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“Analysis of strategic economic situations requires us, implicitly or
explicitly, to maintain as plausible certain psychological hypotheses.
They hypothesis that real economic agents universally recognize the
salience of Nash equilibria may well be less accurate than, for example,
the hypothesis that agents attempt to “out-smart” or “second-guess”
each other, believing that their opponents do likewise.” (pg. 1010)

B. D. Bernheim. Rationalizable Strategic Behavior. Econometrica, 52:4, pgs. 1007 -
1028, 1984.
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“The rules of a game and its numerical data are seldom sufficient for
logical deduction alone to single out a unique choice of strategy for each
player. To do so one requires either richer information (such as
institutional detail or perhaps historical precedent for a certain type of
behavior) or bolder assumptions about how players choose strategies.
Putting further restrictions on strategic choice is a complex and
treacherous task. But one’s intuition frequently points to patterns of
behavior that cannot be isolated on the grounds of consistency alone.”
asdlfsadf (pg. 1035)

D. G. Pearce. Rationalizable Strategic Behavior. Econometrica, 52, 4, pgs. 1029 -
1050, 1984.
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What are the consequences of assuming that the players are rational and
there is common belief of rationality?
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“...a decision-maker has a subjective probability opinion with respect to
all of the unknown contingencies affecting his payoffs. In particular in a
simultaneous-move two-person game, the player whom we are advising is
assumed to have an opinion about the major contingency faced, namely
what the opposing player is likely to do. If I think my opponent will
choose strategy i (i = 1, . . . , n) with probability pi , I will choose any
strategy j maximizing

∑n
i=1 piuij , where u is the utility to me of the

situation in which my opponent has chosen i and I have chosen j .”
add asdf (pg. 115, Kadane and Larkey)
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“It is true that a subjectivist Bayesian will have an opinion not only on
his opponent’s behavior, but also on his opponent’s belief about his own
behavior, his opponent’s belief about his belief about his opponent’s
behavior, etc. (He also has opinions about the phase of the moon,
tomorrow’s weather and the winner of the next Superbowl).

However, in
a single-play game, all aspects of his opinion except his opinion about his
opponent’s behavior are irrelevant, and can be ignored in the analysis by
integrating them out of the joint opinion.” (KL, pg. 239, my emphasis)
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Theorem. Assume that there is a common prior and that for all w , for
all i ∈ N, Πi (w) ⊆ {v | si (v) = si (w)}. If each player is Bayes rational
at each state of the world, then the distribution of the action n-tuple s is
a correlated equilibrium.

R. Aumann. Correlated Equilibrium as an Expression of Bayesian Rationality. Econo-
metrica, 55:1, pgs. 1 - 18, 1987.
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Deliberation in Games

I The Harsanyi-Selten tracing procedure

I Brian Skyrms’ models of “dynamic deliberation”

I Ken Binmore’s analysis using Turing machines to “calculate” the
rational choice

I Robin Cubitt and Robert Sugden’s “reasoning based expected utility
procedure”

I Johan van Benthem et col.’s “virtual rationality announcements”

Different frameworks, common thought: the “rational solutions” of a
game are the result of individual deliberation about the “rational” action
to choose.
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Dominance Reasoning
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Dominance Reasoning
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Bob
A
nn

U L R

U 2,2 4,1 U

D 1,4 3,3 U

Game 1

Bob

A
nn

U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: D strictly dominates U and R strictly dominates L.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. The projection of any event where the players are rational
and there is common belief of rationality are strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).
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U 2,2 4,1 U

D 1,4 3,3 U
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Bob
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U L R

U 2,1 1,0 U

D 1,0 0,1 U

Game 2

Game 1: U strictly dominates D and L strictly dominates R.

Game 2: U strictly dominates D, and after removing D, L strictly
dominates R.

