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The “Axiom” of Game Theory

Common Knowledge of Rationality

“it is completely transparent to
the players that everyone...”

believes, strongly/robustly
believes, knows...

“Choose optimally given the
players’ opinions about what
the opponents might do
(Bayesian Decision Theory)”
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“Common Knowledge” is informally described as what any fool would
know, given a certain situation: It encompasses what is relevant, agreed
upon, established by precedent, assumed, being attended to, salient, or in
the conversational record.

It is not Common Knowledge who “defined” Common Knowledge!
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The first formal definition of common knowledge?
M. Friedell. On the Structure of Shared Awareness. Behavioral Science (1969).

R. Nozick. The Normative Theory of Individual Choice. PhD dissertation, 1963.

The first rigorous analysis of common knowledge (iterated definition)
D. Lewis. Convention, A Philosophical Study. 1969.

R. Aumann. Agreeing to Disagree. Annals of Statistics (1976).

Fixed-point definition: γ := i and j know that (ϕ and γ)
G. Harman. Review of Linguistic Behavior. Language (1977).

J. Barwise. Three views of Common Knowledge. TARK (1987).

Shared situation: There is a shared situation s such that (1) s entails
ϕ, (2) s entails everyone knows ϕ, plus other conditions
H. Clark and C. Marshall. Definite Reference and Mutual Knowledge. 1981.

M. Gilbert. On Social Facts. Princeton University Press (1989).
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P. Vanderschraaf and G. Sillari. “Common Knowledge”, The Stanford Encyclopedia of
Philosophy (2009).
http://plato.stanford.edu/entries/common-knowledge/.
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The “standard” definition of common knowledge.
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E

W

W is a set of states or worlds.
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E

W

An event/proposition is any (definable) subset E ⊆W

Eric Pacuit 6



E

W

The agents receive signals in each state. States are
considered equivalent for the agent if they receive the
same signal in both states.
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E

W

Knowledge Function: Ki : ℘(W ) → ℘(W ) where
Ki (E ) = {w | Ri (w) ⊆ E}
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E

W

w

w ∈ KA(E ) and w 6∈ KB(E )
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E

W

w

The model also describes the agents’ higher-order
knowledge/beliefs
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E

W

w

Everyone Knows: K (E ) =
⋂

i∈A Ki (E ), K 0(E ) = E ,
Km(E ) = K (Km−1(E ))
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E

W

w

Common Knowledge: C : ℘(W )→ ℘(W ) with

C (E ) =
⋂
m≥0

Km(E )
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E

W

w

w ∈ K (E ) w 6∈ C (E )
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E

W

w

w ∈ C (E )
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E

W

w

Fact. w ∈ C (E ) if every finite path starting at w ends
in a state in E
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An Example

Two players Ann and Bob are told that the following will happen. Some
positive integer n will be chosen and one of n, n + 1 will be written on
Ann’s forehead, the other on Bob’s. Each will be able to see the other’s
forehead, but not his/her own.

Suppose the number are (2,3).

Do the agents know there numbers are less than 1000?

Is it common knowledge that their numbers are less than 1000?
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(0,1) (2,1)

(2,3) (4,3)

(4,5) (6,5)

(6,7)

A

B

A

B

A

B
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

Suppose you are told “Ann and Bob are going together,”’ and
respond “sure, that’s common knowledge.” What you mean is
not only that everyone knows this, but also that the
announcement is pointless, occasions no surprise, reveals
nothing new; in effect, that the situation after the
announcement does not differ from that before. ...the event
“Ann and Bob are going together” — call it E — is common
knowledge if and only if some event — call it F — happened
that entails E and also entails all players’ knowing F (like all
players met Ann and Bob at an intimate party). (Aumann, pg.
271, footnote 8)
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Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

An event F is self-evident if Ki (F ) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident event that
entails E obtains.

Eric Pacuit 9



Fact. For all i ∈ A and E ⊆W , KiC (E ) = C (E ).

