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Deliberation in Games

B. Skyrms. The Dynamics of Rational Deliberation. Harvard University Press, 1990.
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Deliberation in Games

“The economist’s predilection for equilibria frequently arises from the
belief that some underlying dynamic process (often suppressed in formal
models) moves a system to a point from which it moves no further.”
aasdfadsf (pg. 1008)

B. D. Bernheim. Rationalizable Strategic Behavior. Econometrica, 52, 4, pgs. 1007 -
1028.

“It is not just a question of what common knowledge obtains at the
moment of truth, but also how common knowledge is preserved, created,
or destroyed in the deliberational process which leads up to the moment
of truth.” (pg. 160)

B. Skyrms. The Dynamics of Rational Deliberation. Harvard University Press, 1990.
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Information Feedback

In the simplest case, deliberation is trivial; one calculates expected utility
and maximizes

Information feedback: “the very process of deliberation may generate
information that is relevant to the evaluation of the expected utilities.
Then, processing costs permitting, a Bayesian deliberator will feed back
that information, modifying his probabilities of states of the world, and
recalculate expected utilities in light of the new knowledge.”
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Skyrms’ Model of Deliberation

A decision maker has to choose between n acts: s1, s2, . . ., sn

State of indecision: P = 〈p1, . . . , pn〉 of probabilities for each act
(
∑

i pi = 1). The default mixed act is the mixed act corresponding to
the state of indecision (decision makers always make a decision).

Status quo: EU(P) =
∑

i pi · ui (si )
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The Dynamical Rule “Seeks the good”

As a rational player deliberates, she updates here state of indecision
according to some dynamical rule that “seeks the good”:

1. the dynamical rule raises the probability of an act only if that act
has utility greater than the status quo

2. the dynamical rule raises the sum of the probability of all acts with
utility greater than the status quo (if any)

Fact. All dynamical rules that seek the good have the same fixed points:
those states in which the expected utility of the status quo is maximal.
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Games played by Bayesian deliberators

For each player, the decisions of the other players constitute the relevant
state of the world, which together with her decision, determines the
consequences in accordance with the payoff matrix.

1. Start from the initial position, player i calculates expected utility
and moves by her adaptive rule to a new state of indecision.

2. She knows that the other players are Bayesian deliberators who have
just carried out a similar process.

3. So, she can simply go through their calculations to see their new
states of indecision and update her probabilities for their acts
accordingly (update by emulation).
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Let G be a strategic game for two players with n strategies and 〈rij , cij〉
be the payoff matrix for G .

Pcol(t), Prow (t) are row and columns states of indecision at stage t of
the deliberational process.

For example, a state of indecision for the row player is

Prow (t) = 〈p1
row (t), . . . , pn

row (t)〉

where pj
row (t) is the probability that row assigns to her strategy j at time

t.
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EU row (i , t) =
n∑

k=1

pk
col(t) · rik

SQrow (t) =
n∑

i=1

pi
row (t) · EUrow (i , t)

Covrow (i , t) = max{EUrow (i , t)− SQrow (t), 0}
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EUcol(i , t) =
n∑

k=1

pk
row (t) · cki

SQcol(t) =
n∑

i=1

pi
col(t) · EUcol(i , t)

Covcol(i , t) = max{EUcol(i , t)− SQcol(t), 0}
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Prow (t + 1) = D(Prow (t),Pcol(t))

Dynamical rule State of indecision Beliefs about the state of nature
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Dynamical Rules

Nash: pi
row (t + 1) =

k·pi
row (t)+Covrow (i ,t)

k+
∑

i Covrow (i ,t)

Bayes: pi
row (t + 1) = pi

row (t) + 1
k · pi

row (t) · EUrow (i ,t)−SQrow (t)
SQrow (t)

Bayes2: pi
row (t + 1) = pi

row (t) · EUrow (i ,t)
SQrow (t)

k > 0 is an index of caution (slowing down the rate of convergence)
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col

ro
w

U L R

U -10,-10 5,-5 U

D -5,5 0,0 U

Prow (0) = 〈0.2, 0.8〉 and Pcol(0) = 〈0.4, 0.6〉

EUrow (U, 0) = 0.4 · −10 + 0.6 · 5 = −1
EUrow (D, 0) = 0.4 · −5 + 0.6 · 0 = −2
SQrow (0) = 0.2 ·EUrow (U, 0) + 0.8 ·EUrow (D, 0) = 0.2 ·−1 + 0.8 ·2 = 1.4
Covrow (U, 0) = max{EUrow (U, 0)− SQrow (0), 0} = 0
Covrow (D, 0) = max{EUrow (D, 0)− SQrow (0), 0} = 0.6
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col

