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KNOWLEDGE, BELIEF AND
COUNTERFACTUAL REASONING IN
GAMES

ROBERT STALNAKER
Massachusetts Institute of Technology

1. INTRODUCTION

Deliberation about what to do in any context requires reasoning about
what will or would happen in various alternative situations, including
situations that the agent knows will never in fact be realized. In contexts
that involve two or more agents who have to take account of each
others’ deliberation, the counterfactual reasoning may become quite
complex. When I deliberate, I have to consider not only what the causal
effects would be of alternative choices that I might make, but also what
other agents might believe about the potential effects of my choices, and
how their alternative possible actions might affect my beliefs. Counter-
factual possibilities are implicit in the models that game theorists and
decision theorists have developed - in the alternative branches in the
trees that model extensive form games and the different cells of the
matrices of strategic form representations — but much of the reasoning
about those possibilities remains in the informal commentary on and
motivation for the models developed. Puzzlement is sometimes ex-
pressed by game theorists about the relevance of what happens in a
game ‘off the equilibrium path”: of what would happen if what is
(according to the theory) both true and known by the players to be true
were instead false. My aim in this paper is to make some suggestions for
clarifying some of the concepts involved in counterfactual reasoning in
strategic contexts, both the reasoning of the rational agents being

I would like to thank Pierpaolo Battigalli, Yannis Delmas, Drew Fudenberg, Philippe
Mongin, Hyun Song Shin, Brian Skyrms, and an anonymous referee for helpful comments
on several earlier versions of this paper.
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134 ROBERT STALNAKER

modeled, and the reasoning of the theorist who is doing the modeling,
and to bring together some ideas and technical tools developed by
philosophers and logicians that I think might be relevant to the analysis
of strategic reasoning, and more generally to the conceptual foundations
of game theory.

There are two different kinds of counterfactual possibilities — causal
and epistemic possibilities — that need to be distinguished. They play
different but interacting roles in a rational agent’s reasoning about what
he and others will and should do, and I think equivocation between
them is responsible for some of the puzzlement about counterfactual
reasoning. In deliberation, I reason both about how the world might
have been different if I or others did different things than we are going
to do, and also about how my beliefs, or others’ beliefs, might change if
I or they learned things that we expect not to learn. To take an often
cited example from the philosophical literature to illustrate the contrast
between these two kinds of counterfactual suppositions, compare: if

Shakespeare didn’t write Hamlet, someone else did, with if Shakespeare hadn't
written Hamlet, someone else would have! The first expresses a quite

reasonable disposition to hold onto the belief that someone wrote
Hamlet should one receive the unexpected information that Shakespeare
did not; the second expresses a causal belief, a belief about objective
dependencies, that would be reasonable only if one held a bizarre theory
according to which authors are incidental instruments in the production
of works that are destined to be written. The content of what is
supposed in the antecedents of these contrasting conditionals is the
same, and both suppositions are or may be counterfactual in the sense
that the person entertaining them believes with probability one that
what is being supposed is false. But it is clear that the way it is being
supposed is quite different in the two cases.

This contrast is obviously relevant to strategic reasoning. Beliefs
about what it is rational to do depend on causal beliefs, including beliefs
about what the causal consequences would be of actions that are
alternatives to the one I am going to choose. But what is rational depends
on what is believed, and I also reason about the way my beliefs and those
of others would change if we received unexpected information. The two
kinds of reasoning interact, since one of the causal effects of a possible
action open to me might be to give unexpected information to another
rational agent.?

It is obvious that a possible course of events may be causally

! Emest Adams (1970) first pointed to the contrast illustrated by this pair of conditionals. The
particular example is Jonathan Bennett’s.

? The relation between causal and evidential reasoning is the central concern in the
development of causal decision theory. See Gibbard and Harper (1981), Skyrms (1982) and
Lewis (1980).
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impossible even if it is epistemically open, as when you have already
committed yourself, but I have not yet learned of your decision. It also
may happen that a course of events is causally open even when it is
epistemically closed in the sense that someone believes, with probability
one, that it will not happen. But can it be true of a causally open course of
events that someone not only believes, but also knows that it will not
occur? This is less clear; it depends on how we understand the concept of
knowledge. It does not seem incoherent to suppose that you know that I
am rational, even though irrational choices are still causally possible for
me. In fact, the concept of rationality seems applicable to actions only
when there are options open to an agent. If we are to make sense of
assumptions of knowledge and common knowledge of rationality, we
need to allow for the possibility that an agent may know what he or
another agent is going to do, even when it remains true that the agent
could have done otherwise.

To clarify the causal and epistemic concepts that interact in
strategic reasoning, it is useful to break them down into their
component parts. If, for example, there is a problem about exactly what
it means to assume that there is common knowledge of rationality, it
ought to be analyzed into problems about exactly what rationality is,
or about what knowledge is, or about how common knowledge is
defined in terms of knowledge. The framework I will use to represent
these concepts is one that is designed to help reveal the compositional
structure of such complex concepts: it is a formal semantic or model
theoretic framework - specifically, the Kripkean ‘possible worlds’
framework for theorizing about modal, causal and epistemic concepts. I
will start by sketching a simple conception of a model, in the model
theorist’s sense, of a strategic form game. Second, I will add to the
simple conception of a model the resources to account for one kind of
counterfactual reasoning, reasoning about belief revision. In these
models we can represent concepts of rationality, belief and common
belief, and so can define the complex concept of common belief in
rationality, and some related complex concepts, in terms of their
component parts. The next step is to consider the concept of knowl-
edge, and the relation between knowledge and belief. I will look at
some different assumptions about knowledge, and at the consequences
of these different assumptions for the concepts of common knowledge
and common knowledge of rationality. Then to illustrate the way some
of the notions I discuss might be applied to clarify some counterfactual
reasoning about games, I will discuss some familiar problems about
backward induction arguments, using the model theory to sharpen the
assumptions of those arguments, and to state and prove some theorems
about the consequences of assumptions about common belief and
knowledge.
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2. MODEL THEORY FOR GAMES

Before sketching the conception of a model of a game that I will be using,
I will set out some assumptions that motivate it, assumptions that I think
will be shared by most, though not all, game theorists. First, I assume that
a game is a partial description of a set or sequence of interdependent
Bayesian decision problems. The description is partial in that while it
specifies all the relevant utilities motivating the agents, it does not give
their degrees of belief. Instead, qualitative constraints are put on what the
agents are assumed to believe about the actions of other agents; but these
constraints will not normally be enough to determine what the agents
believe about each other, or to determine what solutions are prescribed to
the decision problems. Second, I assume that all of the decision problems
in the game are problems of individual decision making. There is no
special concept of rationality for decision making in a situation where the
outcomes depend on the actions of more than one agent. The acts of other

agents are, like chance events, natural disasters and acts of God, just facts
about an uncertain world that agents have beliefs and degrees of belief

about. The utilities of other agents are relevant to an agent only as
information that, together with beliefs about the rationality of those
agents, helps to predict their actions. Third, I assume that in cases where
degrees of belief are undetermined, or only partially determined, by the
description of a decision problem, then no action is prescribed by the
theory unless there is an action that would be rational for every system of
degrees of belief compatible with what is specified. There are no special
rules of rationality telling one what to do in the absence of degrees of
belief, except this: decide what you believe, and then maximize expected
utility.

A mode] for a game is intended to represent a completion of the
partial specification of the set or sequence of Bayesian decision problems
that is given by the definition of the game, as well as a representation of a
particular play of the game. The class of all models for a game will
include all ways of filling in the relevant details that are compatible with
the conditions imposed by the definition of the game. Although a model
is intended to represent one particular playing of the game, a single
model will contain many possible worlds, since we need a representation,
not only of what actually happens in the situation being modeled, but
also what might or would happen in alternative situations that are
compatible with the capacities and beliefs of one or another of the agents.
Along with a set of possible worlds, models will contain various relations
and measures on the set that are intended to determine all the facts about
the possible worlds that may be relevant to the actions of any of the
agents playing the game in a particular concrete context.

The models considered in this paper are models for finite games in
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normal or strategic form. I assume, as usual, that the game I itself consists
of a structure (N,(C;,u;)ien), where N is a finite set of players, C; is a finite
set of alternative strategies for player i, and u; is player i’s utility function
taking a strategy profile (a specification of a strategy for each player) into
a utility value for the outcome that would result from that sequence of
strategies. A model for a game will consist of a set of possible worlds (a
state space), one of which is designated as the actual world of the model.
In each possible world in the model, each player has certain beliefs and
partial beliefs, and each player makes a certain strategy choice. The
possible worlds themselves are simple, primitive elements of the model;
the information about them - what the players believe and do in each
possible world - is represented by several functions and relations given
by a specification of the particular model. Specifically, a model for a game
I’ will consist of a structure (W,a,{(S;,R;,P;)icn), where W is a nonempty set
(the possible worlds), a is a member of W (the actual world), each S; is a
function taking possible worlds into strategy choices for player i, each R;
is a binary relation on W, and each P; is an additive measure function on
subsets of W.

