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Abstract: In this paper we want to shed some light on what we mean by backward induction
and forward induction reasoning in dynamic games. To that purpose, we take the concepts of
common belief in future rationality (Perea [1]) and extensive form rationalizability (Pearce
[2], Battigalli [3], Battigalli and Siniscalchi [4]) as possible representatives for backward
induction and forward induction reasoning. We compare both concepts on a conceptual,
epistemic and an algorithm level, thereby highlighting some of the crucial differences
between backward and forward induction reasoning in dynamic games.

Keywords: epistemic game theory; backward induction; forward induction; algorithms

1. Introduction

The ideas of backward induction and forward induction play a prominent role in the literature on
dynamic games. Often, terms like backward and forward induction reasoning, and backward and forward
induction concepts, are used to describe a particular pattern of reasoning in such games. But what exactly
do we mean by backward induction and forward induction?

The literature offers no precise answer here. Only for the class of dynamic games with perfect
information there is a clear definition of backward induction (based on Zermelo [5]), but otherwise
there is no consensus on how to precisely formalize backward and forward induction. In fact, various
authors have presented their own, personal interpretation of these two ideas. Despite this variety, there
seems to be a common message in the authors’ definitions of backward and forward induction, which
can be described as follows:
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Backward induction represents a pattern of reasoning in which a player, at every stage of the
game, only reasons about the opponents’ future behavior and beliefs, and not about choices
that have been made in the past. So, he takes the opponents’ past choices for granted, but
does not draw any new conclusions from these.

In contrast, forward induction requires a player, at every stage, to think critically about the
observed past choices by his opponents. He should always try to find a plausible reason
for why his opponents have made precisely these choices in the past, and he should use
this to possibly reconsider his belief about the opponents’ future, present, and unobserved
past choices.

In order to illustrate these two ideas, let us consider the game in Figure 1. So, at the beginning of
the game, ∅, player 1 chooses between a and b. If he chooses b, the game ends and the players’ utilities
are 3 and 0. If he chooses a, the game moves to information set h1 where players 1 and 2 simultaneously
choose from {c, d} and {e, f, g} respectively.

Figure 1. Backwards induction and forward induction may lead to opposite choices.
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If player 1 believes that player 2 chooses rationally, then he anticipates that player 2 will not choose
g, and will therefore choose b at the beginning. But suppose now that the game actually reaches h1, and
that player 2 must make a choice there. What should player 2 believe or do at h1?

According to backward induction, player 2 should at h1 only reason about player 1’s behavior and
beliefs at h1, and take his past choice a for granted. In that case, it is reasonable for player 2 to believe
that player 1 still believes that player 2 will not choose g. Hence, player 2 will expect player 1 to choose
c at h1, and player 2 would thus go for strategy e.

According to forward induction, player 2 should at h1 try to make sense of player 1’s past choice a.
So, what reason could player 1 have to choose a, and not b, at the beginning? The only plausible reason
could be that player 1 actually believed that player 2, with sufficiently high probability, would choose g.
But if that were the case, then player 2 must conclude at h1 that player 1 will choose d there, since that
is his only chance to obtain more than 3. So, player 2 should then go for f, and not e.

So we see that backward and forward induction lead to opposite choices for player 2 in this game:
backward induction leads to e, whereas forward induction leads to f. The crucial difference between the
two ideas is that under backward induction, player 2 should at h1 not draw any new conclusions from
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player 1’s past choice a. Under forward induction, player 2 should at h1 use player 1’s past choice a
to form a new belief about player 1, namely that he believes that player 2 will (with sufficiently high
probability) go for g.

Up to this stage we have only given some very broad, and rather unprecise, descriptions of backward
and forward induction. Sometimes such descriptions are enough to analyze a game, like the one in
Figure 1, but for other games it may be necessary to have a precise description of these two ideas, or to
have them incorporated formally in some concept.

The literature actually offers a broad spectrum of formal concepts—most of these being equilibrium
concepts—that incorporate the ideas of backward and forward induction. Historically, the equilibrium
concept of sequential equilibrium (Kreps and Wilson [6]) is regarded as an important backward induction
concept. Its main condition, sequential rationality, states that a player, at every stage, should believe that
his opponents will make optimal choices at present and future information sets, given their beliefs there.
No strategic conditions are imposed on beliefs about the opponents’ past behavior. As such, sequential
equilibrium only requires a player to reason about his opponents’ future behavior, and may therefore be
seen as a backward induction concept.

A problem with this concept, however, is that it incorporates an equilibrium condition which is
hard to justify if the game is only played once, especially when there is no communication between
the players before the game starts (see Bernheim [7] for a similar critique to Nash equilibrium). The
equilibrium condition entails that a player believes that his opponents are correct about his own beliefs,
and that he believes that two different players share the same belief about an opponent’s future behavior.
Aumann and Brandenburger [8], Asheim [9] and Perea [10] discuss similar conditions that lead to Nash
equilibrium. Another drawback of the sequential equilibrium concept—and this is partially due to the
equilibrium condition—is that the backward induction reasoning is somewhat hidden in the definition of
sequential equilibrium, and not explicitly formulated as such.

In contrast, a backward induction concept that does not impose such equilibrium conditions, and
which is very explicit about the backward induction reasoning being used, is common belief in future
rationality (Perea [1]). It is a belief-based concept which states that a player should always believe
that his opponents will choose rationally now and in the future, that a player always believes that
every opponent always believes that his opponents will choose rationally now and in the future, and
so on. No other conditions are imposed. The concept is closely related to sequential rationalizability
(Dekel, Fudenberg and Levine [11,12] and Asheim and Perea [13]) and to backwards rationalizability
(Penta [14]). (See Perea [1] for more details on this). Moreover, sequential equilibrium constitutes a
refinement of common belief in future rationality, the main difference being the equilibrium condition
that sequential equilibrium additionally imposes. In a sense, common belief in future rationality can
be regarded as a backward induction concept that is similar to, but more basic and transparent than,
sequential equilibrium. It can therefore serve as a basic representative of the idea of backward induction
in general dynamic games, and we will use it as such in this paper.

