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zero by choosing a sufficiently large sample. In the next section we move
from restrictive hypothetical distributions that predict a prevalence of ma-
jority cycles to the other extreme, namely restrictive theoretical domain
constraints that rule out the occurrence of majority cycles. We then re-
place domain restrictions by restrictions on the distribution of preferences
which we expect to be behaviorally descriptive of actual data.

1.2 NET VALUE RESTRICTION AND NET PREFERENCE MAJORITY

Now we introduce basic concepts such as weak stochastic transitivity
and the weak utility model, as well as redefine concepts from the social
choice literature such as “Condorcet winner” and “majority preference
relations™ in terms of probabilistic representations of linear order prefer-
ences. Then we state Sen’s (1969, 1970) value restriction condition (Defi-
nition 1.2.7) and provide a probabilistic reformulation (Definition 1.2.8).
We also generalize Sen’s value restriction condition to what we call “net
preference probabilities” (Definitions 1.2.10 and 1.2.13), so as to pro-
vide necessary and sufficient conditions for transitive majority preferences
based on individual linear order preferences (Theorem 1.2.15).

1.2.1 Majority Rule and Probabilistic Preferences

A majority vote is transitive if the following property holds: Whenever
candidate ¢ has a majority over d and d has a majority over e, then ¢
has a majority over e. Unless we explicitly ask voters to perform paired
comparisons, it is not quite clear what this statement should mean in
general. Yet, hardly any empirical ballots or survey responses provide full
information on all paired comparisons. Thus, we need to take a more
general perspective, as we do now.

Transitivity of votes is closely related to what the psychological and
statistical choice literature calls “weak stochastic transitivity,” and to the
well-known “weak utility model” (Luce and Suppes, 1965). This latter
model assumes that in a binary choice paradigm each paired comparison
has a well-defined probability of a choice for each alternative (i.e., the
choice of a given alternative is the outcome of a Bernoulli trial). The
following definitions are from Luce and Suppes (1965).

Suppose that an individual {possibly drawn at random from a pop-
ulation) is asked to choose one candidate from a pair of candidates.
Let p.4 denote the probability of a choice of ¢ when ¢ and d are being
offered.



38 1: Lack of Support for Majority Cycles

Definition 1.2.1 A weak utility model is a set of binary choice probabili-
ties for which there exists a real-valued function w over C such that

Ped = % & wic) = w(d).

When C is finite, then the weak utility model is equivalent to weak
stochastic transitivity of the binary choice probabilities, which we define
next.

Definition 1.2.2 Weak stochastic transitivity of binary choice probabili-
ties holds when

1 1
pazz & Pezz = pezy
Throughout this section we assume that individual preferences take the
form of linear orders. This assumption will be dropped in Chapter 2. We
write T1 for the collection of all {strict) linear orders over C. For a given

probability distribution 7 ~— P(rr) over I, we write Pcy = 2 (e.dyen P

for the marginal pairwise ranking probability of ¢ being ranked ahead ~ '

of d.

There exists a substantial literature trying to explain probabilities of
(observable) binary choices by probabilities of (latent and unobserved)
rankings through

Ped = Pea. (1.2)

Given a set of binary choice probabilities, it is not trivial to answer the
question whether probabilities on rankings exist that satisfy (1.2). This
question is commonly studied under the label “binary choice problem”
and plays an important role in mathematical psychology as well as in
operations research (Block and Marschak, 1960; Bolotashvili et al., 1999;
Campello de Souza, 1983; Cohen and Falmagne, 1990; Dridi, 1980;
Fishburn, 1990, 1992; Fishburn and Falmagne, 1989; Gilboa, 1990;
Grotschel et al., 1985; Heyer and Niederée, 1989, 1992; Koppen, 1995;
Marley, 1990; Marschak, 1960; McFadden and Richter, 1970; Suck,
1992).

In the probabilistic framework it is appealing and straightforward to
define an aggregate preference relation through “c is aggregately preferred
to d if and only if the choice probability p.s > 3 (in the Bernoulli trial).”
Such a preference relation is transitive if and only if weak stochastic tran-
sitivity holds. Thus, for probabilistic binary choice (with [C| finite), the
existence of a transitive social welfare order, weak stochastic transitivity,
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and the weak utility model are equivalent. The function w in Defini-
tion 1.2.1 thus defines what we call a {majority) social welfare function.