The R relations represent the qualitative structure of the players’
beliefs in the different possible worlds in the following way: the set of
possible worlds that are compatible with what player i believes in world
w is the set {x:wR;x]. It is assumed that the R relations are serial, transitive,
and euclidean.® The first assumption is simply the requirement that in any
possible world there must be at least one possible world compatible with
what any player believes in that world. The other two constraints encode
the assumption that players know their own minds: they are necessary
and sufficient to ensure that players have introspective access to their
beliefs: if they believe something, they believe that they believe it, and if
they do not, they believe that they do not.

The S functions encode the facts about what the players do — what
strategies they choose - in each possible world. It is assumed that if xR;y,
then Si(x)=Si(y). Intuitively, this requirement is the assumption that
players know, at the moment of choice, what they are doing - what
choice they are making. Like the constraints on the structure of the R
relations, this constraint is motivated by the assumption that players have
introspective access to their own states of mind.

The measure function P;, encodes the information about the player’s
partial beliefs in each possible world in the following way: player i's belief
function in possible world w is the relativization of P; to the set {x:wR;x}.
That is, for any proposition ¢, P;w(¢) =Pi(¢n{x:wRix})/Pi({x:wR;x}). The

3 That is, for all players i (x)3y)xRiy, (X)(¥)(2)((xRiy & yRiz) = xR;z), and (x)(y)(z)((xRiy &
xR;z) = yRz).
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assumptions we are making about R; and P; will ensure that P;({x:wRx})
is nonzero for all w, so that this probability will always be defined.

The use of a single measure function for each player, defined on the
whole space of possible worlds, to encode the information required to
define the player’s degrees of belief is just a technical convenience - an
economical way to specify the many different belief functions that
represent that player’s beliefs in different possible worlds. No additional
assumptions about the players’ beliefs are implicit in this form of
representation, since our introspection assumptions already imply that
any two different belief states for a single player are disjoint, and any set
of probability measures on disjoint sets can be represented by a single
measure on the union of all the sets. This single measure will contain
some extraneous information that has no representational significance -
different total measures will determine the same set of belief functions -
but this artifact of the model is harmless.

In order to avoid complications that are not relevant to the conceptual
issues I am interested in, I will be assuming throughout this discussion
that our models are finite, and that the measure functions all assign
nonzero probability to every nonempty subset of possible worlds.

We need to impose one additional constraint on our models, a
constraint that is motivated by our concern with counterfactual reasoning.
A specification of a game puts constraints on the causal consequences of
the actions that may be chosen in the playing of the game, and we want
these constraints to be represented in the models. Specifically, in a
strategic form game, the assumption is that the strategies are chosen
independently, which means that the choices made by one player cannot
influence the beliefs or the actions of the other players. One could express
the assumption by saying that certain counterfactual statements must be
true in the possible worlds in the model: if a player had chosen a different
strategy from the one he in fact chose, the other players would still have
chosen the same strategies, and would have had the same beliefs, that

* It has been suggested that there is a substantive, and implausible, assumption built into the
way that degrees of belief are modeled: namely, that any two worlds in which a player has
the same full beliefs he also has the same partial beliefs. But this assumption is a tautological
consequence of the introspection assumption, which implies that a player fully believes that
he himself has the partial beliefs that he in fact has. It does follow from the introspection
assumptions that player j cannot be uncertain about player i’s partial beliefs while being
certain about all of i's full beliefs. But that is just because the totality of i's full beliefs
includes his beliefs about his own partial beliefs, and by the introspection assumption, i's
beliefs about his own partial beliefs are complete and correct. Nothing, however, prevents
there being a model in which there are different worlds in which player i has full beliefs
about objective facts that are exactly the same, even though the degrees of belief about such
facts are different. This situation will be modeled by disjoint but isomorphic sets of possible
worlds. In such a case, another player j might be certain about player i's full beliefs about
everything except i's own partial beliefs, while being uncertain about i’s partial beliefs.
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they in fact had. The constraint we need to add is a closure condition on
the set of possible worlds - a requirement that there be enough possible
worlds of the right kind to represent these counterfactual possibilities.

For any world w and strategy s for player i, there is a world f(w,s)
meeting the following four conditions:

(1) forallj#i, if wRjx, then f(w,s)R;x.
(2) if wR;x, then f(w,s)Rif(x,s).

) Sif(w,s) =s

(4) Pi(f(w,s)) = Py(w).

Intuitively, f(w,s) represents the counterfactual possible world that, in w,
is the world that would have been realized if player i, believing exactly
what he believes in w about the other players, had chosen strategy s.

Any of the (finite) models constructed for the arguments given in this
paper can be extended to (finite) models satisfying this closure condition.
One simply adds, for each w € W and each strategy profile ¢, a world
corresponding to the pair (w,c), and extending the R’s, P’s, and S’s in a
way that conforms to the four conditions.’

Because of our concern to represent counterfactual reasoning, it is
essential that we allow for the possibility that players have false beliefs in
some possible worlds, which means that a world in which they have
certain beliefs need not itself be compatible with those beliefs. Because the
epistemic structures we have defined allow for false belief, they are more
general than the partition structures that will be more familiar to game
theorists. An equivalence relation meets the three conditions we have
imposed on our R relations, but in addition must be reflexive. To impose
this additional condition would be to assume that all players necessarily
have only true beliefs. But even if an agent in fact has only true beliefs,
counterfactual reasoning requires an agent to consider possible situations
in which some beliefs are false. First, we want to consider belief
contravening, or epistemic counterfactuals: how players would revise
their beliefs were they to learn they were mistaken. Second, we want to
consider deliberation which involves causal counterfactuals: a player
considers what the consequences would be of his doing something he is
not in fact going to do. In both cases, a player must consider possible
situations in which either she or another player has a false belief.

Even though the R relations are not, in general, equivalence relations,
there is a relation definable in terms of R that does determine a partition
5 More precisely, for any given model M = <W,a,<S,R;P;>icn>, not necessarily meeting the

closure condition, define a new model M’ as follows: W' = W x C; a' = <a,5(a)>; for all w €
Wand c € C, S'(<w,c>) =¢; for all x,y € W and ¢,d € C, <x,c>R'i<y,d> if the following three
conditions are met: (i) xRy, (i) ¢; = d;, and (iii) for all j # i, S(y) = d;; P’i(<x,c>) = Pi(x). This
model will be finite if the original one was, and will satisfy the closure condition.
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structure: say that two worlds x and y are subjectively indistinguishable for
player i (x =; y) if player i's belief state in x is the same as it is in y. That
is, x =; y if and only if {zzxR;z} = {z:;yR;z}. Each equivalence class
determined by a subjective indistinguishability relation will be divided
into two parts: the worlds compatible with what the player believes, and
the worlds that are not. In the regular partition models, all worlds are
compatible with what the player believes in the world, and the two
relations, R; and =, will coincide.

To represent counterfactual reasoning, we must also allow for
possible worlds in which players act irrationally. Even if I am resolved to
act rationally, I may consider in deliberation what the consequences
would be of acting in ways that are not. And even if I am certain that you
will act rationally, I may consider how I would revise my beliefs if I
learned that I was wrong about this. Even models satisfying some strong
condition, such as common belief or knowledge that everyone is rational,
will still be models that contain counterfactual possible worlds in which
players have false beliefs, and worlds in which they fail to maximize
expected utility.

The aim of this model theory is generality: to make, in the definition
of a model, as few substantive assumptions as possible about the
epistemic states and behavior of players of a game in order that
substantive assumptions can be made explicit as conditions that distin-
guish some models from others. But of course the definition inevitably
includes a range of idealizing and simplifying assumptions, made for a
variety of reasons. Let me just mention a few of the assumptions that
have been built into the conception of a model, and the reasons for doing
sO.

First, while we allow for irrational action and false belief, we do
assume (as is usual) that players all have coherent beliefs that can be
represented by a probability function on some nonempty space of
possibilities. So in effect, we make the outrageously unrealistic assump-
tion that players are logically omniscient. This assumption is made only
because it is still unclear, either conceptually or technically, how to
understand or represent the epistemic situations of agents that are not
ideal in this sense. This is a serious problem, but not one I will try to
address here.