ro
w

U L R

U -10,-10 5,-5 U

D -5,5 0,0 U

Prow (1) = 〈k·0.2+0.8
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col

ro
w

U L R

U -10,-10 5,-5 U

D -5,5 0,0 U

Prow (1) = 〈k·0.2+0.8
k+0.8 , k·0.8+0

k+0.8 〉 and Pcol(1) = 〈k·0.4+1.8
k+1.8 , k·0.6+0

k+1.8 〉

EUcol(L, 0) = 0.2 · −10 + 0.8 · 5 = 2
EUcol(R, 0) = 0.2 · −5 + 0.8 · 0 = −1
SQcol(0) = 0.4 · EUcol(L, 0) + 0.6 · EUrow (R, 0) = 0.4 · 2 + 0.6 · −1 = 0.2
Covcol(L, 0) = max{EUcol(L, 0)− SQcol(0), 0} = 1.8
Covcol(R, 0) = max{EUcol(R, 0)− SQcol(0), 0} = 0
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col

ro
w

U L R

U -10,-10 5,-5 U

D -5,5 0,0 U

Prow (1) = 〈0.2 + 1
k · 0.2 ·

−1−(−1.8)
−1.8 , 0.8 + 1

k · 0.8 ·
−2−(−1.8)
−1.8 〉

EUrow (U, 0) = 0.4 · −10 + 0.6 · 5 = −1
EUrow (D, 0) = 0.4 · −5 + 0.6 · 0 = −2
SQrow (0) = 0.2·EUrow (U, 0)+0.8·EUrow (D, 0) = 0.2·−1+0.8·−2 = −1.8
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col

ro
w

U L R

U -10,-10 5,-5 U

D -5,5 0,0 U

Prow (1) = 〈0.2 + 1
k · 0.2 · 0.8

−1.8 , 0.8 + 1
k · 0.8 · −0.2−1.8〉

EUrow (U, 0) = 0.4 · −10 + 0.6 · 5 = −1
EUrow (D, 0) = 0.4 · −5 + 0.6 · 0 = −2
SQrow (0) = 0.2·EUrow (U, 0)+0.8·EUrow (D, 0) = 0.2·−1+0.8·−2 = −1.8
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col

ro
w

U L R

U 0,0 15,5 U

D 5,15 10,10 U

Prow (1) = 〈0.2 + 1
k · 0.2 · 9−8.28.2 , 0.8 + 1

k · 0.8 · 8−8.28.2 〉

EUrow (U, 0) = 0.4 · 0 + 0.6 · 15 = 9
EUrow (D, 0) = 0.4 · 5 + 0.6 · 10 = 8
SQrow (0) = 0.2 · EUrow (U, 0) + 0.8 · EUrow (D, 0) = 0.2 · 9 + 0.8 · 8 = 8.2
EUcol(L, 0) = 0.2 · −10 + 0.8 · 5 = 2
EUcol(L, 0) = 0.2 · −10 + 0.8 · 5 = 2
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Bob

A
nn

U L R

U 0.5,0.5 0.5,0.5 U

D 1,1 0,0 U

Darwin can lead to an imperfect equilibrium. Nash can only lead to D, L.
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Normal form vs. Extensive form

A

B

-1,-1 1,1

0,0

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 -1,-1 1,1 U

a2 0,0 0,0 U

(Cf. the various notions of sequential equilibrium)
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Normal form vs. Extensive form

T. Seidenfeld. When normal and extensive form decisions differ. in Logic, Methodology
and Philosophy of Science IX, Elsevier, 1994.
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Normal form vs. Extensive form

A

B

0,0 2,2

1,1

a1 a2

b1 b2

Bob

A
nn

U b1 if a1 b2 if a1

a1 0,0 2,2 U

a2 1,1 1,1 U

On the normal form, there are imperfect equilibria accessible by Darwin
dynamics (e.g., PA = 〈0, 1〉, PB = 〈0.04, 0.96〉).

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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A
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On the normal form, there are imperfect equilibria accessible by Darwin
dynamics (e.g., PA = 〈0, 1〉, PB = 〈0.97, 0.03〉).

This equilibria is not accessible on the tree: Bob calculates the expected
utility at his information set (so, PB(a1 | a1) = 1 and PB(a2 | a1) = 0).
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A

B B

8,10 11,11 9,9 12,11

10,12
a1

a3 a2

b2 b1 b2 b1

Bob

A
nn

U b1 if a2 or a3 b2 if a2 or a3

a1 10,12 10,12 U

a2 12,11 9,9 U

a3 11,11 8,10 U

(Cf. the various notions of sequential equilibrium)Eric Pacuit 17



A

B B

8,10 11,11 9,9 12,11

10,12
a1

a3 a2

b2 b1 b2 b1

I No matter what Ann’s probabilities are for playing a2 and a3, Bob is
always better off playing b1.