An event F is self-evident if Ki (F ) = F for all i ∈ A.

Fact. An event E is commonly known iff some self-evident event that
entails E obtains.

Fact. w ∈ C (E ) if every finite path starting at w ends in a state in E

The following axiomatize common knowledge:

I C (ϕ→ ψ)→ (Cϕ→ Cψ)

I Cϕ→ (ϕ ∧ ECϕ) (Fixed-Point)

I C (ϕ→ Eϕ)→ (ϕ→ Cϕ) (Induction)
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The Fixed-Point Definition

fE (X ) = K (E ∩ X ) =
⋂

i∈A Ki (E ∩ X )

I C (E ) is a fixed point of fE : fE (C (E )) = K (E ∩ C (E )) =
K (C (E )) =

⋂
i∈A Ki (C (E )) =

⋂
i∈A C (E ) = C (E )

I The are other fixed points of fE : fE (⊥) = ⊥

I fE is monotonic: A ⊆ B implies E ∩ A ⊆ E ∩ B. Then
fE (E ∩ A) = K (E ∩ A) ⊆ K (E ∩ B) = fE (E ∩ B)

I (Tarski) Every monotone operator has a greatest (and least) fixed
point

I Let K ∗(E ) be the greatest fixed point of fE .

I Fact. K ∗(E ) = C (E ).
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The Fixed-Point Definition

Separating the fixed-point/iteration definition of common
knowledge/belief:

J. Barwise. Three views of Common Knowledge. TARK (1987).

J. van Benthem and D. Saraenac. The Geometry of Knowledge. Aspects of Universal
Logic (2004).

A. Heifetz. Iterative and Fixed Point Common Belief. Journal of Philosophical Logic
(1999).
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Common Belief

Let R1, . . . ,Rn be relations on a set of state W . (Typically, each Ri is
serial, transitive and Euclidean, but that is not crucial)

RG = (
⋃

i∈G Ri )
+, where R+ is the transitive closure of R.

M,w |= Bϕ iff for all v ∈W , if wRGv , then M, v |= ϕ
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Alternative Approaches

I Common p-belief

I Lewisian common belief
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Common p-belief

The typical example of an event that creates common knowledge is a
public announcement.

Shouldn’t one always allow for some small probability that a participant
was absentminded, not listening, sending a text, checking facebook,
proving a theorem, asleep, ...

“We show that the weaker concept of “common belief” can function
successfully as a substitute for common knowledge in the theory of
equilibrium of Bayesian games.”

D. Monderer and D. Samet. Approximating Common Knowledge with Common Beliefs.
Games and Economic Behavior (1989).
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Representing Uncertainty

Finitely additive probability measures, upper and lower probability
measures, Dempster-Shafer belief functions, imprecise probability
measures (interval valued probabilities, sets of probability measures),
possibility measures, plasuibility measures.

J. Halpern. Reasoning about Uncertainty. The MIT Press, 2003.
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Models of Hard and Soft Information

w v

M = 〈W , {Πi}i∈A〉
Πi is agent i ’s partition with Πi (w) the partition cell containing w .

Ki (E ) = {w | Πi (w) ⊆ E}
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Models of Hard and Soft Information

w v

r1− r

M = 〈W , {Πi}i∈A, {πi}i∈A〉
for each i , πi : W → [0, 1] is a probability measure

Bp(E ) = {w | πi (E | Πi (w)) = πi (E ∩ Πi (w))
πi (Πi (w)) ≥ p}
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1. Bp
i (Bp

i (E )) = Bp
i (E )

2. If E ⊆ F then Bp
i (E ) ⊆ Bp

i (F )

3. π(E | Bp
i (E )) ≥ p
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Common p-belief: definition

Bp
i (E ) = {w | π(E | Πi (w)) ≥ p}

An event E is evident p-belief if for each i ∈ A, E ⊆ Bp
i (E )