Theorem. In all models where the players are rational and there is
common belief of rationality, the players choose strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).
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Comparing Dominance Reasoning and MEU

G = 〈N, {Si}i∈N , {ui}i∈N〉
X ⊆ S−i (a set of strategy profiles for all players except i)

s, s ′ ∈ Si , s strictly dominates s ′ with respect to X provided

∀s−i ∈ X , ui (s, s−i ) > ui (s
′, s−i )

p ∈ ∆(X ), s is a best response to p with respect to X provided

∀s ′ ∈ Si , EU(s, p) ≥ EU(s ′, p)
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Bob

A
nn

U L R

U 5,∗ 1,∗ U

M 1,∗ 5,∗ U

D 2,∗ 2,∗ U

D is strictly dominated by (0.5U, 0.5M).
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Bob

A
nn

U L R

U 2,∗ -1,∗ U

M 0,∗ 0,∗ U

D -1,∗ 2,∗ U

M is never a best response: if p(L) > 1/2 then U strictly dominates M,
if p(L) < 1/2, then D strictly dominates M.
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Strict Dominance and MEU

Proposition. Suppose that G = 〈N, {Si}i∈N , {ui}i∈N〉 is a strategic
game and X ⊆ S−i . A strategy si ∈ Si is strictly dominated (possibly by
a mixed strategy) with respect to X iff there is no probability measure
p ∈ ∆(X ) such that si is a best response to p.
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Suppose that G = 〈N, {Si}i∈N , {ui}i∈N〉 is a finite strategic game.

Suppose that si ∈ Si is strictly dominated with respect to X :

∃s ′i ∈ Si ,∀s−i ∈ X , ui (s
′
i , s−i ) > ui (si , s−i )

Let p ∈ ∆(X ) be any probability measure. Then,

∀s−i ∈ X , p(s−i ) · ui (s ′i , s−i ) ≥ p(s−i ) · ui (si , s−i )

∃s−i ∈ X , p(s−i ) · ui (s ′i , s−i ) > p(s−i ) · ui (si , s−i )

Hence, ∑
s−i∈S−i

p(s−i ) · ui (s ′i , s−i ) >
∑

s−i∈S−i

p(s−i ) · ui (si , s−i )

So, EU(s ′i , p) > EU(si , p): si is not a best response to p.
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For the converse direction, we sketch the proof for two player games and
where X = S−i .

1

Let G = 〈S1,S2, u1, u2〉 be a two-player game.
(Let Ui : ∆(S1)×∆(S2)→ R be the expected utility for i)

Suppose that α ∈ ∆(S1) is not a best response to any p ∈ ∆(S2).

∀p ∈ ∆(S2) ∃q ∈ ∆(S1), U1(q, p) > U1(α, p)

We can define a function b : ∆(S2)→ ∆(S1) where, for each p ∈ ∆(S2),
U1(b(p), p) > U1(α, p).

1The proof of the more general statement uses the supporting hyperplane theorem
from convex analysis.
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Consider the game G ′ = 〈S1,S2, u1, u2〉 where

u1(s1, s2) = u1(s1, s2)− U1(α, s2) and u2(s1, s2) = −u1(s1, s2)

By the minimax theorem, there is a Nash equilibrium (p∗1 , p
∗
2) such that

for all m ∈ ∆(S2),

U1(p∗1 ,m) ≥ U1(p∗1 , p
∗
2) ≥ U1(b(p∗2), p∗2)

We now prove that U1(b(p∗2), p∗2) > 0:
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U1(b(p∗2), p∗2) =
∑

x∈S1
∑

y∈S2 b(p∗2)(x)p∗2(y)u1(x , y)

=
∑

x∈S1
∑

y∈S2 b(p∗2)(x)p∗2(y)[u1(x , y)− U1(α, y)]

=
∑

x∈S1
∑

y∈S2 b(p∗2)(x)p∗2(y)u1(x , y)

−
∑

x∈S1
∑

y∈S2 b(p∗2)(x)p∗2(y)U1(α, y)

= U1(b(p∗2), p∗2)
−

∑
x∈S1

∑
y∈S2 b(p∗2)(x)p∗2(y)U1(α, y)

> U1(α, p∗2)−
∑

x∈S1
∑

y∈S2 b(p∗2)(x)p∗2(y)U1(α, y)

> U1(α, p∗2)

= U1(α, p∗2)− U1(α, p∗2) ·
∑

x∈S1 b(p∗2)(x)U1(α, p∗2)

= U1(α, p∗2)− U1(α, p∗2) = 0
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∑

x∈S1 b(p∗2)(x)U1(α, p∗2)
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U1(b(p∗2), p∗2) =
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Hence, for all m ∈ ∆(S2) we have

U(p∗1 ,m) ≥ U1(p∗1 , p
∗
2) ≥ U1(b(p∗2), p∗2) > 0

which implies for all m ∈ ∆(S2), U1(p∗1 ,m) > U1(α,m), and so α is
strictly dominated by p∗1 .
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Important Issue: Correlated Beliefs

x l r

u 1,1,3 1,0,3

d 0,1,0 0,0,0

y l r

u 1,1,2 1,0,0

d 0,1,0 1,1,2

z l r

u 1,1,0 1,0,0

d 0,1,3 0,0,3

I Note that y is not strictly dominated for Charles.