Let us now turn to forward induction reasoning. In the 1980’s and 1990’s, forward induction has
traditionally be modeled by equilibrium refinements. Some of these have been formulated as refinements
of sequential equilibrium, by restricting the players’ beliefs about the opponents’ past behavior as
well. Examples are justifiable sequential equilibrium (McLennan [15]), forward induction equilibrium
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(Cho [16]) and stable sets of beliefs (Hillas [17]) for general dynamic games, and the intuitive criterion
(Cho and Kreps [18]) and its various refinements for signaling games. By doing so, these authors have
actually been incorporating a forward induction argument inside a backward induction concept, namely
sequential equilibrium. So in a sense we are combining backward induction and forward induction in one
and the same concept, and the result is a concept which does not purely represent the idea of backward
induction nor forward induction.

As a consequence, these forward induction refinements of sequential equilibrium may fail to
select intuitive forward induction strategies in certain games. Reconsider, for instance, the game in
Figure 1. We have seen above that a natural forward induction argument uniquely selects strategy f for
player 2. However, any forward induction refinement of sequential equilibrium necessarily selects only
e for player 2. The reason is that e is the only sequential equilibrium strategy for player 2, so refining the
sequential equilibrium concept will not be of any help here.

There are other forward induction equilibrium concepts that are not refinements of sequential
equilibrium. Examples are stable sets of equilibria (Kohlberg and Mertens [19]), explicable equilibrium
(Reny [20]) and Govindan and Wilson’s [21] definition of forward induction—the latter two concepts
being refinements of weak sequential equilibrium (Reny [20]) rather than sequential equilibrium.

As before, a problem with these equilibrium refinements is that it incorporates an equilibrium
assumption which is problematic from an epistemic viewpoint. Moreover, the forward induction
reasoning in these concepts is often not as transparent as it could be, partially due to this equilibrium
assumption. In addition, the example in Figure 1 shows that in order to define a “pure” forward induction
concept, we must step outside sequential equilibrium, and in fact step outside any backward induction
concept, and simply build a new concept “from scratch”.

This is exactly what Pearce [2] did when he presented his extensive form rationalizability concept.
The main idea is that a player, at each of his information sets, asks whether this information set could
have been reached by rational1 strategy choices by the opponents. If so, then he must believe that his
opponents indeed do play rational strategies. In that case, he also asks whether this same information set
could also have been reached by opponents who do not only choose rationally themselves, but who also
believe that the other players choose rationally as well. If so, then he must believe that his opponents
believe that the other players choose rationally as well. Iterating this argument finally leads to extensive
form rationalizability.

This concept has many appealing properties. First, it is purely based on some very intuitive forward
induction arguments, and not incorporated into some existing backward induction concept. In that sense,
it is a very pure forward induction concept. Also, it has received a very appealing epistemic foundation
in the literature (Battigalli and Siniscalchi [4]), and there is nowadays an easy elimination procedure
supporting it (Shimoji and Watson [22]). So, the concept is attractive on an intuitive, an epistemic, and a
practical level. That is why we will use this concept in this paper as a possible, appealing representative
of the idea of forward induction.

The main objective of this paper is to compare the concept of common belief in future
rationality—as a representative of backward induction reasoning—with the concept of extensive form

1Here, by a rational strategy we mean a strategy that is optimal, at every information set, for some probabilistic belief
about the opponents’ strategy choices.
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rationalizability—as a representative of forward induction reasoning. By doing so, we hope this paper
will contribute towards better understanding the differences and similarities between backward induction
and forward induction reasoning in dynamic games.

The outline of this paper is as follows. In Section 2 we formally present the class of dynamic games
we consider, and develop an epistemic model for such games in order to formally represent the players’
belief hierarchies. In Section 3 we define the concept of common belief in future rationality and present
an elimination procedure, backward dominance, that supports it. Section 4 presents the concept of
extensive form rationalizability, discusses Battigalli and Siniscalchi’s [4] epistemic foundation, and
presents Shimoji and Watson’s [22] iterated conditional dominance procedure that supports it. In
Section 5 we explicitly compare the two concepts with each other on a conceptual, epistemic and an
algorithmic level.

2. Model

In this section we formally present the class of dynamic games we consider, and explain how to build
an epistemic model for such dynamic games.

2.1. Dynamic Games

As we expect the reader to be familiar with the model of a dynamic game (or, extensive form game),
we only list the relevant ingredients and introduce some pieces of notation. By I we denote the set of
players, by X the set of non-terminal histories (or nodes) and by Z the set of terminal histories. By ∅
we denote the beginning (or root) of the game. For every player i, we denote by Hi the collection of
information sets for that player. Every information set h ∈ Hi consists of a set of non-terminal histories.
At every information set h ∈ Hi , we denote by Ci(h) the set of choices (or actions) for player i at h.
We assume that all sets mentioned above are finite, and hence we restrict to finite dynamic games in this
paper. Finally, for every terminal history z and player i, we denote by ui(z) the utility for player i at z.
As usual, we assume that there is perfect recall, meaning that a player never forgets what he previously
did, and what he previously knew about the opponents’ past choices.

We explicitly allow for simultaneous moves in the dynamic game. That is, we allow for non-terminal
histories at which several players make a choice. Formally, this means that for some non-terminal
histories x there may be different players i and j, and information sets hi ∈ Hi and hj ∈ Hj, such that
x ∈ hi and x ∈ hj. In this case, we say that the information sets hi and hj are simultaneous. Explicitly
allowing for simultaneous moves is important in this paper, especially for describing the concept of
common belief in future rationality. We will come back to the issue of simultaneous moves in Section 3,
when we formally introduce common belief in future rationality.