Second, as I have said, it is assumed that players have introspective
access to their beliefs. This assumption could be relaxed by imposing
weaker conditions on the R relations, although doing so would raise
both technical and conceptual problems. It is not clear how one acts on
one’s beliefs if one does not have introspective access to them. Some
may object to the introspective assumption on the ground that a person
may have unconscious or inarticulate beliefs, but the assumption is not
incompatible with this: if beliefs can be unconscious, so can beliefs
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about beliefs. It is not assumed that one knows how to say what one
believes.

Third, some have questioned the assumption that players know what
they do. This assumption might be relaxed with little effect; what is its
motivation? The idea is simply that in a static model for a strategic form
game, we are modeling the situation at the moment of choice, and it
seems reasonable to assume that at that moment, the agent knows what
choice is being made.

Fourth, it is assumed that players know the structure of the game -
the options available and the utility values of outcomes for all of the
players. This assumption is just a simplifying assumption made to avoid
trying to do too much at once. It could easily be relaxed with minimal
effect on the structure of the models, and without raising conceptual
problems. That is, one could consider models in which different games
were being played in different possible worlds, and in which players
might be uncertain or mistaken about what the game was.

Finally, as noted we assume that models are finite. This is again just a
simplifying assumption. Relaxing it would require some small modifica-
tions and add some mathematical complications, but would not change
the basic story.

In any possible worlds model, one can identify propositions with
subsets of the set of possible worlds, with what economists and
statisticians call ‘events’. The idea is to identify the content of what
someone may think or say with,its truth conditions - that is, with the set
of possible worlds that would realize the conditions that make what is
said or thought true. For any proposition ¢ and player i, we can define
the proposition that i fully believes that ¢ as the set {xeW:(yeW:xR;y}
C ¢}, and the proposition that i believes that ¢ to at least degree r as the
set {xeW:P;,(¢)>r}. So we have the resources to interpret unlimited
iterations of belief in any proposition, and the infinitely iterated concept
of common belief (all players believe that ¢, and all believe that all believe
that ¢, and all believe that all believe that all believe that ¢, and ... etc.)
can be defined as the intersection of all the propositions in this infinite
conjunction. Equivalently, we can represent common belief in terms of
the transitive closure R*, of the set all the R relations. For any proposition
@, it is, in possible world x, common belief among the players that ¢ if
and only if ¢ is true in all possible worlds compatible with common
belief, which is to say if and only if {y:xR*y}C ¢.

If rationality is identified with maximizing expected utility, then we
can define, in any model, the propositions that some particular player is
rational, that all players are rational, that all players believe that all
players are rational, and of course that it is common belief among the
players that all players are rational. Here is a sequence of definitions,
leading to a specification of the proposition that there is common belief
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that all players are rational:® first, the expected utility of an action (a
strategy choice) s for a player i in a world x is defined in the familiar way:

eui,x(s) = Z Pi,z([e]) X ’U,,'((S, e))

eeC_;

Second, we define the set of strategies that maximize expected utility for
player i in world x:

Tix = {s € Ci : euj4(s) > eu;x(s') for all §' € C;}

Third, the proposition that player i is rational is the set of possible worlds in
which the strategy chosen maximizes expected utility in that world:

A= {X eEW: Si(X) € ri,x}
Fourth, the proposition everyone is rational is the intersection of the Aj’s:
A = MienAj

Fifth, the proposition there is common belief that everyone is rational is
defined as follows:

Z={xeW:{ye W:xR'y} C A}.

Any specification that determines a proposition relative to a model
can also be used to pick out a class of models - all the models in which
the proposition is true in that model’s actual world. So for any given
game, we can pick out the class of models of that game that satisfy some
intuitive condition, for example, the class of models in which the
proposition Z, that there is common belief in rationality, is true (in the
actual world of the model). A class of models defined this way in turn
determines a set of strategy profiles for the game: a profile is a member of
the set if and only if it is realized in the actual world of one of the models
in the class of models. This fact gives us a way that is both precise and
intuitively motivated of defining a solution concept for games, or of
giving a proof of adequacy for a solution concept already defined. The
solution concept that has the most transparent semantic motivation of this
kind is rationalizability: we can define rationalizability semantically as
the set of strategies of a game that are realized in (the actual world of)
some model in which there is common belief in rationality.” Or, we can

® In these and other definitions, a variable for a strategy or profile, enclosed in brackets,
denotes the proposition that the strategy or profile is realized. So, for example, if e € C_; (if
e is a strategy profile for players other than player i) then [e] = {x € W:5(x) = ¢; for all j # i}.
7 This model theoretic definition of rationalizability coincides with the standard concept
defined by Bernheim (1984) and Pearce (1984) only in two person games. In the general
case, it coincides with the weaker concept, correlated rationalizability. Model theoretic
conditions appropriate for the stronger definition would require that players’ beliefs about
each other satisfy a constraint that (in games with more than two players) goes beyond
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give a direct nonsemantic definition of the set of strategies — the set of
strategies that survive the iterated elimination of strictly dominated
strategies — and then prove that this set is characterized by the class of
models in which there is common belief in rationality: a set of strategies is
characterized by a class of models if the set includes exactly the strategies
that are realized in some model in the class.®

3. BELIEF REVISION

There are many ways to modify and extend this simple conception of a
model of a game. I will consider here just one embellishment, one that is
relevant to our concern with counterfactual reasoning. This is the addition
of some structure to model the players’ policies for revising their beliefs in
response to new information. We assume, as is usual, that rational players
are disposed to revise their beliefs by conditionalization, but there is
nothing in the models we have defined to say how players would revise
their beliefs if they learned something that had a prior probability of 0 -
something incompatible with the initial state of belief. A belief revision
policy is a way of determining the sets of possible worlds that define the
posterior belief states that would be induced by such information. The
problem is not to generate such belief revision policies out of the models
we already have - that is impossible. Rather, it is to say what new
structure needs to be added to the model in order to represent belief
revision policies, and what formal constraints the policies must obey.

Since we are modeling strategic form games, our models are static,
and so there is no representation of any actual change in what is believed.
But even in a static situation, one might ask how an agent’s beliefs are
disposed to change were he to learn that he was mistaken about
something he believed with probability one, and the answer to this
question may be relevant to his decisions. These dispositions to change
beliefs, in contrast to the potential changes that would display the
dispositions, are a part of the agent’s prior subjective state — the only state
represented in the worlds of our models.

I said at the start that one aim in constructing this model theory was
to clarify, in isolation, the separate concepts that interact with each other

coherence: specifically, it is required that no player can believe that any information about
another player’s strategy choices would be evidentially relevant to the choices of a different
player. I think this constraint could be motivated, in general, only if one confused causal
with evidential reasoning. The structure of the game ensures that players’ strategy choices
are made independently: if player one had chosen differently, it could not have influenced
the choice of player two. But this assumption of causal independence has no consequences
about the evidential relevance of information about player one’s choice for the beliefs that a
third party might rationally have about player two. (Brian Skyrms (1992, pp. 147-8) makes
this point.)
8 This characterization theorem is proved in Stalnaker (1994).
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in strategic contexts, and that are the component parts of the complex
concepts used to describe those contexts. In keeping with this motivation,
I will first look at a pure and simple abstract version of belief revision
theory, for a single agent in a single possible world, ignoring degrees of
belief, and assuming nothing about the subject matter of the beliefs. After
getting clear about the basic structure, I will say how to incorporate it into
our models, with many agents, many possible worlds, and probability
measures on both the prior and posterior belief states. The simple theory
that I will sketch is a standard one that has been formulated in a number
of essentially equivalent ways by different theorists.” Sometimes the
theory is formulated syntactically, with prior and posterior belief states
represented by sets of sentences of some formal language, but I will focus
on a purely model theoretic formulation of the theory in which the
agent’s belief revision policy is represented by a set of possible worlds —
the prior belief state — and a function taking each piece of potential new
information into the conditional belief state that corresponds to the state

that would be induced by receiving that information. Let B be the set
representing the prior state, and let B’ be the set of all the possible worlds

that are compatible with any new information that the agent could
possibly receive. Then if ¢ is any proposition which is a subset of B, B(¢)
will be the set that represents the posterior belief state induced by
information ¢.

