class of voting rules that it identifies as being susceptible to this kind
of manipulation - that is, the non-imposed, resolute voting rules that are not
dictatorships — omits, for example, nineteen of the twenty voting rules that we
presented in the last chapter, at least for some choices of A and .

One can extend the applicability of the Gibbard-Satterthwaite theorem in
two different but related ways: One can change the voting rules so that they
become resolute, or one can change the theorem so that it applies to non-resolute
procedures. Both approaches, it turns out, involve che same idea — using a linear
ordering of the alternatives (perhaps one of the ballots, perhaps a fixed “absentee
ballot”) as a tie-breaker. Unfortunately, using a random device as a tie-breaker
leaves the Gibbard—-Satterthwaite theorem inapplicable, because the resulting
procedure is not a function.

We record the Gibbard-Satterthwaite theorem here in both its resolute
and non-resolute forms. The resolute version reappears (with proof) as Theo-
rems 3.1.2 and Corollary 3.1.12. For the equivalence of the non-resolute version,
see Corollary 3.1.13.

Theorem 2.3.1. For every set A of three or more alternatives and everyn > 1,
every resolute voting rule for (A, n) that is non-imposed and not a dictatorship
is single-winner manipulable.

Equivalently, with the same assumptions on A and n, a (not necessarily
resolute) voting rule that is non-imposed and not a dictatorship is manipulable
in the sense that there exist profiles P and P' and a voter i such that PN — {i} =
P'/N — (i} and voter i, whose true preferences we take to be given by his or
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her ballot in P, prefers the election outcome X from P’ to the election outcome
Y from P in the following sense:

maxi(X =Y, PYP,miny(Y, P) or max(X, P)P,mini(Y — X, P).

If we had simply said “max; (X, P) P; min;(Y, P),” then the corresponding
not-necessarily-resolute version above would still have been strong enough to
imply the resolute version of the Gibbard-Satterthwaite theorem. However, the
relation given by max; (X, P) P; min; (Y, P) is reflexive on non-singleton sets, so
every non-resolute social choice function is manipulable in this sense by simply
choosing an election with more than one winner and then having a voter (any
voter) make absolutely no change at all in his or her ballot.

Limitations such as these seem to be the price we pay for dealing with a
notion of manipulability as strong as single-winner manipulability. The plurality
rule, after all, is not manipulable in this sense. (Exercise 33 asks the reader to
reconcile this fact with the opening paragraph of the preface.) Our second notion,
weak-dominance manipulability, is also quite strong, but there are several results
in the social choice function context showing that it is achievable for a large
class of procedures.

We need a couple of definitions pertaining to a social choice function V, First,
V is quasitransitive if, for every profile P and for every triple {v, y, z} € [AY,
if V(P)({x, y}) = {x) and V(PX({y, 2)) = (y}, then V(P)({x, z]) = {x]. Second,
V is pairwise non-imposed if for every (x, y) € A x A, there exists a profile P
such that V(P)({x, y}) = (x}. Third, V is a pairwise oligarchy if there exists a
set O of voters such that for every profile P and for every {x, y} € [A]%,

{x] ifvi € O xP;y
VP)X{x, yh={ly) ifVieOyPx
{x,y} otherwise

The following result (Barberd, 1977a and Kelly, 1977) reappears (with proof)
as Theorem 5.1.14.

Theorem 2.3.2. For every set A of three or more alternatives and everyn > 1,
every social choice function for (A, n) that is quasitransitive, pairwise non-
imposed, and not a pairwise oligarchy is weak-dominance manipulable on
some two-element agenda.

In order to state the main result regarding manipulation by optimists or
pessimists, we need one definition: A voter / is said to be a nominator for a
voting rule V if top;(P) € V(P) for every profile P. Thus, for example, every
voter is a nominator for both the Pareto rule and the omninomination rule. The
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following result is due to Duggan and Schwartz (1993 and 2000) and reappears
(with proof) as Theorem 4.1.2.