An event F is common p-belief at w if there exists and evident p-belief
event E such that w ∈ E and for all i ∈ A, E ⊆ Bp

i (F )
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Common p-belief: example

H,H

w1

(1− ε)2

H,D

w2

D,H

w3

D,D

w4

Two agents either hear (H) or don’t hear (D) the an-
nouncement.
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H,H

w1

(1− ε)2

H,D

w2

(1− ε)ε

D,H

w3

ε(1− ε)
D,D

w4

ε2

The probability that an agent hears is 1− ε.
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H,H

w1

(1− ε)2

H,D

w2

(1− ε)ε

D,H

w3

ε(1− ε)
D,D

w4

ε2

The event “everyone hears” (E = {w1}) is not common
knowledge, but it is common (1− ε)-belief:

B
(1−ε)
i (E ) = {w | p(E | Πi (w)) ≥ 1− ε} = {w1} = E ,

for i = 1, 2
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Agreeing to Disagree

“A group of agents cannot agree to disagree”

Theorem. Suppose that n agents share a common prior and have
different private information. If there is common knowledge in the group
of the posterior probabilities, then the posteriors must be equal.

Robert Aumann. Agreeing to Disagree. Annals of Statistics 4 (1976).
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Agreeing to Disagree, generalized

Theorem. If the posteriors of an event X are common p-belief at some
state w , then any two posteriors can differ by at most 2(1− p).

D. Samet and D. Monderer. Approximating Common Knowledge with Common Beliefs.
Games and Economic Behavior, Vol. 1, No. 2, 1989.
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Lewisian Common Belief

R. Cubitt and R. Sugden. Common Knowledge, Salience and Convention: A Recon-
struction of David Lewis’ Game Theory. Economics and Philosophy, 19, pgs. 175-210,
2003.
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Reason to Believe

Biϕ: “i believes ϕ”

vs. Ri (ϕ): “i has a reason to believe ϕ”

I “Although it is an essential part of Lewis’ theory that human beings
are to some degree rational, he does not want to make the strong
rationality assumptions of conventional decision theory or game
theory.” (CS, pg. 184).

I Anyone who accept the rules of arithmetic has a reason to believe
618× 377 = 232, 986, but most of us do not hold have firm beliefs
about this.

I Definition: Ri (ϕ) means ϕ is true within some logic of reasoning
that is endorsed by (that is, accepted as a normative standard by)
person i ...ϕ must be either regarded as self-evident or derivable by
rules of inference (deductive or inductive)
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State of Affairs

States of affairs are alternative specifications of how the world, as seen
by the modeler, really might be.

These are primitives in Lewis’s framework.

Given a state of affairs A, the proposition that A is in fact the case is
denoted “A holds”

Eric Pacuit 25



A indicates to i that ϕ

A is a “state of affairs”

A indi ϕ: i ’s reason to believe that A holds provides i ’s reason for
believing that ϕ is true.

(A1) For all i , for all A, for all ϕ: [Ri (A holds) ∧ (A indi ϕ)]⇒ Ri (ϕ)

Eric Pacuit 26



Some Properties

I [(A holds) entails (A′ holds)]⇒ A indi (A′ holds)

I [(A indi ϕ) ∧ (A indiψ)]⇒ A indi (ϕ ∧ ψ)

I [(A indi [A
′ holds]) ∧ (A′ indiϕ)]⇒ A indiϕ

I [(A indiϕ) ∧ (ϕ entails ψ)]⇒ A indiψ

I [(A indi Rj [A
′ holds]) ∧ Ri (A′ indjϕ)]⇒ A indiRj(ϕ)
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Reflexive Common Indicator for ϕ

I A holds ⇒ Ri (A holds)

I A indi Rj(A holds)

I A indi ϕ

I (A indi ψ)⇒ Ri [A indj ψ]
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Let RG (ϕ): Riϕ,Rjϕ, . . ., Ri (Rjϕ), Rj(Ri (ϕ)), . . .
iterated reason to believe ϕ.