There are just four constraints that the standard belief revision theory
imposes on this belief revision function:

(1) For any ¢, B(¢) C ¢
(2) If ¢ is nonempty, then B(¢) is nonempty
(3) If BN¢ is nonempty, then B(¢) = BNg

(4) If B(¢)Ny is nonempty, then B(¢&) = B(¢)

The first condition is simply the requirement that the new information
received is believed in the conditional state. The second is the requirement
that consistent information results in a consistent conditional state. The
third condition requires that belief change be conservative in the sense
that one should not give up any beliefs unless the new information forces
one to give something up: if ¢ is compatible with the prior beliefs, the
conditional belief state will simply add ¢ to the prior beliefs. The fourth
condition is a generalization of the conservative condition. Its effect is to
require that if two pieces of information are received in succession, the

® The earliest formulation, so far as I know, of what has come to be called the AGM belief
revision theory was given by William Harper (1975). For a general survey of the belief
revision theory, see Girdenfors (1988). Other important papers include Alchourén and
Makinson (1982), Alchourén, Girdenfors and Makinson (1985), Grove (1988), Makinson
(1985) and Spohn (1987).
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second being compatible with the posterior state induced by the first,
then the resulting change should be the same as if both pieces of
information were received together.

Any belief revision function meeting these four conditions can be
represented by an ordering of all the possible worlds, and any ordering of
a set of possible worlds will determine a function meeting the four
conditions. Let Q be any binary transitive and connected relation on a set
B'. Then we can define B as the set of highest ranking members of B’, and
for any subset ¢ of B', we can define B(¢) as the set of highest ranking
members of ¢:

B(¢) = {x € ¢ : yQx for all y € ¢}

It is easy to show that this function will satisfy the four conditions. On the
other hand, given any revision function meeting the four conditions, we
can define a binary relation Q in terms of it as follows:

xQy if y € B({x,y}).

It is easy to show, using the four conditions, that Q, defined this way, is
transitive and connected, and that B(¢) = {x€ ¢: yQx for all y€ ¢}. So the
specification of such a Q relation is just an alternative formulation of the
same revision theory.

Now to incorporate this belief revision theory into our models, we
need to give each player such a belief revision policy in each possible
world. This will be accomplished if we add to the model a binary relation
Q for each player. We need just one such relation for each player, if we
take our assumption that players know their own states of mind to apply
to belief revision policies as well as to beliefs themselves. Since the belief
revision policy is a feature of the agent’s subjective state, it is reasonable
to assume that in all possible worlds that are subjectively indistinguish-
able for a player, he has the same belief revision policies.

Subjective indistinguishability (which we defined as follows: x =~; y if
and only if {z:xR;iz} = {z:yR;z}) is an equivalence relation that partitions
the space of all possible worlds for each player, and the player’s belief
revision function will be the same for each world in the equivalence class.
(The equivalence class plays the role of B’ in the simple belief revision
structure.) What we need to add to the game model is a relation Q; for
each player that orders all the worlds within each equivalence class with
respect to epistemic plausibility, with worlds compatible with what the
player believes in the worlds in that class having maximum plausibility.
So Q; must meet the following three conditions:

(q1) x =, y, if and only if xQ;y or yQ;x.
(92) Qi is transitive.
(g3) xRy if and only if wQ,y for all w such that w = x.
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For any proposition ¢, we can define the conditional belief state for player
i in world x, B;(¢) (the posterior belief state that would be induced by
learning ' in terms of Q; as follows:

Bix(¢)={weod: forallye ¢n{z:z=x}, yQiw}.

Once we have added to our models a relation Q; for each player that
meets these three conditions, the R relations become redundant, since
they are definable in terms of Q."! For a more economical formulation of
the theory, we drop the R;’s when we add the Q;’s, taking condition (q1)
as above the new definition of subjective indistinguishability, and
condition (g3) as the definition of R;. Formulated this way, the models are
now defined as follows:

A model is a structure <W,a,<5;,Q; Pi>ien>. W, a, P, and §; are as
before; Each Q; is a binary reflexive transitive relation on W meeting in
addition the following condition: any two worlds that are Q; related (in
either direction) to a third world are Q; related (in at least one direction)
to each other. One can then prove that each R;, defined as above, is serial,
transitive, and euclidean. So our new models incorporate and refine
models of the simpler kind.

To summarize, the new structure we have added to our models
expresses exactly the following two assumptions:

(1) In each possible world each player has a belief revision policy that
conforms to the conditions of the simple AGM belief revision theory
sketched above, where (for player i and world x) the set B is {y:xR;y}, and
the set B'is {y: y =~; x}

10 There is this difference between the conditional belief state B (¢) and the posterior belief
state that would actually result if the agent were in fact to learn that ¢: if he were to learn
that ¢, he would believe that he then believed that ¢, whereas in our static models, there is
no representation of what the agent comes to believe in the different possible worlds at
some later time. But the potential posterior belief states and the conditional belief states as
defined do not differ with respect to any information represented in the model. In
particular, the conditional and posterior belief states do not differ with respect to the
agent’s beliefs about his prior beliefs.

™! The work done by Q is to rank the worlds incompatible with prior beliefs; it does not
distinguish between worlds compatible with prior beliefs - they are ranked together at the
top of the ordering determined by Q. So Q encodes the information about what the prior
beliefs are - that is why R becomes redundant. A model with both Q and R relations
would specify the prior belief sets in two ways. Condition (g3) is the requirement that the
two specifications yield the same results.

Here is a simple abstract example, just to illustrate the structure: suppose there are just
three possible worlds, x y and z, that are subjectively indistinguishable in those worlds to
player i. Suppose {x} is the set of worlds compatible with i’s beliefs in x, y, and z, which is
to say that the R relation is the following set: {<x,x>,<y,x>,<z,x>}. Suppose further that y
has priority over z, which is to say if i were to learn the proposition {y,z}, his posterior or
conditional belief state would be {y}. In other words, the Q relation is the following set:
{<x,x>,<y,X>,<Z,X>,<y,y>,<Z,y>,<Z,2>}.
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(2) In each world, each player has a correct belief about what his own
belief revision policy is.

Each player’s belief revision structure determines a ranking of all
possible worlds with respect to the player’s degree of epistemic success or
failure in that world. In some worlds, the player has only true beliefs; in
others, he makes an error, but not as serious an error as he makes in still
other possible worlds. Suppose I am fifth on a standby waiting list for a
seat on a plane. I learn that there is only one unclaimed seat, and as a
result I feel certain that I will not get on the plane. I believe that the
person at the top of the list will certainly take the seat, and if she does not,
then I am certain that the second in line will take it, and so on. Now
suppose in fact that my beliefs are mistaken: the person at the top of the
list turns the seat down, and the next person takes it. Then my initial
beliefs were in error, but not as seriously as they would be if I were to get
the seat. If number two gets the seat, then I was making a simple first
degree error, while if I get the seat, I was making a fourth degree error.

It will be useful to define, recursively, a sequence of propositions that
distinguish the possible worlds in which a player’s beliefs are in error to
different degrees:

E’; is the proposition that player i has at least some false belief —
makes at least a simple first degree error.

E! = {x € W :for some y such that y = x, not yQix}(= {x € W : not xR;x})
E**is the proposition that player i makes at least a k+1 degree error:
E!‘“ ={x€ E:‘ : for somey € E}‘ such that y =; x, not yQ;x}.

The belief revision structure provides for epistemic distinctions
between propositions that are all believed with probability one. Even
though each of two propositions has maximum degree of belief, one may
be believed more robustly than the other in the sense that the agent is more
disposed to continue believing it in response to new information.
Suppose, to take a fanciful example, there are three presidential
candidates, George, a Republican from Texas, Bill, a Democrat from
Arkansas, and Ross, an independent from Texas. Suppose an agent
believes, with probability one, that George will win. She also believes,
with probability one, that a Texan will win and that a major party
candidate will win, since these follow, given her other beliefs, from the
proposition that George will win. But one of these two weaker beliefs
may be more robust than the other. Suppose the agent is disposed, on
learning that George lost, to conclude that Bill must then be the winner.
In this case, the belief that a major party candidate will win is more
robust than the belief that a Texan will win.

The belief revision structure is purely qualitative, but the measure
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functions that were already a part of the models provide a measure of the
partial beliefs for conditional as well as for prior belief states. The Q
relations, like the R relations, deliver the sets of possible worlds relative to
which degrees of belief are defined. The partial beliefs for conditional
belief state, like those for the prior states, are given by relativizing the
measure function to the relevant set of possible worlds. Just as player i’s
partial beliefs in possible world x are given by relativizing the measure to
the set B;, = {y:xR;y}, so the partial beliefs in the conditional belief state
for player i, world x and condition ¢ is given by relativizing the measure
to the set B; ,(¢) = {y€ ¢: for all z€ ¢ such that z=x, zQ;y}.