I Thus, Bob will play b1 at his information set
I Knowing this, Ann will play a2
I Dynamic deliberation will never lead to the “bad” equilibrium

(a1, b2 if a2 or a3)
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A

B B

12,12 10,10 13,10 16,16

14,14
a1

a3 a2

b2 b1 b2 b1

Bob

A
nn

U b1 if a2 or a3 b2 if a2 or a3

a1 14,14 14,14 U

a2 16,16 13,10 U

a3 10,10 12,12 U
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A

B B

12,12 10,10 13,10 16,16

14,14
a1

a3 a2

b2 b1 b2 b1

I If Ann plays a2, Ann will get a better payoff than if Ann plays a3 no
matter what Bob does

I This will lead Bob to play b1. Ann can figure this out, so she will
play a2.

I If we implement some sort of Bayes dynamics with a tendency
towards a better response, then deliberation will lead to the “good”
equilibrium.
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A

B B

12,12 10,10 10,10 16,16

14,14
a1

a3 a2

b2 b1 b2 b1

I a1 gives Ann a higher payoff than a3 no matter what Bob does
I Therefore, Bob should know that Ann will only play “a2 or a3” if she

plays a2.
I Accordingly Bob will play b1 rather than b2, and knowing this Ann

will play a2 rather than a1
I In the preceding example, pA(a2 | a2 or a3) is high because a2

strictly dominates a3.
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I a1 gives Ann a higher payoff than a3 no matter what Bob does
I Therefore, Bob should know that Ann will only play “a2 or a3” if she

plays a2.
I Accordingly Bob will play b1 rather than b2, and knowing this Ann

will play a2 rather than a1
I Unless there is some “pre-deliberational” pruning, Darwin dynamics

can lead to either equilibrium.
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A

B B

8,4 2,6 10,6 0,4

6,6
a1

a3 a2

b2 b1 b2 b1

Bob

A
nn

U b1 if a2 or a3 b2 if a2 or a3

a1 6,6 6,6 U

a2 0,4 10,6 U

a3 2,6 8,4 U
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A

B B

8,4 2,6 10,6 0,4

6,6
a1

a3 a2

b2 b1 b2 b1

I W. Harper, Dynamic Deliberation, PSA 1992.
I (a2, b2 if a2 or a3) and (a1, (0.5b1, 0.5b2)) are equilibrium
I a1 is not ratifiable: if Bob is given a chance to move that means

Ann must be expecting Bob to choose b2. Ann’s best response to
this is a2. Knowing this Bob will choose b2

I Starting at (1/3a1, 1/3a2, 1/3a3) and (1/2b1, 1/2b2), both Darwin
and Nash dynamics lead to the “bad” equilibrium.
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General comments

I Extensive games (imperfect information), imprecise probabilities,
other notions of stability, weaken common knowledge assumptions,...

I Generalizing the basic model.

I Relation with correlated equilibrium (correlation through rational
deliberation)

I Why assume deliberators are in a “information feedback situation”?

I Deliberation in decision theory.
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Stability of Equilibria

An equilibrium point e is stable under dynamics if points nearby remain
close for all time under the action of dynamics. It is strongly stable if
there is a neighborhood of e such that the trajectories of all points in
that neighborhood converge to e.

I In the game of chicken: the two pure equilibria are strongly stable
while the mixed equilibria is not stable.

I Pure equilibria can be dynamically unstable (Myerson’s game)

I Mixed equilibria can be strongly stable (Matching Pennies)

I A pure strategy may be highly unstable (Moulin’s game)
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Moulin’s Game

Bob
A
nn

U L C R

U 1,3 2,0 3,1 U

M 0,2 2,2 0,2 U

D 3,1 2,0 1,3 U
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Mixed Equilibria

In static discussion of game theory, it is often remarked that mixed
equilibria are unstable because if your opponent plays the equilibrium
strategy, then you can always do just as well by playing any pure strategy
with positive weight in your mixed equilibrium strategy than by playing
the mixed equilibrium itself.

If opponents are understood as dynamic deliberators, then a mixed
strategy may or may not be stable.
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Imprecise Priors

It is assumed that the players precise states of indecision are common
knowledge at the onset of deliberation.

Imprecise Prior: Each players prior is a convex set of probability measures
over her actions space.