Say that an information set h follows some other information set h′ if there are histories x ∈ h and
y ∈ h′ such that y is on the unique path from the root to x. Finally, we say that information set h weakly
follows h′ if either h follows h′, or h and h′ are simultaneous.
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2.2. Strategies

A strategy for player i is a complete choice plan, prescribing a choice at each of his information sets
that can possibly be reached by this choice plan. Formally, for every h, h′ ∈ Hi such that h precedes h′,
let ci(h, h′) be the choice at h for player i that leads to h′. Note that ci(h, h′) is unique by perfect recall.
Consider a subset Ĥi ⊆ Hi, not necessarily containing all information sets for player i, and a function si

that assigns to every h ∈ Ĥi some choice si(h) ∈ Ci(h). We say that si possibly reaches an information
set h if at every h′ ∈ Ĥi preceding h we have that si(h

′) = ci(h
′, h). By Hi(si) we denote the collection

of player i information sets that si possibly reaches. A strategy for player i is a function si, assigning to
every h ∈ Ĥi ⊆ Hi some choice si(h) ∈ Ci(h), such that Ĥi = Hi(si).

Notice that this definition slightly differs from the standard definition of a strategy in the literature.
Usually, a strategy for player i is defined as a mapping that assigns to every information set h ∈ Hi

some available choice—also to those information sets h that cannot be reached by si. The definition of
a strategy we use corresponds to what Rubinstein [23] calls a plan of action. One can also interpret it
as the equivalence class of strategies (in the classical sense) that are outcome-equivalent. Hence, taking
for every player the set of strategies as we use it corresponds to considering the pure strategy reduced
normal form. However, for the concepts and results in this paper it does not make any difference which
notion of strategy we use.

For a given information set h, denote by Si(h) the set of strategies for player i that possibly
reach h. By S−i(h) we denote the strategy profiles for i’s opponents that possibly reach h, that is,
s−i ∈ S−i(h) if there is some si ∈ Si(h) such that (si, s−i) reaches some history in h. By S(h) we
denote the set of strategy profiles (si)i∈I that reach some history in h. By perfect recall we have that
S(h) = Si(h)× S−i(h) for every player i and every information set h ∈ Hi.

2.3. Epistemic Model

We now wish to model the players’ beliefs in the game. At every information set h ∈ Hi, player i
holds a belief about (a) the opponents’ strategy choices, (b) the beliefs that the opponents have, at their
information sets, about the other players’ strategy choices, (c) the beliefs that the opponents have, at
their information sets, about the beliefs their opponents have, at their information sets, about the other
players’ strategy choices, and so on. A possible way to represent such conditional belief hierarchies is
as follows.

(Epistemic model) Consider a dynamic game Γ. An epistemic model for Γ is a tuple
M = (Ti, bi)i∈I where
(a) Ti is a compact topological space, representing the set of types for player i,
(b) bi is a function that assigns to every type ti ∈ Ti, and every information set h ∈ Hi, a probability
distribution bi(ti, h) ∈ ∆(S−i(h)× T−i).

Recall that S−i(h) represents the set of opponents’ strategy combinations that possibly reach h. By
T−i :=

∏
j 6=i Tj we denote the set of opponents’ type combinations. For a topological space X, we

denote by ∆(X) the set of probability distributions on X with respect to the Borel σ-algebra. So, if
there are more than two players in the game, we allow the players to hold correlated beliefs about the
opponents’ strategy choices (and types) at each of their information sets.
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This model can be seen as an extension of the epistemic model in Ben-Porath [24], which was
constructed specifically for games with perfect information. A similar model can also be found in
Battigalli and Siniscalchi [25]. It is an implicit model, since we do not write down the belief hierarchies
for the types explicitly, but these can rather be derived from the model. Namely, at every information
set h ∈ Hi a type ti holds a conditional probabilistic belief bi(ti, h) about the opponents’ strategies
and types. In particular, type ti holds conditional beliefs about the opponents’ strategies. As every
opponent’s type holds conditional beliefs about the other players’ strategies, every type ti holds at every
h ∈ Hi also a conditional belief about the opponents’ conditional beliefs about the other players’ strategy
choices. And so on. So, in this way we can derive for every type the associated infinite conditional belief
hierarchy. Since a type may hold different beliefs at different histories, a type may, during the game,
revise his belief about the opponents’ strategies, but also about the opponents’ conditional beliefs.

To formally describe the concept of common strong belief in rationality, we need epistemic models
that are complete, which means that every possible belief hierarchy must be present in the model.

(Complete epistemic model) An epistemic model M = (Ti, bi)i∈I is complete if for every conditional
belief vector (bi(h))h∈Hi

in
∏

h∈Hi
∆(S−i(h)× T−i) there is some type ti ∈ Ti with bi(ti, h) = bi(h) for

every h ∈ Hi.

So, a complete epistemic model must necessarily be infinite. Battigalli and Siniscalchi [25] have
shown that a complete epistemic model always exists for finite dynamic games, such as the ones we
consider in this paper.

3. Common Belief in Future Rationality

We now present the concept of common belief in future rationality (Perea [1]), which is a typical
backward induction concept. The idea is that a player always believes that (a) his opponents will choose
rationally now and in the future, (b) his opponents always believe that their opponents will choose
rationally now and in the future, and so on. After giving a precise epistemic formulation of this concept,
we describe an algorithm, backward dominance, that supports it, and we illustrate this algorithm by
means of an example.

3.1. Epistemic Formulation

We first define what it means for a strategy si to be optimal for a type ti at a given information set
h. Consider a type ti, a strategy si and an information set h ∈ Hi(si) that is possibly reached by si. By
ui(si, ti | h) we denote the expected utility from choosing si under the conditional belief that ti holds at
h about the opponents’ strategy choices.

(Optimality at a given information set) Consider a type ti, a strategy si and a history h ∈ Hi(si).

Strategy si is optimal for type ti at h if ui(si, ti | h) ≥ ui(s
′
i, ti | h) for all s′i ∈ Si(h).

Remember that Si(h) is the set of player i strategies that possibly reach h. We can now define belief
in the opponents’ future rationality.

(Belief in the opponents’ future rationality) Consider a type ti, an information set h ∈ Hi, and an
opponent j 6= i. Type ti believes at h in j’s future rationality if bi(ti, h) only assigns positive probability
to j’s strategy-type pairs (sj, tj) where sj is optimal for tj at every h′ ∈ Hj(sj) that weakly follows
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h. Type ti believes in the opponents’ future rationality if at every h ∈ Hi, type ti believes in every
opponent’s future rationality.