Theorem 2.3.3. For every set A of three or more alternatives and everyn > 1,
every voting rule for (A, n) that is non-imposed and has no nominators is
manipulable by either optimists or pessimists.

It follows from the Duggan—-Schwartz theorem that, among all voting rules
that are anonymous, non-imposed, and not manipulable by optimists or by
pessimists, the omninomination rule V is the most discriminating in the sense
that, for every profile P, we have V(P) € V'(P) for every member V' of the
class.

Finally, for expected-utility manipulation we have the following theorem of
Feldman (1979a). It reappears (with proof) as Theorem 4.3.2.

Theorem 2.3.4. For every set A of three or more alternatives and everyn > |,
every voting rule for (A, n) that is non-imposed and neither a dictatorship nor
a dunmvirate is expected-utility manipulable.

This completes our summary of the main results to follow. We conclude this
chapter with an isolated look at a very different kind of manipulability.

2.4 Agenda Manipulability and Transitive Rationality

Manipulation really comes in two flavors, explicitly articulated by Riker (1982,
p- 137).

If we assume that society discourages the concentration of power (thus ruling

out dictatorships, for example], then at least two methods of manipulation are
always available, no matter what method of voting is used: First, those in control
of procedures can manipulate the agenda (by, for example, restricting alternatives
or by arranging the order in which they are brought up). Second, those not in
control can still manipulate outcomes by false revelation of values.

Ballot manipulation is what we have been doing, and what the rest of this
book is about. But in this brief section, we give an elaboration of Kelly’s refer-
ence (Kelly, 1978, p. 79) to a weakened version of transitive rationality known
as path independence as “another kind of strategy-proofness, dealing not with
manipulation of preferences, but with manipulation of agendas.” First, we need
a definition of what it means to say that a social choice function is subject to
agenda-manipulation.
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With a social choice function, it certainly makes sense to ask if a voter’s
thwarted preference for x versus y — thwarted in that y actually wins over x as
things now stand — might be overcome if he or she could change (or could have
changed) the agenda by adding some new alternatives to it or by deleting some
other aliernatives (other than x and y, that is) from it. Fishburn (1973, pp. 7 and 8)
says that “we may consider a maneuver in which an alternative is legally placed
in nomination not because its sponsors think it has any chance of being elected
but because they feel that its introduction will increase the chance of the election
of their favored alternative.” These considerations yield the following.

Definition 2.4.1. A resolute social choice function V is agenda manipulable if
there exists a profile P, two agendas v and v, two alternatives xand y in v N v/,
and a voter i such that xP; y, V(P)(v) = y, and V(P)(+') = x. If V is not agenda
manipulable, then V is agenda non-manipulable.

Intuitively, we are thinking of v as having been the original agenda, and voter
i’s strict preference for x versus y being originally thwarted by y’s ability to win
over x with the agenda v. However, if voter { were to have agenda-setting power,
he or she could — while retaining y in the agenda — switch to v and obtain x as
the winner,

Riker (1986, p. 148) gives a real-world example of exactly this kind of
agenda manipulation. He describes how Thomas B. Reed, a Republican member
of congress in the late 1800s frustrated his opponents’ attempt to expand the
agenda from {yes, no} to {yes, no, abstain}. Had his opponents succeeded, the
outcome of the election discussed there might well have changed.

Regarding agenda manipulation, we have the following observation.

Theorem 2.4.2. [n the linear-ballot context, a resolute social choice function
is agenda non-manipulable iff it satisfies Arrow’s condition of transitive ratio-
nality.

Proof: Assume first that V is a resolute social choice function that satisfies
transitive rationality, and let V' be the social welfare function that gives rise to
V. Let P be a profile and assume that V/'(P) = R. Now, if we have two agendas
v and v with x and y in both, then V(P)(v) = y implies that y is ranked strictly
higher than x according to the relation R. Hence, we can’t have V(P)(v') = x,
and this shows that V is agenda non-manipulable.