Another important normative concept in the social choice literature,
besides that of a majority weak order guaranteed by weak stochastic
transitivity, is that of the “majority winner.” A Condorcet winner (also
known as Condorcet candidate, or a majority winner) is usually defined
as the candidate(s) (if they exist) who would receive majority support
against every other candidate if they were to compete pairwise (Black,
1958; Condorcet, 1785; Felsenthal et al., 1990; Young, 1986, 1988).
The Condorcet winner is the most commonly accepted normative cri-
terion for a social choice procedure that is required to select a single
alternative.!”

Since we usually lack data on binary comparisons, we formally define
weak stochastic transitivity and the concept of a Condorcet winner in
terms of {latent and unobserved) probabilistic rankings.1®

Definition 1.2.3 A probability distribution P on IT satisfies weak stochas-
tic transitivity (for rankings} if and only if the induced marginal (pairwise)
ranking probabilities satisfy

1 1 1
IPch'Z‘ & ]PchE - ]PceZ'i-
Definition 1.2.4 Given a probability P on I, candidate c¢eC is a
Condorcet winner if and only if

]P’ca-z% vd e C — [c}.

These concepts of weak stochastic transitivity and of a Condorcet can-
didate are compatible with the idea that, if the voters were indeed asked to
do a paired comparison, they would actually base their decision on a la-
tent preference ranking and would choose the alternative (in the Bernoulli
process) that is ranked ahead of the other in the sampled preference
ranking.?

17 The arguably second most commonly accepted normative benchmark, and main com-
petitor of the Condorcet winner, is the Borda winner. The latter is strongly advocated by
some researchers, e.g., Saari {1994; 1995},

18 In fact, we usually also lack information on fuil rankings. The subsequent chapters discuss
this situation in detail.

1 It should be noted that the reverse approach has also been modeled where only paired
comparison probabilities are given, and ranking probabilities are constructed from those
paired comparison probabilities {e.g., Marley, 1968).
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Definition 1.2.5 Consider a probability P on T1. We define a weak ma-
jority preference relation 7, and a strict majority preference relation >
through

c E: d & Puz P Pyg=>=, (1-3)

= b2 =

c-d & Pyu>PiePy> (1.4)

3
Observation 1.2.6 The weak majority preference relation -, as defined in
Definition 1.2.5, is reflexive and strongly complete (and thus complete).
Therefore, = is a weak order if and only if it is transitive. The strict ma-
jority preference relation >, as defined in Definition 1.2.5, is asynumetric
(and thus antisymmetric). Therefore, > is a strict weak order if and only
if it is negatively transitive. More generally, > is a strict partial order if
and only if it is transitive. Furthermore, > is a strict weak order if and

only if Iz is a weak order.

The proof is in Appendix C.

When & is transitive, then > is also transitive. However, > may be
transitive when - is not: Suppose that preferences are linear orders
and that P{{(a, b), (b, c), (a,)}) = P({{a, b), (c, b), {c,a)}} = 3. Then,
> = {(a, b)), which is transitive. On the other hand, = = ({a,a),
(a, b), (a, c}, (b, b), (b, ¢), (¢, ), (¢, a), (c, b)), which is intransitive.

Chapter 2 develops more general definitions of Condorcet winner and
majority preference relations for a broad range of deterministic and/or
probabilistic representations of preference or utility.

Sen’s “value restriction” is a sufficient condition for the existence of a
transitive social welfare ordering. We first state its formal definition, and
then translate the condition into probabilistic terms.

Definition 1.2.7 Suppose that each voter has a strict linear preference
order. Given a collection of voters, a triple of alternatives satisfies NW
(never worst) if and only if there is one alternative among the three that
is not ranked worst (i.e., third) among the three by any of the voters;
NM (never middle) if and only if there is one alternative among the three
that is not ranked in the middle (i.e., second) among the three by any of
the voters; NB (never best) if and only if there is one alternative among
the three that is not ranked best (i.e., first) among the three by any of the
voters. Sen’s value restriction holds if and only if every triple of alternatives
satisfies either NW, NM, or NB.

“
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The underlying intuition of value restriction is that in each triple of
candidates there should be at least one about which all voters agree that
s/he is not the worst, or not the middle, or not the best.

We now translate the NB, NM, and NW conditions into probabilistic
terms for linear order preferences. (In Chapter 2, we further generalize
these concepts to a much broader framework.)