So with the help of the belief revision function we can define
conditional probability functions for each player in each world:

Pix(#/%) = Pi(¢ N Bix(¥))/Pi(Bix(¥)

In the case where the condition 1 is compatible with i’s prior beliefs —
where P;,(1) > 0 - this will coincide with conditional probability as
ordinarily defined. (This is ensured by the conservative condition on the
belief revision function.) But this definition extends the conditional
probability functions for. player x in world i to any condition compatible
with the set of worlds that are subjectively indistinguishable for x in i.'?

The belief revision theory, and the extended probability functions
give us the resources to introduce a refinement of the concept of
rationality. Say that an action is perfectly rational if it not only maximizes
expected utility, but also satisfies a tie-breaking procedure that requires
that certain conditional expected utilities be maximized as well. The idea is
that in cases where two or more actions maximize expected utility, the
agent should consider, in choosing between them, how he should act if he
learned he was in error about something. And if two actions are still tied,
the tie-breaking procedure is iterated - the agent considers how he should
act if he learned that he were making an error of a higher degree. Here is
a sequence of definitions leading to a definition of perfect rationality.

'2 These extended probability functions are equivalent to lexicographic probability systems. See
Blume, Brandenburger and Dekel (1991a and 1991b) for an axiomatic treatment of
lexicographic probability in the context of decision theory and game theory. These papers
discuss a concept equivalent to the one defined below that I am calling perfect rationality.

1 don't want to suggest that this is the only way of combining the AGM belief revision
structure with probabilities. For a very different kind of theory, see Mongin (1994). In this
construction, probabilities are nonadditive, and are used to represent the belief revision
structure, rather than to supplement it as in the models I have defined. I don't think the
central result in Mongin (1994) (that the same belief revision structure that I am using is in
a sense equivalent to a nonadditive, and so non-Bayesian, probability conception of prior
belief) conflicts with, or presents a problem for, the way I have defined extended
probability functions: the probability numbers just mean different things in the two
constructions.
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Given the extended conditional probability functions, the definition
of conditional expected utility is straightforward:

euix(s/8) = D Piz(lel/¢) x u((s,€))

e€C_;

Second, we define, recursively, a sequence of sets of strategies that
maximize expected utility, and also satisfy the succession of tie-breaking
rules:

10, = Iix (that is, {s € C; : euix(s) > eu;x(s') for all s' € C;})
it = {s € rf, s eujx(s/E¥*!) > eu(s'/EX) for all ¢’ € 1f,

rf = nrk, for all k such that E* N {y : x =; y} is nonempty.

i,x

The set rf’, is the set of strategies that are perfectly rational for player i in
world x. So the proposition that player i is perfectly rational is defined as
follows:

Af = {xeW:S(x) e,

I want to emphasize that this refinement is defined wholly within
individual decision theory. The belief revision theory that we have
imported into our models is a general, abstract structure, as appropriate
for a single agent facing a decision problem to which the actions of other
agents are irrelevant as it is for a situation in which there are multiple
agents. It is sometimes said that while states with probability 0 are
relevant in game theory, they are irrelevant to individual decision
making,'® but I see no reason to make this distinction. There is as much or
as little reason to take account, in one’s deliberation, of the possibility that
nature may surprise one as there is to take account of the possibility that
one may be fooled by one’s fellow creatures.

Perfect rationality is a concept of individual decision theory, but in
the game model context this concept may be used to give a model
theoretic definition of a refinement of rationalizability. Say that a strategy
of a game I' is perfectly rationalizable if and only if the strategy is played in
some model of I in which the players have common belief that they all
are perfectly rational. As with ordinary correlated rationalizability, one
can use a simple algorithm to pick out the relevant class of strategies, and

'3 For example, Fudenberg and Tirole (1992) make the following remark about the relation
between game theory and decision theory: ‘Games and decisions differ in one key respect:
probability-0 events are both exogenous and irrelevant in decision problems, whereas
what would happen if a player played differently in a game is both important and
endogenously determined’.

To the extent that this is true, it seems to me an accident of the way the contrasting
theories are formulated, and to have no basis in any difference in the phenomena that the
theories are about.



150 ROBERT STALNAKER

prove a characterization theorem that states that the model theoretic and
algorithmic definitions determine the same class of strategies. Here is the
theorem:

Strategies that survive the elimination of all weakly dominated strategies
followed by the iterated elimination of strictly dominated strategies are all and
only those that are realized in a model in which players have common belief that
all are perfectly rational.'*

Before going on to discuss knowledge, let me give two examples of
games to illustrate the concepts of perfect rationality and perfect
rationalizability.

First, consider the following very simple game: Alice can take a dollar
for herself alone, ending the game, or instead leave the decision up to
Bert, who can either decide whether the two players get a dollar each, or
whether neither gets anything. Here is the strategic form for the game:

BERT
t I
0 0
T
1 1
ALICE
1 0
L
1 0

FiGure 1

Both strategies for both players are rationalizable, but only Tt is perfectly
rationalizable. If Alice is certain that Bert will play t, then either of her
strategies would maximize expected utility. But only choice T will ensure
that utility is maximized also on the condition that her belief about Bert’s
choice is mistaken. Similarly, Bert may be certain that Alice won't give
him the chance to choose, but if he has to commit himself to a strategy in
advance, then if he is perfectly rational, he will opt for the choice that
would maximize expected utility if he did get a chance to choose.

' The proof of this theorem, and others stated without proof in this paper, are available from
the author. The argument is a variation of the proof of the characterization theorem for
simple (correlated) rationalizability given in Stalnaker (1994). See Dekel and Fudenberg
(1990) for justification of the same solution concept in terms of different conditions that
involve perturbations of the payoffs.

I originally thought that the set of strategies picked out by this concept of perfect
rationalizability coincided, in the case of two person games, with perfect rationalizability
as defined by Bernheim (1984), but Pierpaolo Battigalli pointed out to me that Bernheim’s
concept is stronger.
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Second, consider the following pure common interest game, where
the only problem is one of coordination. It is also a perfect information
game. One might think that coordination is no problem in a perfect
information game, but this example shows that this is not necessarily
true.

Alice can decide that each player gets two dollars, ending the game,
or can leave the decision to Bert, who may decide that each player get one
dollar, or may give the decision back to Alice. This time, Alice must
decide whether each player gets three dollars, or neither gets anything.
Here is the strategic form for the game:

BERT
t 1
T 2 2
ALICE LT 1 3
LL 1 0

FIGURE 2

Now suppose Bert believes, with probability one, that Alice will choose T;
what should he do? This depends on what he thinks Alice would do on
the hypothesis that his belief about her is mistaken. Suppose that, if he
were to be surprised by Alice choosing L on the first move, he would
conclude that, contrary to what he previously believed, she is irrational,
and is more likely to choose L on her second choice as well. Given these
belief revision policies, only choice t is perfectly rational for him. But why
should Alice choose T? Suppose she is sure that Bert will choose t, which
as we have just seen, is the only perfectly rational choice for him to make
if his beliefs about Alice are as we have described. Then Alice’s only
rational choice is T. So it might be that Alice and Bert both know each
others’ beliefs about each other, and are both perfectly rational, but they
still fail to coordinate on the optimal outcome for both. Of course nothing
in the game requires that Bert and Alice should have these beliefs and
belief revision policies, but the game is compatible with them, and with
the assumption that both Bert and Alice are perfectly rational.

Now one might be inclined to question whether Bert really believes
that Alice is fully rational, since he believes she would choose L on her
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second move, if she got a second move, and this choice, being strictly
dominated, would be irrational. Perhaps if Bert believed that Alice was
actually disposed to choose L on her second move, then he wouldn’t
believe she was fully rational, but it is not suggested that he believes this.
Suppose we divide Alice’s strategy T into two strategies, TT and TL, that
differ only in Alice’s counterfactual dispositions: the two strategies are ‘T,
and I would choose T again on the second move if I were faced with that
choice’, and ‘T, but I would choose L on the second move if I were faced
with that choice’. One might argue that only TT, of these two, could be
fully rational, but we may suppose that Bert believes, with probability
one, that Alice will choose TT, and not TL. But were he to learn that he is
wrong - that she did not choose TT (since she did not choose T on the
first move) he would conclude that she instead chooses LL. To think there
is something incoherent about this combination of beliefs and belief
revision policy is to confuse epistemic with causal counterfactuals — it
would be like thinking that because I believe that if Shakespeare hadn't

written Hamlet, it would have never been written by anyone, 1 must
therefore be disposed to conclude that Hamlet was never written, were I
to learn that Shakespeare was in fact not its author.