So, to be precise, a type that believes in the opponents’ future rationality believes that every opponent
chooses rationally now (if the opponent makes a choice at a simultaneous information set), and at every
information set that follows. As such, the correct terminology would be “belief in the opponents’
present and future rationality”, but we stick to “belief in the opponents’ future rationality” as to keep the
name short.

Next, we formalize the requirement that a player should not only believe in the opponents’ future
rationality, but should also always believe that every opponent believes in his opponents’ future
rationality, and so on.

(Common belief in future rationality) Type ti expresses common belief in future rationality if (a)
ti believes in the opponents’ future rationality, (b) ti assigns, at every information set, only positive
probability to opponents’ types that believe in their opponents’ future rationality, (c) ti assigns, at every
information set, only positive probability to opponents’ types that, at every information set, only assign
positive probability to opponents’ types that believe in the opponents’ future rationality, and so on.

Finally, we define those strategies that can rationally be chosen under common belief in future
rationality. We say that a strategy si is rational for a type ti if si is optimal for ti at every h ∈ Hi(si). In
the literature, this is often called sequential rationality. We say that strategy si can rationally be chosen
under common belief in future rationality if there is some epistemic model M = (Ti, bi)i∈I , and some
type ti ∈ Ti, such that ti expresses common belief in future rationality, and si is rational for ti.

For the concept of common belief in future rationality, it is crucial how we model the chronological
order of moves in the game! Consider, for instance, the three games in Figure 2.

Figure 2. Chronological order of moves matters for “common belief in future rationality”.
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In game Γ1 player 1 moves before player 2, in game Γ2 player 2 moves before player 1, and in
game Γ3 both players choose simultaneously. In Γ1 and Γ2, the second mover does not know which
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choice has been made by the first mover. So, all three games represent a situation in which both players
choose in complete ignorance of the opponent’s choice. Since the utilities in the games are identical,
one can argue that these three games are in some sense “equivalent”. In fact, the three games above only
differ by applying the transformation of interchange of decision nodes2, as defined by Thompson [26].
However, for the concept of common belief in future rationality it crucially matters which of the three
representations Γ1,Γ2 or Γ3 we choose.

In the game Γ1, common belief in future rationality does not restrict player 2’s belief at all, as
player 1 moves before him. So, player 2 can rationally choose d and e under common belief in future
rationality here. On the other hand, player 1 may believe that player 2 chooses d or e under common
belief in future rationality, and hence player 1 himself may rationally choose a or b under common belief
in future rationality.

In the game Γ2, common belief in future rationality does not restrict player 1’s beliefs as he moves
after player 2. Hence, player 1 may rationally choose a or b under common belief in future rationality.
Player 2 must therefore believe that player 1 will either choose a or b in the future, and hence player 2
can only rationally choose d under common belief in future rationality.

In the game Γ3, finally, player 1 can only rationally choose a, and player 2 can only rationally choose
d under common belief in future rationality. Namely, if player 2 believes in player 1’s (present and)
future rationality, then player 2 believes that player 1 does not choose c, since player 1 moves at the
same time as player 2. Therefore, player 2 can only rationally choose d under common belief in future
rationality. If player 1 believes in player 2’s (present and) future rationality, and believes that player 2
believes in player 1’s (present and) future rationality, then player 1 believes that player 2 chooses d, and
therefore player 1 can only rationally choose a under common belief in future rationality.

Hence, the precise order of moves is very important for the concept of common belief in future
rationality! In particular, this concept is not invariant with respect to Thompson’s [26] transformation of
interchange of decision nodes. We will come back to this issue in Section 5.3.

3.2. Algorithm

Perea [1] presents an algorithm, backward dominance, that selects exactly those strategies than can
rationally be chosen under common belief in future rationality. The algorithm proceeds by successively
eliminating, at every information set, some strategies for the players. In the first round we eliminate,
at every information set, those strategies for player i that are strictly dominated at a present or future
information set for player i. In every further round k we eliminate, at every information set, those
strategies for player i that are strictly dominated at a present or future information set h for player i,
given the opponents’ strategies that have survived until round k at that information set h. We continue
until we cannot eliminate anything more.

In order to formally state the backward dominance procedure, we need the following definitions.
Consider an information set h ∈ Hi for player i, a subset Di ⊆ Si(h) of strategies for player i that
possibly reach h, and a subset D−i ⊆ S−i(h) of strategy combinations for i’s opponents possibly
reaching h. Then, (Di, D−i) is called a decision problem for player i at h, and we say that player i

2For a formal description of this transformation, the reader may consult Thompson [25], Elmes and Reny [26] or
Perea [27].
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is active at this decision problem. Note that several players may be active at the same decision problem,
since several players may make a simultaneous move at the associated information set. Within a decision
problem (Di, D−i) for player i, a strategy si ∈ Di is called strictly dominated if there is some randomized
strategy µi ∈ ∆(Di) such that ui(µi, s−i) > ui(si, s−i) for all s−i ∈ D−i. A decision problem at h is
said to weakly follow an information set h′ if h weakly follows h′. For a given information set h ∈ Hi,

the full decision problem at h is the decision problem (Si(h), S−i(h)) where no strategies have been
eliminated yet.

Backward dominance procedure

Initial step. For every information set h, let Γ0(h) be the full decision problem at h.

Inductive step. Let k ≥ 1, and suppose that the decision problems Γk−1(h) have been defined for
every information set h. Then, at every information set h delete from the decision problem Γk−1(h)

those strategy combinations that involve a strategy si of some player i that is strictly dominated
within some decision problem Γk−1(h′) for player i that weakly follows h. This yields the new
decision problems Γk(h). Continue this procedure until no further strategies can be eliminated in
this way.

Say that a strategy si survives the backward dominance procedure if si is in Γk(∅) for every k. That
is, si is never eliminated in the decision problem at the beginning of the game, ∅. Since we only have
finitely many strategies in the game, and the decision problems can only become smaller at every step,
this procedure must converge after finitely many steps. Perea [1] has shown that the algorithm always
yields a nonempty set of strategies at every information set, and that the set of strategies surviving the
algorithm is exactly the set of strategies that can rationally be chosen under common belief in future
rationality. Combining these two insights then guarantees that common belief in future rationality is
always possible—for every player we can always construct a type that expresses common belief in
future rationality.