1.2.2 Probabilistic Reformulation and Generalizations
of Sen’s Value Restriction

Definition 1.2.8 Consider a probability P on I1. For any given triple of
alternatives, we say that the marginal ranking probabilities induced by P
on that triple satisfy NW(c) if and only if the (marginal} probability for
¢ to be ranked worst (in the triple) is zero. When NW/(c) holds, ¢ is said
to be (almost surely, abbreviated a.s.) never worst. NM(c) and NB{c) are
defined analogously. P is (a.s.) value restricted if and only if in each triple
{x, ¥, 2} € C there exists ¢ with either NW(c), NM(c), or NB(c). In that
case, we also say that (a.s.) value restriction holds.

The following theorem is a variation of Sen’s theorem on value restric-
tion (Sen, 1966, 1969, 1970}, generalized to probabilistic terms,

Theorem 1.2.9 Given a probability P on T1, consider the relations >
and > of Definition 1.2.5. If P is (a.s.) value restricted, then 1) the weak
majority preference relation X7 is a weak order, 2) the strict majority pref-
erence relation > is a strict weak order, and 3) if Py # Py, Ve + d, then
the strict majority preference relation > is a strict linear order. Thus,
(a.s.) value restriction implies transitivity.

We now move from domain restrictions to restrictions on the distribu-
tion of preferences, or, more specifically, on the “net preference probabil-
ities” over the full domain. The following definitions are critical through-
out the rest of this section. (Again, Chapter 2 generalizes these concepts
much further.)

Definition 1.2.10 Given a probability PP on T1, and denoting by 7~ the
reverse order of 7, the net ranking probability (net preference probability)
NP (induced by P) is defined as

Ne(mr) = P(mr) — P(=)).
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The net margins (net pairwise preference probabilities) are defined as :
NP,y = P.q — Py.. (See Feld and Grofman, 1988, for a similar concept.)

Net marginal ranking probabilities of triples are defined analogously. |
We also write NP, for NP(r), and NP4, for the net marginal ranking ;
probability that ¢ is ranked before both d and e, and that d is ranked before ¥
e. The following observation follows immediately from these notational
conventions.

Observation 1.2.11 Given NP on Tl and > and > on C as above, we have

crde Ny>0, c>de Ny >0.
We now define NW, NM, and NB for net probabilities on linear orders.

Definition 1.2.12 Given NP on I as before, for any triple {c,d,e} € C,

NPsatisfiesNW(c) ¢ N <0& Ny <0,
NPsatisfiesNM{c) © NPy <08& NPy, <0& Ny =0,
NPsatisfiesNB(c) © N <0& N4 <0.

When NP satisfies NB{(a), we often also say for short that NetNB{a) is |
satisfied. The same applies to the other conditions and choice alternatives.

Definition 1.2.13 NP is wmarginally value restricted for the triple

{x,y,z) € C if and only if there exists an element ¢ € {x, ¥, 2} such that
NP satisfies NW{c) or NB(c) or NM(c). If this property is satisfied, then |
marginal net value restriction holds on the triple {x, y, z}. Net value re-
striction holds on C if marginal net value restriction holds on each triple. *
When net value restriction holds, we also say that the net value restriction
condition is satisfied.

REMARK. If NP on IT satisfies NW(c) for a triple {c, d, e] € C, then

N2,.s <0 = NPsatisfies NB{e),
NP,.;s >0 = NPsatisfies NB(d).
Similarly, NB(c) implies either NW(d) or NW/(e). Also, NM(c) means that /

NP,.; = 0 and thus it means that at most two rankings have strictly posi-
tive NP values, and that NW(d) or NW(e) holds. At most three elements in’
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(cde, ced, dce, dec, ecd, edc} have strictly positive net preference proba-
bilities. Furthermore, net value restriction is weaker than value restriction:

o P satisfies NW(c) = NP satisfies NW(c), but not conversely,
o PP satisfies NB(c) = NP satisfies NB(c), but not conversely,
o P satisfies NM(c) = N satisfies NM(c), but not conversely.

Clearly, domain restrictions imply distributional restrictions, but the
converse does not generally hold.

We need a further definition before we can state our key theorem on
necessary and sufficient conditions for weak stochastic transitivity on
probability distributions over linear orders.

Definition 1.2.14 Given NP on I1 as before, = € I1 has a net preference
majority if and only if

N(m)> > N(x) (1.5)
w'ell—{x),
NP{x')=0

Similarly, for any triple {c,d, e} C C, cde has a marginal net preference
majority if and only if

N>.go > Z N,

m'elced,dce,dec,ecd,edc),
N0

We say that the net majority condition holds if there is a linear order that
has a net preference majority.