I It is easy to find a probability measure p ∈ ∆(SA × SB) such that y
is a best response to p. Suppose that p(u, l) = p(d , r) = 1

2 . Then,
EU(x , p) = EU(z , p) = 1.5 while EU(y , p) = 2.

I However, there is no probability measure p ∈ ∆(SA × SB) such that
y is a best response to p and p(u, l) = p(u) · p(l).
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u 1,1,3 1,0,3
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y l r

u 1,1,2 1,0,0

d 0,1,0 1,1,2

z l r
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I To see this, suppose that a is the probability assigned to u and b is
the probability assigned to l . Then, we have:

• The expected utility of y is 2ab + 2(1− a)(1− b);
• The expected utility of x is 3ab + 3a(1− b) = 3a(b + (1− b)) = 3a;

and
• The expected utility of z is

3(1− a)b + 3(1− a)(1− b) = 3(1− a)(b + (1− b)) = 3(1− a).
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Given a sequence of sets of strategies S1, . . . ,Sn and s ∈ S1 × · · · × Sn,
the following is standard notation:

I s−i := (s1, . . . , si−i , si+1, . . . , sn)

I S−i = S1 × · · · × Si−i × Si+1 × · · · Sn

We say that G = (S1, . . .Sn) is a restriction of a game
H = (T1, . . . ,Tn, u1, . . . , un) provided Si ⊆ Ti for all i = 1, . . . n.

A restriction G where each Si is nonempty is associated with a unique
subgame, G = (S1, . . . ,Sn, u

′
1, . . . u

′
n) where u′i = ui |S1×···Sn (each u′i is

the restriction of ui to the strategies in Si ).

A restriction where some Si are empty is called an empty restriction.
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Restrictions of a game H can be ordered by the component-wise subset
relation:
G = (S1 . . . ,Sn) ⊆ (S ′1, . . . ,S

′
n) = G ′ iff Si ⊆ S ′i for all i = 1, . . . n
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Beliefs, or Conjectures

Fix a game H = (T1, . . . ,Tn, u1, . . . , un)

For each player let Bi be a set of beliefs (for now, this is an unspecified
set)

Each ui is associated with a expected payoff function Ui : Si × Bi → R.

A belief Bi of player i in H can be narrowed to any restriction G of H.
This narrowing of H to G is denoted: Bi ∩̇ G

We call the pair (B, ∩̇) a belief structure in the game H where
B = B1 × · · · × Bn and the following property is satisfied:

If G1 ⊆ G2 ⊆ H, then for all i = 1, . . . , n, Bi ∩̇ G1 ⊆ Bi ∩̇ G2.
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Examples

1. For i = 1, . . . , n Bi := T−i and for a restriction G = (S1, . . . ,Sn) of
H, Bi ∩̇ G := S−i

Then (B, ∩̇) is the pure belief structure in H.

2. Given a finite strategic game, let H be the mixed extension, so
H = (I1, . . . , In,U1, . . . ,Un) where Ii = ∆Si , where ∆X is the set of
probability measures on X .

Then, for a restriction G = (S1, . . . ,Sn) of H, Bi ∩̇ G := Πj 6=iSj , where
Sj is the convex hull of a set Sj of mixed strategies.
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Examples

3. Assume H is a finite game. For i = 1, . . . , n, Bi := Πj 6=i∆Tj and for
a restriction G = (S1, . . . ,Sn) of H, Bi ∩̇ G := Πj 6=i∆Sj

4. Assume H is finite. For i = 1, . . . , n, Bi := Πj 6=i∆T−i and for a
restriction G = (S1, . . . ,Sn) of H, Bi ∩̇ G := ∆S−i

5. Assume H is a finite game. For i = 1, . . . , n, Bi := Πj 6=i∆
◦Tj , where

for a set X , ∆◦X is the set of probabilities measures that assign positive
probability to each element of X , and for a restriction G = (S1, . . . ,Sn)
of H, Bi ∩̇ G := Πj 6=i∆

◦Sj
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Theorem. In all models where the players are rational and there is
common belief of rationality, the players choose strategies that survive
iterative removal of strictly dominated strategies (and, conversely...).
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Subgames

Let H = 〈H1, . . . ,Hn, u1, . . . , un〉 be an arbitrary strategic game.