4. KNOWLEDGE

As has often been noted, rationalizability is a very weak constraint on
strategy choice, and perfect rationalizability is only slightly more
restrictive. Would it make any difference if we assumed, not just common
belief in rationality, or perfect rationality, but common knowledge as well?
Whether it makes a difference, and what difference it makes, will depend
on how knowledge is analyzed, and on what is assumed about the
relation between knowledge and belief. I will consider a certain analysis
of knowledge with roots in the philosophical literature about the
definition of knowledge, an analysis that can be made precise with the
resources of the belief revision structure that we have built into our
models. But before getting to that analysis, I want to make some general
remarks about the relation between knowledge and belief.

Whatever the details of one’s analysis of knowledge and belief, it is
clear that the central difference between the two concepts is that the first,
unlike the second, can apply only when the agent is in fact correct in what
he believes: the claim that i knows that ¢, in contrast with the claim that i
believes that ¢, entails that ¢ is true. Everyone knows that knowledge is
different from belief - even from the extreme of belief, probability one - in
this way, but sometimes it is suggested that this difference does not
matter for the purposes of decision theory, since the rationality of a
decision is independent of whether the beliefs on which it is based are in
fact correct. It is expected utility, not the value of the actual payoff that I
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receive in the end, that is relevant to the explanation and evaluation of
my actions, and expected utility cannot be influenced by facts about the
actual world that do not affect my beliefs. But as soon as we start looking
at one person’s beliefs and knowledge about another’s beliefs and
knowledge, the difference between the two notions begins to matter. The
assumption that Alice believes (with probability one) that Bert believes
(with probability one) that the cat ate the canary tells us nothing about
what Alice believes about the cat and the canary themselves. But if we
assume instead that Alice knows that Bert knows that the cat ate the
canary, it follows, not only that the cat in fact ate the canary, but that
Alice knows it, and therefore believes it as well.

Since knowledge and belief have different properties, a concept that
conflates them will have properties that are appropriate for neither of the
two concepts taken separately. Because belief is a subjective concept, it is
reasonable to assume, as we have, that agents have introspective access to
what they believe, and to what they do not believe. But if we switch from
belief to knowledge, an external condition on the cognitive state is
imposed, and because of this the assumption of introspective access is no
longer tenable, even for logically omniscient perfect reasoners whose
mental states are accessible to them. Suppose Alice believes, with
complete conviction and with good reason that the cat ate the canary, but
is, through no fault of her own, factually mistaken. She believes, let us
suppose, that she knows that the cat ate the canary, but her belief that she
knows it cannot be correct. Obviously, no amount of introspection into
the state of her own mind will reveal to her the fact that she lacks this
knowledge. If we conflate knowledge and belief, assuming in general that
i knows that ¢ if and only if i’s degree of belief for ¢ is one, then we get a
concept that combines the introspective properties appropriate only to the
internal, subjective concept of belief with the success properties appro-
priate only to an external concept that makes claims about the objective
world. The result is a concept of knowledge that rests on equivocation.

The result of this equivocation is a concept of knowledge with the
familiar partition structure, the structure often assumed in discussions by
economists and theoretical computer scientists about common knowl-
edge, and this simple and elegant structure has led to many interesting
results.’® But the assumption that knowledge and common knowledge
have this structure is the assumption that there can be no such thing as
false belief, that while ignorance is possible, error is not. And since there

13> Most notably, Robert Aumann’s important and influential result on the impossibility of
agreeing to disagree, and subsequent variations on it all depend on the partition structure,
which requires the identification of knowledge with belief. See Aumann (1976) and
Bacharach (1985). The initial result is striking, but perhaps slightly less striking when one
recognizes that the assumption that there is no disagreement is implicitly a premise of the

argument.
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is no false belief, there can be no disagreement, no surprises, and no
coherent counterfactual reasoning.'®

It is sometimes suggested that if one were to analyze knowledge
simply as true belief, then the result would be a concept of knowledge
with this partition structure, but this is not correct. The conjunctive
concept, true belief, will never determine a partition structure unless it is
assumed that it is necessary that all beliefs are true, in which case the
conjunctive concept would be redundant. For suppose there might be a
false belief — that it might be that some person i believed that ¢, but was
mistaken. Then it is false that i truly believes that ¢, and so if true belief
satisfied the conditions of the partition structure, it would follows that i
truly believes that he does not truly believe that ¢, from which (since he
believes ¢) he could infer that ¢ is false. The point is that to assume
negative introspection for true belief is to assume that a believer can
distinguish, introspectively, her true beliefs from her false beliefs, which
implies (at least if she is consistent) that she won’t have any false beliefs.

While it can never be reasonable to equate knowledge and belief in
general, we can specify the contingent conditions under which knowledge

and belief will coincide. If we assume about a particular situation that as a
matter of fact, a person has no false beliefs, then (and only then) can we
conclude that in that situation, knowledge and belief coincide. To get this
conclusion, we need to make no assumptions about knowledge beyond
the minimal one that knowledge implies true belief. The assumption we
need to make is that full belief is a state that is subjectively indistinguish-
able from knowledge: that fully believing that ¢ is the same as fully
believing that one knows that ¢.

If we make the idealizing assumption about a particular game
situation being modeled that no one has any false beliefs, and that it is
common belief that no one has any false beliefs, then we can have the
benefits of the identification of knowledge and belief without the
pernicious consequences that come from equivocating between them.
What we cannot and need not assume is that it is a necessary truth - true
in all possible worlds in the model - that no one has any false beliefs.
Even if players actually have only true beliefs, there will inevitably be
counterfactual possible worlds in the model in which players have false
beliefs. These counterfactual possible worlds must be there to represent

16 If one were to add to the models we have defined the assumption that the R relation is
reflexive, and so (given the other assumptions) is an equivalence relation, the result would
be that the three relations, R;, Q;, and =;, would all collapse into one. There would be no
room for belief revision, since it would be assumed that no one had a belief that could be
revised. Intuitively, the assumption would be that it is a necessary truth that all players are
Cartesian skeptics: they have no probability-one beliefs about anything except necessary
truths and facts about their own states of mind. This assumption is not compatible with
belief that another player is rational, unless it is assumed that it is a necessary truth that
the player is rational.
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the causal possibilities that define the structure of the game, and to
represent the belief revision policies of the players. If we assumed that it
was a necessary truth that there was no false belief, then it would be
impossible for one player to believe that a second player was rational in
any model for any game in which irrational options are available to the
second player.

In terms of this idealizing assumption about knowledge and belief,
we can define a refinement of rationalizability, which I have called strong
rationalizability. Here is the model theoretic definition: for any game I a
strategy profile is strongly rationalizable if and only if it is realized in a
model in which there is no error, common belief that all players are
rational, and common belief that there is no error. The set of strategy
profiles characterized by this condition can also be given an algorithmic
definition, using an iterated elimination procedure intermediate between
the elimination of strictly dominated and of weakly dominated strate-
gies.”” We can also define a further refinement, strong perfect rationaliz-
ability: just substitute ‘perfect rationality’ for ‘rationality’ in the condition
defining strong rationalizability. A minor variation of the algorithm will
pick out the set of strategy profiles characterized by these conditions.

Knowledge and belief coincide on this demanding idealization, but
suppose we want to consider the more general case in which a person
may know some things about the world, even while being mistaken
about others. How should knowledge be analyzed? The conception of
knowledge that I will propose for consideration is a simple version of
what has been called, in the philosophical literature about the analysis of
knowledge, the defeasibility analysis. The intuitive idea behind this account
is that ‘if a person has knowledge, then that person’s justification must be
sufficiently strong that it is not capable of being defeated by evidence that
he does not possess’ (Pappas and Swain, 1978). According to this idea, if
evidence that is unavailable to you would give you reason to give up a
belief that you have, then your belief rests in part on your ignorance of
that evidence, and so even if that belief is true, it will not count as
knowledge.

We can make this idea precise by exploiting the belief revision
structure sketched above, and the notion of robustness that allowed us to
make epistemic distinctions between propositions believed with prob-
ability one. The analysis is simple: i knows that ¢ if and only if i believes
that ¢ (with probability one), and that belief is robust with respect to the truth.
That is, i knows that ¢ in a possible world x if and only if ¢ receives
probability one from i in x, and also receives probability one in every
conditional belief state for which the condition is true in x. More precisely,
17 The algorithm, which eliminates iteratively profiles rather than strategies, is given in

Stalnaker (1994), and it is also proved there that the set of strategies picked out by this
algorithm is characterized by the class of models meeting the model theoretic condition.
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the proposition that i knows that ¢ is the set {x € W: for all 9 such that
X € ¥, Bix(¥) € ¢}.