Conversely, assume that V is a resolute social choice function that is agenda
non-manipulable. We will produce the social welfare function V' from which
V arises. Let P be any profile, and set V/(P) = R, where R is defined as follows:

Forx,y € A, xRy iff V(P)({x, y}) = x.
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For the rest of the proof, the profile P is fixed, so we will write “V(v)” instead
of “V(P)v).”

Claim 1. R is transitive,

Proof. Suppose that xRy and yRz, and assume, for contradiction, that xRz
fails. Thus, V({x, ¥}) =xand V({y, z}) =y, but V({x, z}) 5 x. Because V
is resolute, this means that V({x, z}) = z. Again, because V is resolute,
we know that V({x, y, z}) is either x, y, or z. Without loss of generality,
assume that V({x, y, z}) = x.13

Fix a voter {, and suppose first that xP;z (that is, suppose that voter
ranks v over z on his or her ballot). Then, if v = {x, z}, voter {’s preference
for x over z is initially thwarted by the fact that V({x, z}) = z. But if voter
i has agenda-setting power, he or she can add y to the agenda v, obtaining
v = {x, y, z}, and thus benefiting from the fact that V({x, y, z}) = x.

On the other hand, if zP;x, then we can reverse what we did in the
previous paragraph. That is, we take v to be the agenda {x, y, z}, and note
that voter #’s preference for z over x is thwarted by the fact that V({x, y,
z}) = x. But now, if voter i/ has agenda-setting power, he or she can delete
y from the agenda v, obtaining v' = {x, z}, and thus benefiting from the
fact that V({x, z}) = z. Because ballots are linear, this completes the proof
of Claim 1.

Claim 2. R is complete.

Proof. If xRy fails then V({x, y}) # x. Because V is resolute, this means
V({x, y)) =y, and so yRux, as desired.

Claim 3. For any agenda v,

Vi =ux iff v ev and Yy ev[y##x = yRy].

Proof. Assume first that V(v) = x and that y € v with y # x. If xRy fails, then
V({x, y}) = y. Fix a voter i, and suppose first that xP; y. Then, if v = (x,
¥}, voter i’s preference for x over y is initially thwarted by the fact that
V({x,y}) =y. Butif voter i has agenda-setting power, he or she can expand
the agenda to v, and thus benefit from the fact that V(v) = x. Similarly if
yP;x, then, voter i’s preference for y over x is thwarted by the fact that
V(v) = x. But if voter i has agenda-setting power, he or she can shrink
the agenda to (x, y}, and thus benefit from the fact that V({x, y}) = y.

13 Lets see why we lose no generality. Suppose that we had V({x, ¥, z}) = y instead. Then we
could replace the first sentence in the proof of the claim with the following equivalent version:
“Suppose that yRz and zRv, and assume, for contradiction, that yRx fails.” We would then
have y playing the same role that x plays in the proof above. A similar remark applies if
Vi{luy, ) ==
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Conversely, assume that x € v and Yy € v [y # x = xRy]. Assume that V(v)
— z for some z # x. But then, by the previous paragraph, we’d have that
Vy € v [y # z = zRy]. In particular, we’d have that xRz and zRx, so
V({x, z}) = x and V({x, z}) = z; a clear contradiction. This completes the
proof of Theorem 2.4.2.' a

We could easily restate Definition 2.4.1 so that it speaks of a social choice
functon V being agenda-manipulable by a voter i. One could then say that a so-
cial choice fucntion is weakly agenda-manipulable if it is agenda-manipulable
by at least one voter i, and strongly agenda-manipulable if it is agenda-
manipulable by every voter /.

If we did this, what we are calling “agenda-manipulable” would then corre-
spond to “weakly agenda-manipulable” in this sense. But it is easy to see that
the proof of Theorem 2.4.2 goes through with either notion, and so the two are
equivalent — something that is quite trivial to see in its own right.