A restriction of H is a sequence G = (G1, . . . ,Gn) such that Gi ⊆ Hi for
all i ∈ {1, . . . , n}.

The set of all restrictions of a game H ordered by componentwise set
inclusion forms a complete lattice.
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Game Models

Relational models: 〈W ,Ri 〉 where Ri ⊆W ×W . Write
Ri (w) = {v | wRiv}.

Events: E ⊆W

Knowledge/Belief: 2E = {w | Ri (w) ⊆ E}

Common knowledge/belief:
21E = 2E
2k+1E = 22kE
2∗E =

⋂∞
k=12

kE

Fact. An event F is called evident provided F ⊆ 2F . w ∈ 2∗E
provided there is an evident event F such that w ∈ F ⊆ 2E .
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Game Models

Let G = (G1, . . . ,Gn) be a restriction of a game H.

A knowledge/belief model of G is a tuple 〈W ,R1, . . . ,Rn, σ1, . . . , σn〉
where 〈W ,R1, . . . ,Rn〉 is a knowledge/belief model and σi : W → Gi .

Given a model 〈W ,R1, . . . ,Rn, σ1, . . . σn〉 for a restriction G and a
sequence E = {E1, . . . ,En} where Ei ⊆W ,

GE = (σ1(E1), . . . , σn(En))
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Some Lattice Theory

I (D,⊆) is a lattice with largest element >. T : D → D an operator.

I T is monotonic if for all G ,G ′, G ⊆ G ′ implies T (G ) ⊆ T (G ′)

I G is a fixed-point if T (G ) = G

I νT is the largest fixed point of T

I T∞ is the “outcome of T : T 0 = >, Tα+1 = T (Tα),
T β =

⋂
α<β T

α, The outcome of iterating T is the least α such

that Tα+1 = Tα, denoted T∞

I Tarski’s Fixed-Point Theorem: Every monotonic operator T has a
(least and largest) fixed point T∞ = νT =

⋃
{G | G ⊆ T (G )}.

I T is contracting if T (G ) ⊆ G . Every contracting operator has an
outcome (T∞ is well-defined)
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Rationality Properties

ϕ(si ,Gi ,G−i ) holds between a strategy si ∈ Hi , a set of strategies Gi for
player i and strategies G−i of the opponents. Intuitively si is ϕ-optimal
strategy for player i in the restricted game 〈Gi ,G−i , u1, . . . , un〉 (where
the payoffs are suitably restricted).

ϕi is monotonic if for all G−i , G
′
−i ⊆ H−i and si ∈ Hi

G−i ⊆ G ′−i and ϕ(si ,Hi ,G−i ) implies ϕ(si ,Hi ,G
′
−i )
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Removing Strategies

If ϕ = (ϕ1, . . . , ϕn), then define Tϕ(G ) = G ′ where

I G = (G1, . . . ,Gn), G ′ = (G ′1, . . . ,G
′
n),

I for all i ∈ {1, . . . , n}, G ′i = {si ∈ Gi | ϕi (si ,Hi ,G−i )}

Tϕ is contracting, so it has an outcome T∞ϕ

If each ϕi is monotonic, then νTϕ exists and equals T∞ϕ .
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Rational Play

Let H = 〈H1, . . . ,Hn, u1, . . . , un〉 a strategic game and
〈W ,R1, . . . ,Rn, σ1, . . . , σn〉 a model for H.

σi (w) is the strategy player is using in state w .

GRi (w) is a restriction of H giving i ’s view of the game.

Player i is ϕi -rational in the state w if ϕi (σi (w),Hi , (GRi (w))−i ) holds.

Rat(ϕ) = {w ∈W | each player is ϕi -rational in w}

2Rat(ϕ)
2∗Rat(ϕ)
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Theorem (Apt and Zvesper).