Let me illustrate the idea with the example discussed above of the
presidential candidates. Recall that there are three candidates, George,
Bill and Ross, and that the subject believes, with probability one, that
George will win. As a result she also believes with probability one that a
Texan will win, and that a major party candidate will win. But the belief
that a major party candidate will win is more robust than the belief that a
Texan will win, since our subject is disposed, should she learn that
George did not win, to infer that the winner was Bill. Now suppose, to
everyone’s surprise, Ross wins. Then even though our subject’s belief that
a Texan would win turned out to be true, it does not seem reasonable to
say that she knew that a Texan would win, since she was right only by
luck. Had she known more (that George would lose), then that informa-
tion would have undercut her belief. On the other hand, if Bill turns out
to be the winner, then it would not be unreasonable to say that she knew
that a major party candidate would win, since in this case her belief did
not depend on her belief that it was George rather than Bill that would
win.

The defeasibility conception of knowledge can be given a much
simpler definition in terms of the belief revision structure. It can be shown
that the definition given above is equivalent to the following: the
proposition i knows that ¢ is the set {x: {y:xQ;y} C ¢}. This exactly parallels
the definition of the proposition that i believes that ¢: {x: {y:xR;y} C ¢}. On
the defeasibility analysis, the relations that define the belief revision
structure are exactly the same as the relanons of epistemic accessibility in
the standard semantics for epistemic logic.'"® And common knowledge
(the infinite conjunction, everyone knows that ¢, everyone knows that
everyone knows that ¢, ...) exactly parallels common belief: the proposi-
tion there is common knowledge that ¢ is {x:{y:xQ*y} C ¢}, where Q* is the
transitive closure of the Q; relations.

The defeasibility analysis provides us with two new model theoretic
conditions that can be used to define solution concepts: first, the condition
that there is common knowledge of rationality; second, the condition that
there is common knowledge of perfect rationality. The conditions are
stronger (respectively) than the conditions we have used to characterize
rationalizability and perfect rationalizability, but weaker than the condi-
tions that characterize the concepts I have called strong rationalizability
and strong perfect rationalizability. That is, the class of models in which
there is common belief in (perfect) rationality properly includes the class

'8 The modal logic for the knowledge operators in a language that was interpreted relative to
this semantic structure would be S$4.3. This is the logic characterized by the class of Kripke
models in which the accessibility relation is transitive, reflexive, and weakly connected (if
xQy and xQ;z, then either yQ;z or zQyy). The logic of common knowledge would be 54.
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in which there is common knowledge, in the defeasibility sense, of
(perfect) rationality, which in turn properly includes the class in which
there is no error, common belief that there is no error, and common belief
in (perfect) rationality. So the defeasibility analysis gives us two
distinctive model theoretic solution concepts, but surprisingly, the sets of
strategy profiles characterized by these new model theoretic conditions
are the same as those characterized, in one case, by the weaker condition,
and in the other case by the stronger condition. That is, the following two
claims are theorems:

(1) Any strategy realized in a model in which there is common belief in
(simple) rationality is also realized in a model in which there is common
knowledge (in the defeasibility sense) of rationality.

(2) Any strategy profile realized in a model in which there is common
knowledge of perfect rationality is also realized in a model meeting in addition
the stronger condition that there is common belief that no one has a false belief. '

5. BACKWARD INDUCTION

To illustrate how some of this apparatus might be deployed to help
clarify the role in strategic arguments of assumptions about knowledge,
belief and counterfactual reasoning, I will conclude by looking at a
puzzle about backward induction reasoning, focusing on one notorious
example: the finite iterated prisoners’ dilemma. The backward induction
argument purports to show that if there is common belief, or perhaps
common knowledge, that both players are rational, then both players
will defect every time, from the beginning. Obviously rational players
will defect on the last move, and since they know this on the next to
last move, they will defect then as well, and so on back through the
game. This kind of argument is widely thought to be paradoxical, but
there is little agreement about what the paradox consists in. Some say
that the argument is fallacious, others that it shows an incoherence in
the assumption of common knowledge of rationality, and still others
that it reveals a self-referential paradox akin to semantic paradoxes such
as the liar. The model theoretic apparatus we have been discussing
gives us the resources to make precise the theses that alternative
versions of the argument purport to prove, and to assess the validity of
the arguments. Some versions are clearly fallacious, but others, as I will
show, are valid.

The intuitive backward induction argument applies directly to games
in extensive form, whereas our game models are models of static strategic

'% Each theorem claims that any strategy that is realized in a model of one kind is also
realized in a model that meets more restrictive conditions. In each case the proof is given
by showing how to modify a model meeting the weaker conditions so that it also meets
the more restrictive conditions.
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form games.?® But any extensive form game has a unique strategic form,
and proofs based on the idea of the intuitive backward induction
argument can be used to establish claims about the strategic form of the
game. A backward induction argument is best seen as an argument by
mathematical induction about a class of games that is closed with respect
to the subgame relation — in the case at hand, the class of iterated
prisoners’ dilemmas of length n for any natural number n.

The conclusions of the backward induction arguments are conditional
theses: if certain conditions obtain, then players will choose strategies that
result in defection every time. The conditions assumed will correspond to
the constraints on models that we have used to characterize various
solution concepts, so the theses in question will be claims that only
strategy profiles that result in defection every time will satisfy the
conditions defining some solution concept. If, for example, the conditions
are that there is common belief in rationality, then the thesis would be
that only strategies that result in defection every time are rationalizable. It
is clear that a backward induction argument for this thesis must be
fallacious since many cooperative strategies are rationalizable. Philip
Pettit and Robert Sugden (1989) have given a nice diagnosis of the fallacy
in this version of the argument. But what if we make the stronger
assumption that there is common knowledge of rationality, or of perfect
rationality? Suppose, first, that we make the idealizing assumption
necessary for identifying knowledge with belief: that there is no error and
common belief that there is no error, and common belief that both players
are rational. Are all strongly rationalizable strategy pairs in the iterated
prisoners’ dilemma pairs that result in defection every time? In this case
the answer is positive, and the theorem that states this conclusion is
proved by a backward induction argument.

To prove this backward induction theorem, we must first prove a
lemma that is a general claim about multi-stage games - a class of games
that includes iterated games. First, some notation and terminology: let T’
be any game that can be represented as a multi-stage game with observed
action (a game that can be divided into stages where at each stage all
players move simultaneously, and all players know the result of all
previous moves). Let I'* be any subgame - any game that begins at the
start of some later stage of I'. For any strategy profile ¢ of I' that

% Although in this paper we have considered only static games, it is a straightforward
matter to enrich the models by adding a temporal dimension to the possible worlds,
assuming that players have belief states and perform actions at different times, actually
revising their beliefs in the course of the playing of the game in accordance with a belief
revision policy of the kind we have supposed. Questions about the relationship between
the normal and extensive forms of games, and about the relations between different
extensive-form games with the same normal form can be made precise in the model
theory, and answered.
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determines a path through the subgame I'*, let ¢* be the profile for I'* that
is determined by ¢, and let C* be the set of all strategy profiles of I that
determine a path through I'*. By ‘an SR model’, I will mean a model in
which there is (in the actual world of the model) no error, common belief
that there is no error, and common belief that all players are rational.
Now we can state the multi-stage game lemma:

If profile c is strongly rationalizable in T, and if ¢ determines a path through I'*,
then c* is strongly rationalizable in I'*.

This is proved by constructing a model for I'* in terms of a model for
I', and showing that if the original model is an SR model, so is the new
one. Let M be any SR model for I in which c is played in the actual world
of the model. Let I'* be any subgame that contains the path determined
by c. We define a model M* for T'* in terms of M as follows: W* =
{x € W:S(x) € C*}. The Q;*'s and P;*'s are simply the restrictions of the Q;’s
and P;’s to W*. The S;*’s are defined so that for each x e W¥, S*(x) is the
profile for the game I'* that is determined by the profile S(x). (That is, if
S(x)=e, then S*(x) = e*)

To see that M* is an SR model for I'¥, note first that if there is no error
and common belief that there is no error in the original model, then this
will also hold for the model of the subgame: if {x:aR*x} C {x:xR;x for all i},
then {x:aR™x} C {x:xRi*x for all i}. This is clear, since {x:aR**x} C
{x:aR*x}NW¥ and {x:xR*x for all i} = {x:xRix for all ijnW?". Second,
because of the fact that players know all previous moves at the beginning
of each stage, they can make their strategy choices conditional on whether
a subgame is reached. (More precisely, for any player i and pair of
strategies s and s’ for i, that are compatible with r* being reached, there is
a strategy equivalent to this: s if ' is reached, s’ if not.) This implies that
for any world w, player i and subgame such that it is compatible with i’s
beliefs that that subgame be reached, a strategy will be rational for i only
if the strategy determined for the subgame is rational, conditional on the

hypothesis that the subgame is reached. This ensures that rationality is
preserved in all worlds when the model is modified. So c¢* is strongly

rationalizable in I'*.