This completes our discussion of agenda manipulability. Throughout the
remainder of the book, we consider only the kind of manipulation in which a
single voter achieves a preferred election outcome by submitting a disingenuous
ballot. We begin in Chapter 3 with the easiest context: Resolute social choice
functions.

2.5 Exercises

(1) [S] Suppose that P is a linear (A, n)-profile giving the true preferences of
voter i. Let P be the relation defined on sets of alternatives by

XPY iff max;(X,P)P; min; (Y, P).

Prove that R is neither irreflexive nor transitive.

(2) [S] Suppose that P is a linear (A, n)-profile giving the true preferences
of voter i, and that X and Y are sets of alternatives. Prove that voter
prefers X to Y in the sense of weak-dominance manipulation iff one of
the following three conditions holds:

(i) X={x}and Y = {y} and xP;y.
(ii) max;(X, P) P; min;(X, P) R; max;(Y, P).
(iii) min; (X, P) R; max;(Y, P) P; min;(Y, P).

14 The relation R defined in the proof of Theorem 2.4.2 is known in the literature as the “base
relation.” For a great deal of related material, the reader can start with Sen's 1971 paper
(available in Sen, 1982) “Choice Functions and Revealed Preferences.”
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(3) [S] Prove that single-winner manipulability implies weak dominance ma-
nipulability, that weak dominance manipulability implies manipulability
by optimists or pessimists, and that manipulability by optimists or pes-
simists implies expected-utility manipulation. Hint: For the first two im-
plications, use Exercise 2.

(4) [S] Suppose that P is a profile giving the true preferences of voter i, and
that X and Y are sets of alternatives. Forevery z € A, let G;(z) = [x € A:
xR;z}. Prove that X is preferred to Y in the sense of expected-utility if
there exists some = € A such that

XN Gi(DI/1XI > [Y N Gi(2)I/[Y].

(It turns out that the converse is also true, and follows from results later in
the book.)

(5) Prove that if aP;bP;c, and X = {a, ¢} and Y = {a, b, ¢}, then X can be
preferred to Y in terms of expected utility and Y can be preferred to X in
terms of expected utility. (Hint: Use Exercise 4.)

(6) Suppose P; is a linear ballot in which a,P;a:P; ... Pia;. Let X = {a3}
and let Y = {a;, a2, ..., a;}]. Prove that there exists a utility function u
representing P; such that E, ;(X) > E,, ;(Y). Do the same for X = {a>} and
Y ={a,...,a).

(7) [S] Suppose P; is a linear ballot, X, Y € A and u: A — N is a utility
function representing P; such that E, ;(X) > E, ;(Y). Let r be an arbitrary
real number and define #': A — it by //(x) = u(x) + r. Prove that i/’ also
represents P; and E, ;(X) > E, ;(Y).

(8) [C/S] Let A = {a, b, ¢} and n = 3. Let V be the voting rule for (A, n)
wherein the winner is the alternative with the greatest total of first and
second-place votes, with ties broken, where possible, by the number of
first-place votes. (This is actually an example of what Young (1975} calls
a “tie-breaking scoring system.”)

(a) Show that V is not resolute, but that it is single-winner manipulable.
(b) Show that V satisfies Pareto (and note that it also satisfies anonymity,
neutrality, and monotonicity).

(9) [C/S] Let A = {a, b, c} and n = 3. Let V be the voting rule for (A, n)
wherein the winner is the alternative with the greatest number of first- and
second-place votes. Prove that V is weak-dominance manipulable, but not
single-winner manipulable.

(10) [S] Show that if |A| = 3, then for every n, the Borda count for (A, #) is
not single-winner manipulable.

(11) [C] Show that if |A| > 4, then for every n, the Borda count for (A, n) is
single-winner manipulable.
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(12) [C/S] Show that if |A| > 3, then the plurality rule for (A, n) is weak-
dominance manipulable iff n > 4.