Note than the backward dominance procedure can be alternatively formulated as follows: If at a given
decision problem Γk−1(h) for player i strategy si is strictly dominated, then we eliminate si at Γk−1(h)

and at all decision problems Γk−1(h′) that come before h—that is, we eliminate si from h backwards.
So, we can say that the backward dominance procedure, which characterizes the backward induction
concept of common belief in future rationality, works by backward elimination. This, in turn, very
clearly explains the word backward in backward induction concept.

3.3. Example

We will now illustrate the backward dominance procedure by means of an example. Consider again
the game in Figure 1. At the beginning of the procedure we start with two decision problems, namely
the full decision problem Γ0(∅) at ∅ where only player 1 is active, and the full decision problem Γ0(h1)

at h1 where both players are active. These decision problems can be found in Table 1.
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Table 1. The full decision problems in Figure 1.

Player 1 active

Γ0(∅) e f g

(a, c) 2, 2 2, 1 0, 0

(a, d) 1, 1 1, 2 4, 0

b 3, 0 3, 0 3, 0

Players 1 and 2 active

Γ0(h1) e f g

(a, c) 2, 2 2, 1 0, 0

(a, d) 1, 1 1, 2 4, 0

The backward dominance procedure does the following: In the first round, we eliminate from Γ0(∅)
strategy (a, c) as it is strictly dominated by b at player 1’s decision problem Γ0(∅), and we eliminate from
Γ0(∅) and Γ0(h1) strategy g as it is strictly dominated by e and f at player 2’s decision problem Γ0(h1).

In the second round, we eliminate from Γ1(∅) strategy (a, d) as it strictly dominated by b at Γ1(∅), and
we eliminate strategy (a, d) also from Γ1(h1) as it is strictly dominated by (a, c) at Γ1(h1). In the third
round, finally, we eliminate from Γ2(∅) and Γ2(h1) strategy f, as it is strictly dominated by e in Γ2(h1).

So, only strategies b and e remain at ∅. Hence, only strategies b and e can rationally be chosen under
common belief in future rationality.

4. Extensive Form Rationalizability

We next turn to extensive form rationalizability (Pearce [2], Battigalli [3], Battigalli and
Siniscalchi [4]), which is a typical forward induction concept. The idea is as follows: At every
information set the corresponding player first asks whether this information set can be reached if his
opponents would all choose rationally, that is, would choose optimally for some vectors of conditional
beliefs. If so, then at that information set he must only assign positive probability to rational opponents’
strategies. In that case, he then asks: Can this information set also be reached by opponents’ strategies
that are optimal if the opponents believe, whenever possible, that their opponents choose rationally? If
so, then at that information set he must only assign positive probability to such opponents’ strategies.
And so on. So, in a sense, at every information set the associated player looks for the highest degree
of mutual belief in rationality that makes reaching this information set possible, and his beliefs at that
information set should reflect this highest degree. We first provide a precise epistemic formulation of
this concept, and then present an algorithm, iterated conditional dominance, that supports it. We finally
illustrate the algorithm by means of an example.

4.1. Epistemic Formulation

The starting point in extensive form rationalizability is that a player, whenever possible, must believe
that his opponents choose rationally. That is, if player i is at information set h ∈ Hi, he first asks
whether h could have been reached by rational opponents’ strategies. If so, then at h he must assign
positive probability only to rational opponents’ strategies. We say that player i strongly believes in the
opponents’ rationality (Battigalli and Siniscalchi [4]).

In order to formalize this idea within an epistemic model, we must make sure that there are “enough”
types in the model. To be more precise, if for a given information set h ∈ Hi there is a rational strategy
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sj for opponent j that possibly reaches h, then there must be a type for player j inside the model for
which sj is optimal. Consider, for instance, the game in Figure 1, and suppose that our epistemic model
would contain only one type for player 1, which believes that player 2 will choose e. Then, on the one
hand, there is a rational strategy for player 1 that reaches h1, namely (a, d). But the epistemic model
does not contain a type for player 1 for which (a, d) is optimal. So, in this case, we must make sure that
the epistemic model contains at least one type for player 1 for which (a, d) is optimal.

To guarantee this, it is enough to have a complete epistemic model. Namely, a complete model
contains all possible belief hierarchies, so every potentially optimal strategy can be rationalized by at
least one type in this model.

To formally define strong belief in the opponents’ rationality, we need the following piece of notation:
For every player i, information set h ∈ Hi, and subset of opponents’ types T̃−i ⊆ T−i, let

(S−i(h)× T̃−i)
rat := {(sj, tj)j 6=i ∈ S−i(h)× T̃−i : sjrationalfortjforallj 6= i}

Recall that strategy sj is rational for type tj if sj is optimal for tj at every information set in Hj(sj).

(Strong belief in the opponents’ rationality) Consider a complete epistemic model M = (Ti, bi)i∈I . A
type ti strongly believes in the opponents’ rationality if at every h ∈ Hi with (S−i(h) × T−i)

rat 6= ∅, it
holds that bi(ti, h)((S−i(h)× T−i)

rat) = 1.

That is, if for every opponent j there is strategy sj leading to h and a type for which sj is rational,
then type ti must at h only consider strategy-type pairs (sj, tj) where sj is rational for type tj. Let us
define by T 1

i the set of types ti ∈ Ti that strongly believe in the opponents’ rationality.
Now, suppose that player i is at h ∈ Hi, and that (S−i(h) × T−i)

rat 6= ∅. So, h could have been
reached by rational opponents’ strategies. The next question that extensive form rationalizability asks
is: Could h have been reached by opponents’ strategies sj that are optimal for opponents’ types tj that
strongly believe in their opponents’ rationality? If so, then player i at h should only consider such pairs
(sj, tj). In other words, if (S−i(h) × T 1

−i)
rat 6= ∅, then player i must at h only consider opponents’

strategy-type combinations in (S−i(h) × T 1
−i)

rat. By iterating this argument, we arrive at the following
recursive definition of common strong belief in rationality (Battigalli and Siniscalchi [4]).