An analogous result about strong perfect rationalizability can be
shown by essentially the same argument.

One further observation before turning to the backward induction
theorem itself: for any game T, if profile c is compatible with common
belief in (the actual world of) an SR model for I, then c itself is strongly
rationalizable. It is obvious that if S(x) =c and aR*x, then the same model,
with x rather than a as the actual world will be an SR model if the original
model was.

Now the backward induction theorem:

Any strongly rationalizable strategy profile in a finite iterated prisoners’
dilemma is one in which both players defect every time.
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The proof is by induction on the size of the game. For the base case -
the one shot PD - it is obvious that the theorem holds, since only
defection is rational. Now assume that the theorem holds for games of
length k. Let I be a game of length k+1, and I'" be the corresponding
iterated PD of length k. Let M be any SR model of T, and let c be any
strategy profile that is compatible with common belief (that is, ¢ is any
profile for which there exists an x such that 5(x)=c, and aR*x)). By the
observation just made, c is strongly rationalizable, so by the multi-stage
game lemma, ¢~ (the profile for ' determined by c) is strongly
rationalizable in I'". But then by hypothesis of induction, ¢~ is a profile in
which both players defect every time. So ¢ (in game I') is a profile in
which both players defect every time after the first move. But c is any
profile compatible with common belief in the actual world of the model,
so it follows that in the model M, it is common belief that both players
will choose strategies that result in defection every time after the first
move. Given these beliefs, any strategy for either player that begins with

the cooperative move is strictly dominated, relative to that player’s
beliefs. So since the players are both rational, it follows that they choose a

strategy that begins with defection, and so one that results in defection on
every move.

Our theorem could obviously be generalized to cover some other
games that have been prominent in discussions of backward induction
such as the centipede game and (for strong perfect rationalizability) the
chain store game. But it is not true, even in perfect information games,
that the strong or strong and perfect rationalizability conditions are
always sufficient to support backward induction reasoning. Recall the
perfect information, pure coordination game discussed above in which
Alice and Bert failed to coordinate on the backward induction equili-
brium, even though the conditions for strong perfect rationalizability
were satisfied. In that example, the strategy profile played was a perfect,
but not subgame perfect, equilibrium. One can show in general that in
perfect information games, all and only Nash equilibrium strategy
profiles are strongly rationalizable (see Stalnaker (1994) for the proof).

As I noted at the end of the last section, it can be shown that the set of
strongly and perfectly rationalizable strategy profiles is characterized also
by the class of models in which there is common knowledge (in the
defeasibility sense) of perfect rationality. So we can drop the strong
idealizing assumption that there is no error, and still get the conclusion
that if there is common knowledge (in the defeasibility sense) of perfect
rationality, then players will choose strategies that result in defection
every time.

Pettit and Sugden, in their discussion of the paradox of backward
induction, grant that the argument is valid when it is common knowledge
rather than common belief that is assumed (though they don’t say why
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they think this, or what they are assuming about knowledge). But they
suggest that there is nothing surprising or paradoxical about this, since
the assumption of common knowledge of rationality is incompatible with
the possibility of rational deliberation, and so is too strong to be
interesting. Since knowledge logically implies truth, they argue, the
argument shows that ‘as a matter of logical necessity, both players must
defect and presumably therefore that they know they must defect’ (Pettit
and Sugden, 1989). But I think this remark rests on a confusion of
epistemic with causal possibilities. There is no reason why I cannot both
know that something is true, and also entertain the counterfactual
possibility that it is false. It is of course inconsistent to suppose, counter-
factually or otherwise, the conjunction of the claim that ¢ is false with the
claim that I know that ¢ is true, but it is not inconsistent for me, knowing
(in the actual world) that ¢ is true, to suppose, counterfactually, that ¢ is
false. As Pettit and Sugden say, the connection between knowledge and
truth is a matter of logical necessity, but that does not mean that if I know
that I will defect, I therefore must defect, ‘as a matter of logical necessity’.
One might as well argue that lifelong bachelors are powerless to marry,
since it is a matter of logical necessity that lifelong bachelors never marry.

The semantic connection between knowledge and truth is not, in any
case, what is doing the work in this version of the backward induction
argument: it is rather the assumption that the players believe in common
that neither of them is in error about anything. We could drop the
assumption that the players beliefs are all actually true, assuming not
common knowledge of rationality, but only common belief in rationality
and common belief that no one is in error about anything. This will
suffice to validate the induction argument.

Notice that the common belief that there will not, in fact, be any
surprises, does not imply the belief that there couldn’t be any surprises.
Alice might think as follows: ‘Bert expects me to defect, and I will defect,
but I could cooperate, and if I did, he would be surprised. Furthermore, I
expect him to defect, but he could cooperate, and if he did, I would be
surprised’. If these ‘could’s were epistemic or subjective, expressing
uncertainty, then this soliloquy would make no sense, but it is unproble-
matic if they are counterfactual ‘could’s used to express Alice’s beliefs
about her and Bert’s capacities. A rational person may know that she will
not exercise certain of her options, since she may believe that it is not in
her interest to do so.

It is neither legitimate nor required for the success of the backward
induction argument to draw conclusions about what the players would
believe or do under counterfactual conditions. In fact, consider the
following ‘tat for tit’ strategy: defect on the first move, then on all
subsequent moves, do what the other player did on the previous move,
until the last move; defect unconditionally on the last move. Our
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backward induction argument does not exclude the possibility that the
players should each adopt, in the actual world, this strategy, since this
pair of strategies results in defection every time. This pair is indeed
compatible with the conditions for strong and perfect rationalizability. Of
course unless each player assigned a very low probability to the
hypothesis that this was the other player’s strategy, it would not be
rational for him to adopt it, but he need not rule it out. Thus Pettit and
Sugden are wrong when they say that the backward induction argument
can work only if it is assumed that each player would maintain the beliefs
necessary for common belief in rationality ‘regardless of what the other
does’ (Pettit and Sugden, 1989, p. 178). All that is required is the belief
that the beliefs necessary for common knowledge of rationality will, in
fact, be maintained, given what the players in fact plan to do. And this
requirement need not be assumed: it is a consequence of what is assumed.

6. CONCLUSION

The aim in constructing this model theory was to get a framework in
which to sharpen and clarify the concepts used both by rational agents in
their deliberative and strategic reasoning and by theorists in their
attempts to describe, predict and explain the behavior of such agents. The
intention was, first, to get a framework that is rich in expressive resources,
but weak in the claims that are presupposed or implicit in the theory, so
that various hypotheses about the epistemic states and behavior of agents
can be stated clearly and compared. Second, the intention was to have a
framework in which concepts can be analyzed into their basic compo-
nents, which can then be considered and clarified in isolation before being
combined with each other. We want to be able to consider, for example,
the logic of belief, individual utility maximization, belief revision, and
causal-counterfactual structure separately, and then put them together to
see how the separate components interact. The framework is designed to
be extended, both by considering further specific substantive assump-
tions, for example, about the beliefs and belief revision policies of players,
and by adding to the descriptive resources of the model theory additional
structure that might be relevant to strategic reasoning or its evaluation,
for example temporal structure for the representation of dynamic games,
and resources for more explicit representation of counterfactual proposi-
tions. To illustrate some of the fruits of this approach we have stated
some theorems that provide model theoretic characterizations of some
solution concepts, and have looked closely at one familiar form of
reasoning - backward induction - and at some conditions that are
sufficient to validate this form of reasoning in certain games, and at
conditions that are not sufficient. The focus has been on the concepts
involved in two kinds of counterfactual reasoning whose interaction is
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essential to deliberation in strategic contexts, and to the evaluation of the
decisions that result from such deliberation: reasoning about what the
consequences would be of actions that are alternatives to the action
chosen, and reasoning about how one would revise one’s beliefs if one
were to receive information that one expects not to receive. We can get
clear about why people do what they do, and about what they ought to
do, only by getting clear about the relevance of what they could have
done, and might have learned, but did not.
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