Restrict attention to games with two players where each players has two
strategies.
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A precise state of indecision for the row player is

Prow (t) = 〈p1
row (t), . . . , pn

row (t)〉

where pj
row (t) is the probability that row assigns to her strategy j at time

t.

An imprecise state of indecision has p1
row = [lp, up] and

p2
row = [1− up, 1− lp]. For example, if p1

row = [0.6, 0.7], then
p2
row = [0.3, 0.4].

Row (Col) has an expected utility for each probability measure in Col’s
(Row’s) interval. Row (Col) need only compute expected utilities with
respect to the endpoints of columns interval.
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pU
row (0) = [0.6, 0.8] and pL

col(0) = [0.6, 0.9]

EUrow (U, 0) = [0.1, 0.4]
EUrow (D, 0) = [0.6, 0.9]
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pU
row (0) = [0.6, 0.8] and pL

col(0) = [0.6, 0.9]

EUrow (U, 0) = [0.1, 0.4]
EUrow (D, 0) = [0.6, 0.9]
How should you calculate Prow (1) and Pcol(1)?
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1. pU
row = 0.6, pL

col = 0.6: SQrow = 0.30, Covrow (U) = 0,
Covrow (D) = 0.30. pU

row (1) = 0.6+0
1+0.3 = 0.4615

2. pU
row = 0.6, pL

col = 0.9: SQrow = 0.40, Covrow (U) = 0,
Covrow (D) = 0.20. pU

row (1) = 0.6+0
1+0.4 = 0.4286

3. pU
row = 0.8, pL

col = 0.6: SQrow = 0.32, Covrow (U) = 0,
Covrow (D) = 0.28. pU

row (1) = 0.8+0
1+0.32 = 0.6061

4. pU
row = 0.8, pL

col = 0.9: SQrow = 0.20, Covrow (U) = 0,
Covrow (D) = 0.7. pU

row (1) = 0.8+0
1+0.7 = 0.4706

pU
row = [0.4286, 0.6061]
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I The area of a rectangle of indecision need not be preserved by
deliberational dynamics

I For example, players may start out with imprecise prior probabilities
and deliberation results in point probabilities (E.g., Figure 3.4, 3.5
on pgs. 68, 69)

I The pure mixed strategy in the game of Chicken is not stable for
precise probabilities. Starting from [0.51, 0.49], [0.51, 0.49], the orbit
explodes to a state of mutual total bewilderment.

I In matching pennies, the mixed strategy is strongly stable. However,
starting from [0.51, 0.49], [0.51, 0.49], the imprecision explodes to
cover the whole space (see Figure 3.8, pg. 72)

I When analyzed in terms of precise priors, the pure coordination
game and Chicken were both seen to be situations in which
coordination could arise spontaneously. This is not true when
starting with imprecise probabilities.
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J. McKenzie Alexander. Local interactions and the dynamics of rational deliberation.
Philosophical Studies 147 (1), 2010.
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Consider a social network 〈N,E 〉 (connected graph)

Convention: If there is a directed edge from A to B, then A always plays
row and B always play column, and the interactions of Row and Column
are symmetric in the available strategies.

Let νi = {i1, . . . ij} be i ’s neighbors

p′a,b(t + 1) is represents the incremental refinement of player a’s state of
indecision given his knowledge about player b’s state of indecision (at
time t + 1).

Pool this information to form your new probabilities:

pi (t + 1) =
k∑

j=1

wi ,ijp
′
i ,ij

(t + 1)
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I Allowing for local interactions in the dynamics of rational
deliberation breaks the link between convergent points of the
deliberative dynamics and Nash equilibrium points of the underlying
game.

I It is no longer true that all dynamical rules have fixed points that
maximize expected utility of the status quo.

I The effect of local interactions reveals reasons for preferring the
Bayesian dynamics over the Nash dynamics.
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(a) Nash dynamics, k = 25
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(b) Bayesian dynamics, k = 100

Fig. 3 Flow diagrams for two-player Chicken. The x-axis represents the probability assigned to Swerve by
Column, the y-axis represents the probability assigned to Don’t Swerve by Row. (This allows one to interpret
the flow diagram by visualizing the payoff matrix superimposed over the trajectories.) The dotted line in the
Bayesian case illustrates the asymmetric bending of the vector field.

stepping the model forward until it converges (if it does). When we do this with Nash delib-
erators using an index of caution of 1, we find that the group settles into one of two types
of attractors. The first type is a cycle of period two, where all players alternate between the
distribution h0.276393,0.723607i and the distribution h0.723607,0.276393i.12 The second
type is a fixed point of the dynamics, where one player adopts the distribution h0,1i and
the rest h0.614508,0.385492i or one player adopts h1,0i and the rest h0.385492,0.614508i.
Figure 4 illustrates the second type of attractor. Note that neither type corresponds in any
way to the standard Nash equilibria for the game of Chicken.