(Common strong belief in rationality) Consider a complete epistemic model M = (Ti, bi)i∈I . Let
T 0

i := Ti for every player i. For every k ≥ 1 and every player i, let T k
i contain those types ti ∈ T k−1

i

such that at every h ∈ Hi with (S−i(h)× T k−1
−i )rat 6= ∅, it holds that bi(ti, h)((S−i(h)× T k−1

−i )rat) = 1.

A type ti expresses common strong belief in rationality if ti ∈ T k
i for all k.

We say that strategy si can rationally be chosen under common strong belief in rationality if there
is some complete epistemic model M = (Ti, bi)i∈I , and some type ti ∈ Ti expressing common strong
belief in rationality, such that si is rational for ti.

4.2. Algorithm

The concept of extensive form rationalizability has originally been proposed in Pearce [2] by means
of an iterated reduction procedure. Later, Battigalli [3] has simplified this procedure and has shown
that it delivers the same output as Pearce’s procedure. Both procedures refine at every round the sets of
strategies and conditional beliefs of the players. Battigalli and Siniscalchi [4] have shown that common
strong belief in rationality selects exactly the extensive form rationalizable strategies for every player.
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In this section we will consider yet another procedure leading to extensive form rationalizability,
namely the iterated conditional dominance procedure developed by Shimoji and Watson [22]. The
reason is that this procedure is closer to the backward dominance algorithm for common belief in future
rationality, and therefore easier to compare.

The iterated conditional dominance procedure, like the backward dominance procedure, iteratedly
removes strategies from decision problems. However, the criteria for removing a strategy in a particular
decision problem are different. Remember that in the backward dominance procedure we remove a
strategy for player i in the decision problem at h whenever it is strictly dominated in some decision
problem for player i that weakly follows h. In the iterated conditional dominance procedure we remove
a strategy for player i at the decision problem at h if there is some decision problem for player i,
not necessarily weakly following h, at which it is strictly dominated. So, in the iterated conditional
dominance procedure we would remove strategy si at h also if it is strictly dominated at some decision
problem for player i that comes before h. Formally, the procedure can be formulated as follows.

Iterated conditional dominance procedure

Initial step. For every information set h, let Γ0(h) be the full decision problem at h.

Inductive step. Let k ≥ 1, and suppose that the decision problems Γk−1(h) have been defined for
every information set h. Then, at every information set h delete from the decision problem Γk−1(h)

those strategy combinations that involve a strategy si for some player i that is strictly dominated within
some decision problem Γk−1(h′) for player i, not necessarily weakly following h. This yields the new
decision problems Γk(h). Continue this procedure until no further strategies can be eliminated in this
way.

A strategy si is said to survive this procedure if si ∈ Γk(∅) for all k. Shimoji and Watson [22] have
shown that this procedure delivers exactly the set of extensive form rationalizable strategies. Hence, by
Battigalli and Siniscalchi’s [4] result, the iterated conditional dominance procedure selects exactly those
strategies that can rationally be chosen under common strong belief in rationality.

Note that in the iterated conditional dominance procedure, it is possible that at a given decision
problem Γk−1(h) all strategies of a player i will be eliminated in step k—something that can never
happen in the backward dominance procedure. Consider, namely, some information set h ∈ Hi, and
some information set h′ following h. Then, it is possible that within the decision problem Γk−1(h), all
strategies for player i in Γk−1(h′) are strictly dominated. In that case, we would eliminate in Γk−1(h′)

all remaining strategies for player i! Whenever this occurs, it is understood that at every further step
nothing can be eliminated from the decision problem at h′ anymore.

The iterated conditional dominance procedure thus has the following property: If at a given decision
problem Γk−1(h) for player i the strategy si is strictly dominated, then we eliminate si at Γk−1(h),

and at all decision problems Γk−1(h′) that come before and after it—that is, we eliminate si from
h backwards and forward. So this algorithm, which characterizes the forward induction concept of
extensive form rationalizability, proceeds by backward and forward elimination. From this perspective,
the name “forward induction” is actually a bit misleading, as it would suggest the concept to work only
in a forward fashion. This is not true: Extensive form rationalizability, when considered algorithmically,
works both backwards and forward.
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4.3. Example

To illustrate the iterated conditional dominance procedure, consider again the game from
Figure 1, with its full decision problems Γ0(∅) and Γ0(h1) as depicted in Table 1. The iterated conditional
dominance procedure works as follows here:

In the first round, we eliminate strategy (a, c) from Γ0(∅) and Γ0(h1) as it is strictly dominated by b
at player 1’s decision problem Γ0(∅), and we eliminate from Γ0(∅) and Γ0(h1) strategy g as it is strictly
dominated by e and f at player 2’s decision problem Γ0(h1). In the second round, we eliminate (a, d)

from Γ1(∅) and Γ1(h1) as it is strictly dominated by b at Γ1(∅), and we eliminate e from Γ1(∅) and
Γ1(h1) as it is strictly dominated by f in Γ1(h1). This only leaves strategies b and f at ∅, and hence only
strategies b and f can rationally be chosen under extensive form rationalizability.

Recall that the backward dominance procedure uniquely selected strategies b and e, and hence only
e can rationally be chosen by player 2 under common belief in future rationality. So, we see that both
procedures (and hence their associated epistemic concepts) lead to unique but different strategy choices
for player 2 in this example.

The crucial difference between both concepts lies in how player 2 at h1 explains the surprise that
player 1 has not chosen b. Under common belief in future rationality, player 2 believes at h1 that player
1 has simply made a mistake, but he still believes that player 1 will choose rationally at h1, and he still
believes that player 1 believes that he will not choose g at h1. So, player 2 believes at h1 that player
1 will choose (a, c), and therefore player 2 will choose e at h1. Under extensive form rationalizability,
player 2 believes at h1 that player 1’s decision not to choose b was a rational decision, but this is only
possible if player 2 believes at h1 that player 1 believes that player 2 will irrationally choose g at h1 (with
sufficiently high probability). In that case, player 2 will believe at h1 that player 1 will go for (a, d), and
therefore player 2 will choose f at h1.