The following theorem is similar in spirit to Lemma 2 of Feld and
Grofman (1986b).20

Theorem 1.2.15 The weak majority preference relation = defined in
Definition 1.2.5 is transitive if and only if for each triple {c,d, e} € C
at least one of the following two conditions bolds:

1. NP is marginally value restricted on {c, d, e} and, in addition, if at
least one net preference is nonzero then the following implication
is true (with possible relabelings):

I\PEde=0=> N)dce?l-'NJced-

20 Note that their treatment omits certain knife-edge situations caused by possible ties.
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2. 3mp € |cde, ced, dce, dec, ecd, edc) such that g has a marginal net ©

preference majority.

Similarly, the strict majority preference relation > is transitive if and only
if for each triple {c, d, €) C C at least one of the following two conditions
holds:

1. NP is marginally value restricted on {c, d, e).
2. dmg € {cde, ced, dce, dec, ecd, edc} such that my has a marginal net
preference majority.

The proof is in Appendix C.

1.3 EMPIRICAL ILLUSTRATIONS

This section provides brief empirical illustrations based on survey pref-
erence data. First, these data can be shown clearly not to originate from
an impartial culture. Also, for these data, Sen’s value restriction is vio-
lated, but nevertheless, majority preferences are transitive. We show how
our net value restriction condition (and, incidentally, not the net majority
condition) accounts for the absence of majority cycles in these data.

It is difficult to find empirical data that provide either complete paired
comparisons or complete linear orders of all choice alternatives as tech-
nically required by any standard definition of majority rule, including the
one we use in this section. We consider three national survey data sets from
Germany in which complete linear orders of three major parties were re-
ported for all respondents (Norpoth, 1979). These three major parties are
the Social Democratic party (), the Christian Democratic parties (C), and
the Free Democratic party {F). The data under consideration are 1969,
1972, and 1976 German National Election Study (GNES) data sets.

Figure 1.1 displays the results for the 1969 GNES (this survey distribu-

tion was reported by Norpoth, 1979). The graph shows all possible linear = '

order preference states, as well as the relative frequencies of their occur-
rences in the 1969 GNES. We identify relative frequencies with probabil-
ities and provide the net probabilities in parentheses. The inset table pro-
vides the pairwise net probabilities. For instance, N°cy = .6. Linear orders
and paired comparisons with positive net probabilities are shaded in grey.

First of all, we can test the hypothesis that the survey data set origi- 1
nated from a uniform distribution over linear orders. We use the following
likelihood ratio test. Writing N, for the frequency with which the linear
order = was observed in the survey, and writing N= 3", .1 N, for the
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FIGURE 1.1: Net value restriction in the 1969 GNES. The graph provides all rank-
ing probabilities and net probabilities {in parentheses). The inset table provides
the pairwise net probabilities NPcyx, NPcs, and NPgs. Linear orders and paired
comparisons with positive net probabilities are shaded in grey. The linear order
with boldface frame is >, the majority preference relation.

total sample size (in the 1969 survey, N = 818), the likelihood L;¢ of the
observed data under the impartial culture assumption is given by

1\
Lic= (g) )

whereas the likelihood Ly of the data under an unconstrained multino-
mial distribution = — p, is given by

Lun =[] o} (1.6)
aell

The maximum likelihood estimates p, of the values p, are simply the
relative frequencies in the observed data, i.e., p, = ~. Therefore, to test
the hypothesis that the observed data are a random sample from a uni-
form distribution, as opposed to a random sample from an unconstrained
multinomial distribution, we simply substitute the maximum likelihood
estimates p, for the probabilities p, in Equation (1.6) and compute the
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we get g_ri < Oandso oy = 1at the minimum. Thus we have the following
necessary condition for F to reach its minimum:
Oyl =01=03 = 1.
Now the problem is reduced to finding the minimum of
arcsin{w;) + arcsin{w;) + arcsin{w;)
under the constraints
o +wt+o;=1, |w=<1.
Substituting @y = 1 — wy — w3, we thus need to find the minimum of

arcsin(l — w; — w3) + arcsin{w, } + arcsin{ws).