I Suppose that each ϕi is monotonic. Then for all belief models for H,

GRat(ϕ)∩B∗(Rat(ϕ)) ⊆ T∞ϕ

I Suppose that each ϕi is monotonic. Then for all knowledge models
for H,

GK∗(Rat(ϕ)) ⊆ T∞ϕ

I For some standard knowledge model for H,

T∞ϕ ⊆ GK∗(Rat(ϕ))

K. Apt and J. Zvesper. The Role of Monotonicity in the Epistemic Analysis of Games.
Games, 1(4), pgs. 381-394, 2010.
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Claim If each ϕi is monotonic, then GRat(ϕ)∩2∗Rat(ϕ) ⊆ T∞ϕ .

Let si be an element of the ith component of GRat(ϕ)∩2∗Rat(ϕ):
si = σi (w) for some w ∈ Rat(ϕ) ∩2∗Rat(ϕ)

there is an F such that F ⊆ 2F and

w ∈ F ⊆ 2Rat(ϕ) = {v ∈W | ∀i Ri (v) ⊆ Rat(ϕ)}

Claim. GF∩Rat(ϕ) is post-fixed point of Tϕ (GF∩Rat(ϕ) ⊆ Tϕ(GF∩Rat(ϕ))).

Since each ϕi is monotonic, Tϕ is monotonic and by Tarski’s fixed-point
theorem, GF∩Rat(ϕ) ⊆ T∞ϕ . But si = σi (w) and w ∈ F ∩ Rat(ϕ), so si is
the ith component in T∞ϕ .
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F ⊆ 2F and w ∈ F ⊆ 2Rat(ϕ) = {v ∈W | ∀i Ri (v) ⊆ Rat(ϕ)}

Claim. GF∩Rat(ϕ) is post-fixed point of Tϕ (GF∩Rat(ϕ) ⊆ Tϕ(GF∩Rat(ϕ))).

Let w ′ ∈ F ∩ Rat(ϕ) and let i ∈ {1, . . . , n}.

Since w ′ ∈ Rat(ϕ), ϕi (σi (w
′),Hi , (GRi (w))−i ) holds.

F is evident, so Ri (w
′) ⊆ F . We also have Ri (w

′) ⊆ Rat(ϕ).

Hence, Ri (w
′) ⊆ F ∩ Rat(ϕ).

This implies (GRi (w ′)) ⊆ (GF∩Rat(ϕ))−i , and so by monotonicity of ϕi ,
ϕi (si ,Hi , (GF∩Rat(ϕ))−i ) holds.

This means GF∩Rat(ϕ) ⊆ Tϕ(GF∩Rat(ϕ))
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sdi (si ,Gi ,G−i ) is ¬∃s ′i ∈ Gi ,∀s−i ∈ G−iui (s
′
i , s−i ) > ui (si , s−i )

bri (si ,Gi ,G−i ) is ∃µi ∈ Bi (G−i )∀s ′i ∈ Gi ,Ui (si , µi ) ≥ Ui (s
′
i , µi ).

Uϕ(G ) = G ′ where G ′i = {si ∈ Gi | ϕi (si ,Gi ,G−i )}.

Note: Uϕ is not monotonic.
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Corollary. For all belief models, GRat(br)∩2∗Rat(br) ⊆ U∞sd . For all G , we
have

Tbr (G ) ⊆ Tsd(G )

Tsd(G ) ⊆ Usd(G )

Then, T∞sd ⊆ U∞sd .

Fact. Consider two operators T1,T2 on (D,⊆) such that,

I for all G , T1(G ) ⊆ T2(G )

I T1 is monotonic

I T2 is contracting

Then, T∞1 ⊆ T∞2 .
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This analysis does not work for weak dominance...
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Rationality

Let G = 〈N, {Si}i∈N , {ui}i∈N〉 be a strategic game and
T = 〈{Ti}i∈N , {λi}i∈N , S〉 a type space for G .