5. Comparision Between the Concepts

In this section we will compare the concepts of common belief in future rationality and extensive
form rationalizability (common strong belief in rationality) on a conceptual, epistemic, algorithmic and
behavioral level.

5.1. Conceptual Comparison: The Role of Rationality Orderings

An appealing way to look at extensive form rationalizability is by means of rationality orderings over
strategies (Battigalli [29]). The idea is that for every player i we have an ordered partition (S1

i , ..., S
K
i )

of his strategy set, where S1
i represents the set of “most rational” strategies, SK

i the set of “least rational”
strategies, and every strategy in Sk

i is deemed “more rational” than every strategy in Sk+1
i . At every

information set h ∈ Hi, player i then looks for the most rational opponents’ strategies that reach h,
and assigns positive probability only to such opponents’ strategies. Important is that these rationality
ordering are global, that is, the players always use the same rationality orderings over the opponents’
strategies to form their conditional beliefs.

To illustrate this, consider the game in Figure 3.
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Figure 3. Rationality orderings.
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Among player 1’s strategies, (a, c), (a, e) and b are optimal for some belief, whereas (a, d) is not
optimal for any belief. So, (a, d) may be considered the “least rational” strategy for player 1. So, for
player 1 we have the “tentative” rationality ordering

RO1
1 = ({(a, c), (a, e), b}, {(a, d)})

For player 2, strategies f and g are optimal at h1 for some belief, whereas h is not optimal at h1 for any
belief. Hence, for player 2 we have the tentative rationality ordering

RO1
2 = ({f, g}, {h})

Now, if player 1 believes that player 2 does not choose his least rational strategy h, then only (a, c) and
b can be optimal, and not (a, e). So, we obtain a refined rationality ordering

RO2
1 = ({(a, c), b}, {(a, e)}, {(a, d)})

for player 1. Similarly, if player 2 believes at h1 that player 1 will not choose his least rational strategy
(a, d), then only f can be optimal, and not g. So, for player 2 we obtain the refined rationality ordering

RO2
2 = ({f}, {g}, {h})

But then, if player 1 believes that player 2 will choose his most rational strategy f, then player 1 will
choose b. So, the final rationality orderings for the players are

RO1 = ({b}, {(a, c)}, {(a, e)}, {(a, d)})andRO2 = ({f}, {g}, {h})

Hence, if player 2 finds himself at h1, he believes that player 1 has chosen the most rational strategy that
reaches h1, which is (a, c). Player 2 must therefore choose f, and player 1, anticipating on this, should
choose b. This is exactly what extensive form rationalizability does for this game.

Important is that both players agree on these specific rationality orderings RO1 and RO2, and that
player 2 uses the rationality orderingRO1 throughout the game, in particular at h1 to form his conditional
belief there.
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In contrast, the concept of common belief in future rationality cannot be described in terms of
rationality orderings, or at least not by global rationality orderings that are used throughout the whole
game. Consider again the game in Figure 3. Common belief in future rationality reasons as follows here:
Player 1, at ∅ and at h1, must believe that player 2 chooses rationally at h1, and hence must believe that
player 2 will not choose h. Player 2, at h1, believes that player 1, at h1, believes in 2’s rationality at h1.

Hence, player 2 believes at h1 that player 1 believes that 2 will not choose h. Also, player 2 believes at
h1 that player 1 chooses rationally at h1, and hence player 2 believes at h1 that player 1 will not choose
(a, e). No further conclusions can be drawn at h1. Hence, player 2 can choose f or g at h1. But then,
player 1 can choose (a, c) or b. So, common belief in future rationality selects strategies (a, c) and b for
player 1, and strategies f and g for player 2.

Can this reasoning be represented by global rationality orderings on the players’ strategies? The
answer is “no”. Suppose, namely, that such rationality orderings RO1 and RO2 would exist. As
common belief in future rationality selects only the strategies (a, c) and b for player 1, strategies (a, c)

and b should both be most rational under RO1. But then, if player 2 is at h1, he should conclude that
player 1 has chosen (a, c), as it is the most rational strategy under RO1 that reaches h1. Consequently,
player 2 should choose f, rendering (a, c) a suboptimal strategy for player 1. This, however, would
contradict RO1, where (a, c) is considered to be a most rational strategy for player 1. Hence, there is no
global rationality ordering on strategies that supports common belief in future rationality.

Rather, under common belief in future rationality, player 2 changes his rationality ordering over 1’s
strategies as the game proceeds. At the beginning, player 2 deems (a, c) and b more rational then (a, d)

and (a, e). However, at h1 player 2 deems (a, c) and (a, d) “equally” rational, as under common belief in
future rationality player 2 may at h1 believe that player 1 chooses (a, c) or (a, d).

5.2. Epistemic Comparison

By definition, a type ti for player i is said to express common belief in future rationality if it always
believes in the opponents’ future rationality, always only assigns positive probability to opponents’ types
that always believe in their opponents’ future rationality, always only assigns positive probability to
opponents’ types that always only assign positive probability to other players’ types that always believe
in their opponents’ future rationality, and so on. As a consequence, type ti always only assigns positive
probability to opponents’ types that express common belief in future rationality too. Hence, every type
that expresses common belief in future rationality believes at every stage of the game that each of his
opponents expresses common belief in future rationality as well. We may thus say that the concept of
common belief in future rationality is “closed under belief”.