Now
oF
— <0&1-w—w;>w;,
3&)3
oF
—>O¢>w3>1—w3—w3.
3&)3

Since the minimum has to be at the point where the derivative changes its
sign from negative to positive, we conclude that at the minimum

1—&)2
2

However, from the fact that |w;| < 1, and that we are dealing with the case
wz > 0, we obtain that @ < 1, and so we have w; > 0,/ = 1, 2, 3. Since
the function arcsin(x) is increasing and convex in x for x > 0, F reaches its
minimum for w; = w» = w3 = % Thus, at the minimum, 0; = 1, w, = %,
i =1,2, 3. The desired result then follows by substituting these values in
(C.1) and (C.2), and by using the definition of pg. Thus, we obtain that

the probability of cycles reaches its maximum for

w3 =

1— pakp
Dabe = Pacb = Peab = Pbac = Pbca = Pecbu = —%,

0= PatbEc<1. =
Proof of Observation 1.2.6

REFLEXiVITY of 2t ¢ 25 c ¢ NP, > 0. The latter holds since NP, =
0,ve eC.

e e

o
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STRONG COMPLETENESS of =: Ve,d € C, either N°.3 >0 or Ny, =
~Neg = 0.

IRREFLEXIVITY of >: This follows immediately from the fact that NP, =
0,vc eC.

ASYMMETRY of >: Ve, d € C, if N°;y > 0 then N°j, = — NP4 < 0.

It is clear that > is the asymmetric part of . The rest of the Observation
follows immediately. m

Proof of Theorem 1.2.15. Transitivity holds on C if and only if tran-
sitivity holds on each triple {c,d,e} in C. Thus, there is no loss of
generality in setting C = {c, d, €} and Tl = {cde, ced, dce, dec, ecd, edc}.
Recall that at most three rankings have (strictly) positive net preference
probabilities.

FIRsT, suppose that none is positive, i.e., that all net ranking probabilities
are zero. Then transitivity holds because all alternatives are tied, i.e., >= g,
>= C x C, and net value restriction holds (but there is no ranking with a
net preference majority).

SECOND, suppose that exactly one net ranking probability NP is positive
(i.e., four net ranking probabilities are zero). Then transitivity holds since
>==»= . Net value restriction holds, with NP;g. = 0 = NPy, # Nced
(including possible relabelings), and 7 has a net preference majority.
THIRD, suppose that exactly two net ranking probabilities are null, with-
out loss of generality assume that NPg, = — NPy, = 0. Then NM(d)
holds, and therefore net value restriction also holds.

a) If NPy, > 0 & NPy, > 0 (and thus NPy, # NP..4) then transitivity
follows:

NPy.e > NPy, =-=>= dce with a net preference majority,
N)dcc = N)dec === [(da C)s (d: B)}; :>:...= [(d’ C): (d: 8), (C: e): (er C)]a
NPy < NPy =>0=>= dec with a net preference majority;

b) If NPyee < 0 & NPy, < 0 (and thus NPy, # NP..4) then transitivity
follows:

NPy.e > NPy.. =-=>= ced with a net preference majority,
Ny = Ny == {(C: d): (e: d)}; .->:= {(C: d):- (e: d): (Cr e)a (e, C)}a

Nye < NPyp. =2 =>= ecd with a net preference majority;
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c) If NPy, > 0 & NPj.. < 0 then

Nojee > NPcpq =>2,=>= dce with a net preference majority,
Noyee < NPoq =2 =>= ced with a net preference majority,

_ == {(c, e)};
Nogee = Nocea =>{,t={(d,r:), (c,d), (d,e), (e, d), (c,e)}; (1)

where (1) is a violation of transitivity for R.
d} If NPy <0 & NPy,. > 0 then

NPeeq > NPy =2=>= ecd with a net preference majority,
NPeed < NPyo. ==>= dec with a net preference majority,

_ >= {(e, c)};
Neecd = Nodec =>[ z:: {(d, c), (¢, d), (d, e), (e, d), (e,ells (D)

where (1) is a violation of transitivity for R.