80.538407, 0.461593< 80.300405, 0.699595<

80.396084, 0.603916<

Player 1 Player 2

Player 3

(a) Initial conditions

90.999999, 8.73302¥10-7= 80.385492, 0.614508<

80.385492, 0.614508<

Player 1 Player 2

Player 3

(b) t = 1,000,000

Fig. 4 The game of Chicken played on a three-person directed cycle with Nash deliberators having an index
of caution of 1. Probabilities shown as (Don’t Swerve, Swerve).

The first type of attractor is not a consequence of the local interaction framework. One
can prove that the probability distributions of the first type of equilibrium are, under the
Nash dynamics, a cycle of length two in the ordinary two-person case. (See appendix B for
a proof.) In our model, since each player revises his distribution by determining the notional
revisions for each of his pairwise interaction and then averaging, cycles of length two in the
ordinary two-person case will remain cycles of length two in our social network setting.

12 The probabilities are rounded to six decimal places.
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Out of one thousand simulations using Darwin dynamics having an index
of caution 100, all of them converge to a state where one player assigned
probability 1 to Don’t Swerve and the other two assign probability 1 to
Swerve.
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Billy
Boxing Ballet

Maggie
Boxing (2,1) (0,0)
Ballet (0,0) (1,2)

Fig. 7 The game of Battle of the Sexes.

80.7, 0.3<
80.7, 0.3<

80.7, 0.3<
80.4, 0.6<

80.4, 0.6<

80.4, 0.6<
(a) Initial conditions

81., 0<
81., 0<

81., 0<
80.4134, 0.5866<

80, 1.<

80, 1.<
(b) t = 1,000,000

Fig. 8 Battle of the Sexes played by
Nash deliberators (k = 25) on two cy-
cles connected by a bridge edge (val-
ues rounded to the nearest 10�4).

is just the opposite of that of players 1, 2, 3, and 8; hence the overall population state is
stable under the Nash dynamics.

4. Battle of the Sexes

Turning now from anti-coordination to coordination games, consider the game of Battle
of the Sexes as defined by the payoff matrix in figure 7. Simulations of the deliberational
dynamics for both Nash and Bayesian deliberators on a cycle of length three reveal that,
on that simple network, the population will coordinate on either All Go Boxing or All Go
To The Ballet. It is also straightforward to predict which of these two outcomes will come
about: look at the total aggregate probability assigned to Boxing and Ballet in the states of
indecision for the population. Whichever activity has more probability assigned to it will be
the activity the population converges upon.

The predictive success of that rule depends on the topology, though. Consider a graph
defined by the sequence of edges 1 ! 2 ! 3 ! 1, 4 ! 5 ! 6 ! 4 and 1 ! 4 (see figure 8).
If each player in the left “lobe” of graph has the state of indecision h.7, .3i and each player in
the right “lobe” has the state of indecision h.4, .6i, the total aggregate probability assigned to
Boxing in the population is 3.3, with Ballet receiving an aggregate of 2.7. Yet if each player
is a Nash deliberator with an index of caution k = 25, the left lobe converges to Boxing and
most of the right lobe converges to Ballet. This makes sense, given the topology, but it also
shows that the predictive rule which works on a simple cycle fails to work here.

It’s worth investigating what happens on more realistic and complex social networks.
Consider, then, the following sequence of simulations: for one thousand trials, generate a
random directed graph gi consisting of twenty vertices, and a random assignment of states
of indecision hpi1 , . . . ,pi20i to each vertex in gi.18 Then, for each of these initial conditions,
calculate the state resulting from stepping the model forward 1,000,000 iterations under the
Nash dynamics. Then do the same thing, except under Bayesian dynamics.

18 The random graphs were generated using the following procedure: each of the 190 possible edges had a
20% chance of being included. If the resulting graph was connected, it was used; if the resulting graph was
disconnected, it was thrown out and a new candidate was generated. The same graph was used for the ith trial
for both Nash and Bayes deliberators, as well as the same initial conditions.
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Deliberation in Games

I The Harsanyi-Selten tracing procedure

I Brian Skyrms’ models of “dynamic deliberation”

I Ken Binmore’s analysis using Turing machines to “calculate” the
rational choice

I Robin Cubitt and Robert Sugden’s “reasoning based expected utility
procedure”

I Johan van Benthem et col.’s “virtual rationality announcements”

Different frameworks, common thought: the “rational solutions” of a
game are the result of individual deliberation about the “rational” action
to choose.
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