(13) [C] Show that If |A| = 3 and n > 3, then the plurality rule for (A, n) is
min-weak dominance manipulable iff n 3, 4 or 6.

(14) [C] Show that if |A| > 3 and i £ 2 or 4, then the plurality rule for (A, n)
is manipulable by pessimists. (Hint: Build on Exercise 10.)

(15) [C] Show that if |A| > 3 and n > 3, the Condorcet rule is manipulable by
both optimists and pessimists. (Hint: Find suitable profiles for n = 3 and
n = 4, and then show that if such profiles exist for n, then they also exist
forn+ 2.)

(16) [S] Show that the Condorcet rule is never single-winner manipulable.

(17) [C/S) Show that if |A| > 3 and n > 3, the nomination-with-second rule is
manipulable by pessimists iff |A] > 1, and manipulable by optimists iff
n=>4q,

(18) [C] Show thatif [A| > 3 and »n > 3, the near-unanimity rule is manipulable
by pessimists.

(19) [S] Prove that if a voter prefers a to b to ¢, then there exists a utility func-
tion realizing these preferences such that his or her expected utility from
{a, b, c} is higher than from {a, ¢} and another utility function realizing
these preferences such that his or her expected utility from {a, c} is higher
than from {a, b, c}.

(20) [C] Show thatif |JA| > 3 and # > 3, the Pareto for (A, n) is expected-utility
manipulable. (Hint: Use Exercise 16.)

(21) [S] Show that if |[A| = 3 and n > 3, the weak Condorcet rule is not single-
winner manipulable.

(22) [C/S] Show that if |A} > 4 and n > 3, the weak Condorcet rule is single-
winner manipulable iff » is even.

(23) [C]In the proof of Theorem 2.2.1, prove that the election winners are what
they are advertised to be.

(24) {S] Prove that with the Condorcet rule, one cannot simultaneously improve
the min and the max of the set of winners.

(25) [C]In the proof of Theorem 2.2.2, prove that the election winners are what
they are advertised to be.

(26 [C] Prove that if |A| = 3 and n = 5, the iterated plurality rule is single-

winner manipulable. (Hint: Suitable profiles occur in the proof of Theo-
rem 2.2.2.)

(27) [C] Find the eighth single-winner manipulable voting rule not covered by
Theorems 2.2.1 and 2.2.2.

(28) [S] A voter is a “dummy” for a voting rule if his or her ballot has no
effect on the outcome of the election. For example, a dictatorship can be
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thought of as arising from the unanimity rule with one voter by the addition
of dummies. Prove that manipulability is unaffected by the addition or
subtraction of dummiies.

(29) {C/S] Show that the unanimity rule for 7 > 2 can’t be manipulated by an
optimist. Do the same for an oligarchy O, assuming that [O] > 2. Exercise
28 is relevant.

(30) [S] Prove that the omninomination rule and a triumvirate can’t be manip-
ulated by optimists or pessimists. Exercise 28 is relevant,

(31) [C] Prove that the omninomination rule and a triumvirate are expected-
utility manipulable if |A| > 3 and n > 3.

(32) [S] Prove that a duumvirate is not expected-utility manipulable.

(33) [S] Reconcile the fact that the plurality rule is not single-winner manipu-
lable with the first paragraph of the preface.

(34) [T} Use the Gibbard—Satterthwaite theorem to show that, for every n > 2,
the Condorcet rule for (A, 1) is not resolute if |A| > 3. (Compare this with
one of the exercises in Chapter 1.)

(35) [S/T] Prove that if |A| = 2 and » is arbitrary, then a resolute voting rule
for (A, n) is manipulable iff it is monotone.

(36) [T] Prove that for two alternatives and an odd number of voters, majority
rule is the only voting rule that is resolute, anonymous, neutral, and non-
manipulable. (An exercise in Chapter 1 is relevant.)