Theorem. (Lewis) For all states of affairs A, for all propositions ϕ, and
for all groups G : if A holds, and if A is a reflexive common indicator in G
that ϕ, then RG (ϕ) is true.
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Lewis and Aumann

Lewis common knowledge that ϕ implies the iterated definition of
common knowledge (“Aumann common knowledge”)

, but the converse
is not generally true....

Example. Suppose there is an agent i 6∈ G that is authoritative for each
member of G . So, for j ∈ G , “i states to j that ϕ is true” indicates to j
that ϕ. Suppose that separately and privately to each member of G , i
states that ϕ and RG (ϕ) are true.Then, we have R iϕ and Ri (RG (ϕ)) for
each i ∈ G . But there is no common indicator that ϕ is true. The agents
j ∈ G may have no reason to believe that everyone heard the statement
from i or that all agents in G treat i as authoritative.
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Lewisian Common Belief in Game Theory

A and B are players in the same football team. A has the ball, but an
opposing player is converging on him.

He can pass the ball to B, who
has a chance to shoot. There are two directions in which A can move the
ball, left and right, and correspondingly, two directions in which B can
run to intercept the pass. If both choose left there is a 10% chance that
a goal will be scored. If they both choose right, there is a 11% change.
Otherwise, the chance is zero. There is no time for communication; the
two players must act simultaneously.

What should they do?

R. Sugden. The Logic of Team Reasoning. Philosophical Explorations (6)3, pgs. 165 -
181 (2003).
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Example

l r

l 10,10 00,00

r 00,00 11,11
A

B

A: What should I do? r if the probability of B choosing r is > 10
21 and l

if the probability of B choosing l is > 11
21

(symmetric reasoning for B)
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B
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Reason to Believe Logic

Ri (ϕ): “agent i has reason to believe ϕ”

this is interpreted as ϕ follows
from rules (deductive, inductive, norm of practical reason) endorsed by
agent i .

Inference rules associated with the Reason-to-believe logic:
inf (R) : ϕ,ψ → χ

Assume each person’s logic at least contains propositional logic:
inf (R) : ϕ1, . . . ϕn,¬(ϕ1 ∧ · · · ∧ ϕn ∧ ¬ψ)→ ψ
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Subject of the Proposition
Agent i is the subject of the proposition ϕi if ϕi makes an assertion
about a current or future act of is will

:

I a prediction about what i will choose in a future decision problem;

I a deontic statement about what i ought to choose;

I assert that i endorses some inference rule; or

I assert that i has reason to believe some proposition

Ri (ϕi ) vs. Rj(ϕi ): Suppose i reliable takes a bus every Monday. The
other commuters may all make the inductive inference that i will take
the bus next Monday (Mi ). In fact, we may assume that this is a
common mode of reasoning, so everyone reliably makes the inference
that i will catch the bus next Monday. So, Rj(Mi ), RiRj(Mi ), but i
should still be free to choose whether he wants to take the bus on
Monday, so ¬Ri (Mi ) and ¬Rj(Ri (Mi )), etc.
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Common Reason to Believe

Awareness of Common Reason: for all i ∈ G and all propositions ϕ,

RG (ϕ)⇒ Ri [R
G (ϕ)]

Authority of Common Reason: for all i ∈ G and all propositions ϕ for
which i is not the subject

inf (Ri ) : RG (ϕ)→ ϕ

Common Attribution of Common Reason: for all i ∈ G , for all
propositions ϕ for which i is not the subject

inf (RG ) : ϕ→ Ri (ϕ)
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Common Reason to Believe to Common Belief

Theorem The three previous properties can generate any hierarchy of
belief (i has reason to believe that j has reason to believe that... that ϕ)
for any ϕ with RG (ϕ).
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Team Maximising

inf (Ri ) : RN [opt(v ,N, sN)],
RN [ each i ∈ N endorses team maximising with respect to N and v ],
RN [ each member of N acts on reasons ] → ought(i , si )