FOURTH, the only remaining possibility is that three net probabilities are
positive (and the others are negative, i.e., NPy,, = 0 cannot occur). There
are eight such cases:

N.goe > 0 & NPy > 0 & N2y > 00, (C.9)
Nge > 0 & NPy > 0 & NPy > 00, (C.10)
Nege > 0 & NPy > 0 & N2y > 0, (C.11)
Ny > 0 & NPpoy > 0 & NPy > 0, (C.12)
Ngge > 0 & NPyee > 0 & NPy > 00, (C.13}
Nepye > 0 & NPyee > 0 & NPy > O, (C.14)
Nopie > 0& NP,y > 0 & NP,.g > O, (C.15)
Ny > 0 & NPy > 0 & NPy > 0. (C.16)

The cases (C.9)-(C.11) and (C.14)-(C.16) are all equivalent through re-
labeling of alternatives: Starting each time from (C.9), the relabeling
¢ < d yields (C.10), d < e yields (C.11), c & d — e — ¢ yields (C.14),
¢ — e = d — cyields (C.15), and ¢ + e yields (C.16). Similarly, (C.12)
is equivalent to (C.13) through, for instance, the relabeling ¢ < e. We
thus need to consider only (C.9) and (C.12).

If (C.9) holds, then net value restriction holds, ¢ > e and, furthermore,

d-c=>ds>e
erd=c>d,
I\Pcde> N)Eed"'NJdce =}t=>'= Cde,

N’cde < N)cfd"'N)dce =

each of which implies transitivity for both > and >.
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If (C.12) holds (and thus net value restriction is violated) we obtain
transitivity if and only if one of the three rankings cde, ecd, and dec
has a net preference majority: Suppose that each of the three has a net
probability strictly smaller than the sum of the other two. Then Z=>=
({c, d), (d, e), (e, c)}, a violation of transitivity. Also, if one of the three has
a net probability equal to the sum of the other two, say NP.y, = NPoey +
NPyee, then == {(c, d), (d, e)}, == (¢, d), (d, e), (c, &), (e, c)}, which both
violate transitivity. =

Proof of Observation 2.3.6. We provide a counterexample for strict weak
orders, which suffices also as a counterexample for strict partial or-

b c c
ders and more general settings. Let NP (c) = N’ (b) =N (a) =
a a b

N’( 4 ) =N (b C) = N’( ¢ ) = —.2. It is straightforward to

ac a ab
check that NW(a) holds but no other net value restriction condition is

satisfied. m

Proof of Theorem 2.3.8. The proof is by counterexample. Take

a b a b
N|b|=004N[a]=.003N]c¢ =.002,N°(a°)=.002,
b

¢ ¢

with the remaining net probabilities equal to zero. Then net value

restriction does not hold, nor is there a binary relation with a net
a

majority. Nevertheless, >= b and ==> U Id (where Id is the identity
c

relation) are transitive social welfare orders. A graphical display of

this counterexample is given in Figure 2.10. Notice that this result

holds unaltered when we allow individuals to have arbitrary binary

preferences: If a large proportion of the population has cyclic preferences,

i.e., we add a net probability of the forward cycle to the above list, then

the social welfare order remains unchanged in this example as long as

a
—.001 < N° ( O ) < .007. This can happen even when more than
c b

half of the population has cyclic preferences. =
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Proof of Theorem 2.3.9. i) This follows directly from Theorem 2.1.5 and
Observation 2.3.5.

if) The following is a counterexample: Suppose P (a) = 1. Then net

b
. a ) ..
value restriction holds, »= B @ semiorder, and thus transitive, but > =

{{a,a), (a, b), (a, c}, (b, D), (b, c), (c, a), (c, b), (¢, c)}, which is not transi-
tive because b - c —abutnotbZa. m

Proof of Theorem 2.3.10. Suppose that C = {a, b, c}. To prove i) first
notice that, up to a relabeling of the alternatives, there are only three
a

possible strict weak orders with a net preference majority, namely b, a b,
N
a a
or bac' Let b have a net majority. Then >= b is the social welfare order.
c c

ab _ : . ..
If . has a net majority, then the social welfare order > is transitive

a b
because it must be one of the following three strict weak orders: b, a,
c ¢

or acb. The proof for ac follows the same logic.

b

a
To obtain a counterexample for ii), suppose that P (Z) =7, P (b) =
b c ¢
P (c) =P (a) = .1, with the remaining probabilities equal to zero.
a b
a
b
Ny, = .1, N°,, = .1, and thus we obtain majority cyclesa > b-c - a
and a > b > ¢ > a while neither b - a nor b > a is the case, i.e., neither
2 nor > is transitive. B

Then ;| has a net preference majority. It is easy to check that N?,;, = .8,

Proof of Theorem 5.1.4. By (5.4), P(>s=>"*) has the following lower
bound:

Errn(N, 87) — (M = 1)Errn{N, 83) < P(>s=>").