For each ti ∈ Ti , we can define a probability measure pti ∈ ∆(S−i ):

pti (s−i ) =
∑

t−i∈T−i

λi (ti )(s−i , t−i )
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Rationality and common belief of rationality (RCBR) in the matrix
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IESDS

2

1

l c r

t 3, 3 1, 1 0, 0

m 1,1 3, 3 1, 0

m 0, 4 0, 0 4, 0

�

2

1

l c

t 3, 3 1, 1

m 1,1 3, 3

b 0, 4 0, 0

�

2

1

l c

t 3, 3 1, 1

m 1,1 3, 3
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1’s types

λ1(t1)

l c r

s1 0.5 0.5 0

s2 0 0 0

s3 0 0 0

λ1(t2)

l c r

s1 0 0.5 0

s2 0 0 0.5

s3 0 0 0
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2’s types

λ2(s1)

t m b

t1 0.5 0.5 0

t2 0 0 0

λ2(s2)

t m b

t1 0.25 0.25 0

t2 0.25 0.25 0

λ2(s3)

t m b

t1 0.5 0 0

t2 0 0 0.5
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2

1

l c r

t 3, 3 1, 1 0, 0

m 1,1 3, 3 1, 0

b 0, 4 0, 0 4, 0

λ2(s1)

t m b

t1 0.5 0.5 0

t2 0 0 0
λ2(s2)

t m b

t1 0.25 0.25 0

t2 0.25 0.25 0

λ2(s3)

t m b

t1 0.5 0 0

t2 0 0 0.5

I l and c are rational for both s1 and s2.
I l is the only rational action for s3.
I Whatever her type, it is never rational to play r for 2.
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I All of 2’s types believe that 1 is rational.
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1

l c r

t 3, 3 1, 1 0, 0

m 1,1 3, 3 1, 0

b 0, 4 0, 0 4, 0
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λ2(s1)

t m b

t1 0.5 0.5 0
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I No further iteration of mutual belief in rationality eliminate some
types or strategies.

I So at all the states in {(t1, s1)} × {t,m} × {l , c} we have rationality
and common belief in rationality.

I But observe that {t,m} × {l , c} is precisely the set of profiles that
survive IESDS.
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RCBR

Let G = 〈N, {Si}i∈N , {ui}i∈N〉 be a strategic game and
T = 〈{Ti}i∈N , {λi}i∈N , S〉 a type space for G .

The set of states (pairs of strategy profiles and type profiles) where
player i chooses rationally is:

Rati := {(si , ti ) | si is a best response to pti}

The event that all players are rational is
Rat = {(s, t) | for all i , (si , ti ) ∈ Rati}.
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RCBR

A type ti ∈ Ti believes an event E−i ⊆ S−i × T−i if λi (ti )(E−i ) = 1; let
Bi (E−i ) = {(si , ti ) | ti believes E−i}.

R1
i = Rati ,

for m ≥ 1, Rm+1
i = Rm

i ∩ Bi (R
m
−i )

RCBRi =
⋂
m≥1

Rm
i and RCBR = Πi∈NRCBRi
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BRS

Let S0
i = Si for all i ∈ N. For m ≥ 0, let Sm+1

i be the set of strategies
that are best replies to conjectures µ−i ∈ ∆Sm

−i . The set S∞i =
⋂

m≥0 S
m
i

is the set of (correlated) rationalizable strategies of Player i .

A set B = Πi∈NBi ⊆ S = Πi∈NSi is a best-reply set (or BRS) if, for all
players i ∈ N, every si ∈ Bi is a best reply to a belief µ−i ∈ ∆B−i . B is
a full BRS if, for every si ∈ Bi , there is a belief µ−i ∈ ∆B−i that
rationalizes si and such that all best replies to µ−i are also in Bi .
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Theorem (Brandenburger and Dekel, Tan and da Costa Werlang) Fix a
game G = 〈N, {Si}i∈N , {ui}i∈N〉.

1. In any type structure 〈{Ti}i∈N , {λi}i∈N ,S〉 for G , projSRCBR is a
full BRS.

2. In any complete type structure 〈{Ti}i∈N , {λi}i∈N ,S〉 for G ,
projSRCBR = S∞.

3. For every full BRS B, there exists a finite type structure
〈{Ti}i∈N , {λi}i∈N ,S〉 for G such that projSRCBR = B.
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2

1

l c r

t 4,4 1,1 0,0

m 1,1 5,5 0,0

d 0,1 0,1 6,0

b

l 1

c 0

r 0

a

t 1

m 0

d 0

The projection of RCBR is {(t, l)}
This is not the entire ISDS set

“Game independent” conditions

A. Friedenberg and J. Kiesler. Iterated Dominance Revisited. Working paper, 2011.
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I The projection of RCBR is {(t, l)}
I This is not the entire ISDS set

I “Game independent” conditions and rich type structures

A. Friedenberg and J. Kiesler. Iterated Dominance Revisited. Working paper, 2011.
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