Ri [ought(i , si )]: i has reason to choose si
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i acts on reasons if for all si , Ri [ought(i , si )]⇒ choice(i , si )
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inf (Ri ) : RN [opt(v ,N, sN)],
RN [ each i ∈ N endorses team maximising with respect to N and v ],
RN [ each member of N acts on reasons ] → ought(i , si )

opt(v ,N, sN): sN is maximal for the group N w.r.t. v
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Team Maximising

inf (Ri ) : RN [opt(v ,N, sN)],
RN [ each i ∈ N endorses team maximising with respect to N and v ],
RN [ each member of N acts on reasons ] → ought(i , si )

Recursive definition: i ’s endorsement of the rule depends on i having a
reason to believe everyone else endorses the rule...
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Many Questions!

Other modes of team reasoning, group identification, frames and team
preferences

Eric Pacuit 38



1. Common knowledge of rationality is not an event.

2. Hierarchies of beliefs in game situations.

3. What is the status of the epistemic models?

4. A paradox of self-reference in game theory
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Dominance Reasoning

A

B
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Dominance Reasoning

A

B

> > > > >
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Bob
A

nn
U L R

U 2,2 4,1 U

D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: D strictly dominates U and R strictly dominates L.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational
and there is common belief of rationality are strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).
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D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U strictly dominates D and L strictly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. In all models where the players are rational and there is
common belief of rationality, the players choose strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).
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Backwards Induction

Invented by Zermelo, Backwards Induction is an iterative algorithm for
“solving” and extensive game.

Eric Pacuit 42
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Hierarchies of Beliefs in a Game Situation

“ A possible problem with the theory advocated here is the infinite
regress. If he thinks I think he’ll do x , then he’ll do y . If he thinks I think
he thinks I think he’ll do y , etc.

It is true that a subjectivist Bayesian will
have an opinion not only on his opponent’s behavior, but also on his
opponent’s belief about his own behavior, his opponent’s belief about his
belief about his opponent’s behavior, etc. (He also has opinions about
the phase of the moon, tomorrow’s weather and the winner of the next
Superbowl). However, in a single-play game, all aspects of his opinion
except his opinion about his opponent’s behavior are irrelevant, and can
be ignored in the analysis by integrating them out of the joint opinion.”
(KL, pg. 239, my emphasis)
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Hierarchies of Beliefs in a Game Situation

Belief hierarchies...

I are an explicit description (perhaps overly precise) of the contents of
the players thoughts about her opponents

I represent the outcome of a reasoning process: the reasons rational
players can point to in order to justify their choices

I track the back-and-forth reasoning that players are engaged in as
they deliberate about what to do
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Iterative Solution Concepts: Two Views

Eg., Iterated removal of weakly/strictly dominated strategies

1. iterative procedures narrow down or assist in the search for a
equilibria

successive stages of strategy deletion may correspond to different
levels of belief

2. iterative procedures represent a rational deliberation process

successive stages of a strategy deletion can be interpreted as
tracking successive steps of reasoning that players can perform
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X Common knowledge of rationality is not an event.

X Hierarchies of beliefs in game situations.

1. What is the status of the epistemic models?

2. A paradox of self-reference in game theory
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Two key assumptions

1. The players recognize that they are in a game situation

2. The players agree on a common initial model

Ann’s States Bob’s States
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Two key assumptions

Game G

Strategy Space

Game Model

Rat ¬Rat

sb

a

I Each state in a game model is
associated with a strategy
profile and a description of the
players beliefs.

I Rat is event that the players
optimize (and there is common
belief that they optimize)

I “The viewpoint is descriptive.
Not ‘why,’ not ‘should,’ just
what. Not that i does a
because he believes E ; simply
that he does a and believes E .”

Eric Pacuit 48



What is a State?

Possible worlds, or states, are taken as primitive in Kripke structures.
But in many applications, we intuitively understand what a state is:

Dynamic logic: a program state (assignment of values to variables)
Temporal logic: a moment in time
Distributed system: a sequence of local states for each process

What about in game situations?
Answer: a description of the first-order and higher-order information of
the players

R. Fagin, J. Halpern and M. Vardi. Model theoretic analysis of knowledge. Journal of
the ACM 91 (1991).
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Is an Epistemic Model “Common Knowledge”?

“The implicit assumption that the information partitions...are themselves
common knowledge...constitutes no loss of generality... the assertion that
each individual ‘knows’ the knowledge operators of all individual has no
real substance; it is part of the framework.”

R. Aumann. Interactive Epistemology I & II. International Journal of Game Theory
(1999).

“it is an informal but meaningful meta-assumption....It is not trivial at all
to assume it is “common knowledge” which partition every player has.”

A. Heifetz. How canonical is the canonical model? A comment on Aumann’s interactive
epistemology. International Journal of Game Theory (1999).
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J. Halpern and W. Kets. A logic for reasoning about ambiguity. Artificial Intelligence,
to appear.

J. Halpern and W. Kets. Language and consensus. working paper, 2013.

Eric Pacuit 51



X Common knowledge of rationality is not an event.

X Hierarchies of beliefs in game situations.

X What is the status of the epistemic models?

1. A paradox of self-reference in game theory

Eric Pacuit 52



Doesn’t such talk of what Ann believes Bob believes about her, and so
on, suggest that some kind of self-reference arises in games, similar to
the well-known examples of self-reference in mathematical logic.

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games.
Studia Logica (2006).
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A Paradox

Ann believes that Bob’s strongest belief is
that Ann believes that Bob’s strongest belief is false.

Does Ann believe that Bob’s strongest belief is false?

∗ A strongest belief is a belief that implies all other beliefs.

A. Brandenburger and H. J. Keisler. An Impossibility Theorem on Beliefs in Games.
Studia Logica (2006).
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Does Ann believe that Bob’s strongest belief is false? Suppose Yes.
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I strongest belief

I weakest belief

I craziest belief

I all of Bob’s belief

Eric Pacuit 55



I strongest belief

I weakest belief

I craziest belief

I all of Bob’s belief

Eric Pacuit 55



I strongest belief

I weakest belief

I craziest belief

I all of Bob’s belief

Eric Pacuit 55



I strongest belief

I weakest belief

I craziest belief

I all of Bob’s belief

Eric Pacuit 55



Is there a space of all possible interactive beliefs of a game?

Two questions

I What exactly does “all possible” mean?
(Complete, Canonical, Universal)

I Who cares?
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Who Cares?

A. Brandenburger and E. Dekel. Hierarchies of Beliefs and Common Knowledge. Journal
of Economic Theory (1993).

A. Heifetz and D. Samet. Knoweldge Spaces with Arbitrarily High Rank. Games and
Economic Behavior (1998).

L. Moss and I. Viglizzo. Harsanyi type spaces and final coalgebras constructed from
satisfied theories. EN in Theoretical Computer Science (2004).

A. Friendenberg. When do type structures contain all hierarchies of beliefs?. working
paper (2007).
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Who cares?

We think of a particular incomplete structure as giving the
“context” in which the game is played.

In line with Savage’s
Small-Worlds idea in decision theory [...], who the players are in
the given game can be seen as a shorthand for their experiences
before the game. The players’ possible characteristics —
including their possible types — then reflect the prior history or
context. (Seen in this light, complete structures represent a
special “context-free” case, in which there has been no
narrowing down of types.) (pg. 319)

A. Brandenburger, A. Friedenberg, H. J. Keisler. Admissibility in Games. Econometrica
(2008).
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Ann’s Possible Types Bob’s Possible Types

“Conjecture” about Bob“Conjecture” about Ann

Is there a space where every possible conjecture is
considered by some type?
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S. Abramsky and J. Zvesper. From Lawvere to Brandenburger-Keisler: interactive forms
of diagonalization and self-reference. Proceedings of LOFT 2010.

EP. Understanding the Brandenburger Keisler Pardox. Studia Logica (2007).
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Impossibility Results

Language: the (formal) language used by the players to formulate
conjectures about their opponents.

Completeness: A model is complete for a language if every
(consistent) statement in a player’s language about an opponent is
considered by some type.
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Qualitative Type Spaces: 〈Ta,Tb, λa, λb〉

λa : Ta → ℘(Tb)
λb : Tb → ℘(Ta)

x believes a set Y ⊆ Tb if λa(x) ⊆ Y

x assumes a set Y ⊆ Tb if λa(x) = Y
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Impossibility Results

Impossibility 1 There is no complete interactive belief structure for the
powerset language.

Proof. Cantor: there is no onto map from X to the nonempty subsets of
X .

Impossibility 2 (Brandenburger and Keisler) There is no complete
interactive belief structure for first-order logic.
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Suppose that CA ⊆ ℘(TA) is a set of conjectures about Ann and
CB ⊆ ℘(TB) a set of conjectures about Bob states.

Assume For all X ∈ CA there is a x0 ∈ TA such that

1. λA(x0) 6= ∅: “in state x0, Ann has consistent beliefs”

2. λA(x0) ⊆ {y | λB(y) = X}: “in state x0, Ann believes that Bob’s
strongest belief is that X ”

Lemma. Under the above assumption, for each X ∈ CA there is an x0

such that

x0 ∈ X iff there is a y ∈ TB such that y ∈ λA(x0) and x0 ∈ λB(y)
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Claim. x0 ∈ X iff ∃y ∈ TB , y ∈ λA(x0) and x0 ∈ λB(y)

Assumption: For all X ∈ CA there is a x0 ∈ TA such that

1. λA(x0) 6= ∅

2. λA(x0) ⊆ {y | λB(y) = X}

Suppose that X ∈ CA. Then there is an x0 ∈ TA satisfying 1 and 2.

Suppose that x0 ∈ X . By 1., λA(x0) 6= ∅ so there is a y0 ∈ TB such that
y0 ∈ λA(x0). We show that x0 ∈ λB(y0). By 2., we have
y0 ∈ λA(x0) ⊆ {y | λB(y) = X}. Hence, x0 ∈ X = λB(y0).

Suppose that there is a y0 ∈ TB such that y0 ∈ λA(x0) and x0 ∈ λB(y0).
By 2., y0 ∈ λA(x0) ⊆ {y | λB(y) = X}. Hence, x0 ∈ λB(y0) = X .
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Consider a first-order language L containing binary relational symbols
RA(x , y) and RB(x , y) defining λA and λB , respectively.

L is interpreted over qualitative type structures where the interpretation
of RA is {(t, s) | t ∈ TA, s ∈ TB , and s ∈ λA(t)}.

Consider the formula ϕ in L:

ϕ(x) := ∃y(RA(x , y) ∧ RB(y , x))

¬ϕ(x) := ∀y(RA(x , y)→ ¬RB(y , x)): “Ann believes that Bob’s
strongest belief is false.”
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Proof of the Theorem

Suppose that X ∈ CA is defined by the formula
¬ϕ(x) := ¬∃y(RA(x , y) ∧ RB(y , x)).

There is an x0 ∈ TA such that

1. λA(x0) 6= ∅: Ann’s beliefs at x0 are consistent.

2. λA(x0) ⊆ {y | λB(y) = X}: At x0, Ann believes that Bob’s
strongest belief is that X = {x | ¬ϕ(x)} (i.e., Ann believes that
Bob’s strongest belief is that Ann believes that Bob’s strongest
belief is false.)

¬ϕ(x0) is true iff (def. of X ) x0 ∈ X
iff (Lemma) there is a y ∈ TB with y ∈ λA(x0)

and x0 ∈ λB(y)
iff (def. of ϕ(x)) ϕ(x0) is true.
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