Formally, “closed under belief” can be defined in the following way. Consider some epistemic model
with sets of types Ti for every player i. Let T̂i ⊆ Ti be a subset of types for every player i. Then, the
combination (T̂i)i∈I of subsets of types is said to be closed under belief if for every player i, every type
ti ∈ T̂i, and every information set h ∈ Hi, the conditional belief bi(t̂i, h) only assigns positive probability
to opponents’ types tj that are in T̂j. So if we take an epistemic model with sets of types (Ti)i∈I , and
define T cbfr

i ⊆ Ti to be the subset of types for player i that express common belief in future rationality,
then the combination (T cbfr

i )i∈I of type subsets expressing common belief in future rationality is closed
under belief in the sense above.
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The same cannot be said about common strong belief in rationality—the epistemic foundation for
extensive form rationalizability. Consider for instance the game from Figure 1. If player 2’s type t2
strongly believes in player 1’s rationality, then t2 must at h1 believe that player 1 has rationally chosen
(a, d).More precisely, type t2 must at h1 only assign positive probability to strategy-type pairs ((a, d), t1)

for player 1 where (a, d) is optimal for type t1. This, however, can only be the case if t1 assigns positive
probability to player 2’s irrational strategy g. But then, t1 does certainly not strongly believe in 2’s
rationality. So we see that a type t2 for player 2 who strongly believes in 1’s rationality, must at h1

necessarily assign positive probability to a type t1 for player 1 who does not strongly believe in 2’s
rationality. In particular, a type t2 for player 2 that expresses common strong belief in rationality,
must at h1 attach positive probability to a player 1 type t1 that does not express common strong
belief in rationality. Hence, the concept of common strong belief in rationality is certainly not closed
under belief.

The latter is not surprising, as it follows from the very character of common strong belief in rationality.
As we have seen in the previous subsection, this concept orders the players’ strategies, and also types,
from “most rational” to “least rational”. Most rational are the types that express common strong belief in
rationality, and least rational are the types that do not even strongly believe in the opponents’ rationality,
and there may be some subclasses in between. The idea of common strong belief in rationality is that
at every information set, the corresponding player searches for the “most rational” opponents’ types
that could have been responsible for reaching this information set, and these opponents’ types do not
necessarily express common strong belief in rationality. In fact, typically these opponents’ types are
“less rational” than the “most rational types around”, which are the ones expressing common strong
belief in rationality. So, it is no surprise that the concept of common strong belief in rationality is not
“closed under belief”.

The fact that common belief in future rationality is closed under belief, and common strong belief
in rationality is not, is also reflected in the completeness of the epistemic model needed for these two
concepts. Note that for defining common strong belief in rationality we required a complete epistemic
model (meaning that every possible belief hierarchy is present in the model), whereas for common belief
in future rationality we did not. In fact, for the concept of common belief in future rationality a model
with finitely many types is enough (see Perea [1]). So why do we have this difference?

The reason is that under common strong belief in rationality, player i must ask at every information
set h ∈ Hi whether h could have been reached by opponents’ strategies that are optimal for some
beliefs. To answer this question, he must consider all possible opponents’ types—also those that do
not express common strong belief in rationality—and see whether some of these types would support
strategy choices that could lead to h. So, a complete epistemic model is needed here.

In contrast, under common belief in future rationality it is sufficient for player i to only consider
opponents’ types that express common belief in future rationality as well. In other words, there is no
need for player i to step outside the sets of types expressing common belief in future rationality, and that
is why we do not need a complete epistemic model here.



Games 2010, 1 185

5.3. Algorithmic Comparison

In Sections 3 and 4 we have described two elimination procedures, backward dominance and iterated
conditional dominance, that respectively lead to common belief in future rationality and extensive form
rationalizability. A natural question is: Does the order and speed in which we eliminate strategies from
the decision problems matter for the eventual result of these procedures? The answer is that it does not
matter for the backward dominance procedure (see Perea [1]), whereas the order and speed of elimination
is crucial for the iterated conditional dominance procedure.

Consider, namely, the game from Figure 1. Suppose that, in the first round of the iterated conditional
dominance procedure, we would only eliminate strategy g, but not (a, c), from Γ0(∅) and Γ0(h1). Then,
in Γ1(h1), strategy (a, d) is strictly dominated by (a, c). Suppose that in round 2 we would only eliminate
strategy (a, d) from Γ1(∅) and Γ1(h1). Suppose that in round 3 we would eliminate strategy f for
player 2 at ∅ and h1, as it has become strictly dominated at h1. Suppose that, finally, we would eliminate
(a, c) at ∅ and h1. So, for player 2 only strategy e would survive the procedure in this case. Recall,
however, that if we eliminate “all that we can” at every round of the iterated conditional dominance
procedure, then only strategy f would survive for player 2. Hence, the order and speed of elimination
affects the outcome of the iterated conditional dominance procedure—it is absolutely crucial to eliminate
at every round, and at every information set, all strategies we can.

Now, why is the order and speed of elimination relevant for the iterated conditional dominance
procedure, but not for the backward dominance procedure? The reason has to do with rationality
orderings as we have discussed them above. We have seen that extensive form rationalizability can
be described by global rationality orderings on the players’ strategies, ranking them from “most
rational” to “least rational”. At every information set, the corresponding player identifies the most
rational opponents’ strategies that reach this information set, and assigns positive probability only to
these strategies. For this construction to work, it is essential that all players agree on these specific
rationality orderings.

The iterated conditional dominance procedure in fact generates these rationality orderings: All
strategies that do not survive the first round are deemed “least rational”. All strategies that survive the
first round, but not the second round, are deemed “second least rational” and so on. Finally, the strategies
that survive all rounds are deemed “most rational”. So, this procedure does not only deliver the extensive
form rationalizable strategies, it also delivers the rationality orderings on players’ strategies that support
extensive form rationalizability. Since it is crucial that players agree on these rationality orderings,
players must agree on the strategies that are eliminated at every round of the procedure: If at a certain
round not all strategies that could be eliminated are in fact eliminated, then this would lead to a “coarser”
rationality ordering in that round, which in turn could lead to completely different rationality orderings
in the end.

This problem cannot occur for backward dominance: If at a certain information set a strategy that
could have been eliminated is not in fact eliminated, then it will be eliminated at some later round
anyhow. So, even if players would disagree on the order and speed of elimination, it would not affect
their final strategy choices in the game.
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We have seen in Section 3 that the concept of common belief in future rationality is sensitive to the
transformation of interchange of decision nodes, as defined by Thompson [26]. This can be seen very
clearly from its associated algorithm—the backward dominance procedure. In this algorithm, namely,
whenever a strategy si is strictly dominated at a decision problem Γk−1(h) for player i, we eliminate
it from Γk−1(h) and all decision problems Γk−1(h′) that come before h, but we do not eliminate it
at decision problems Γk−1(h′) that come after h. By applying the transformation of interchange of
decision nodes, we may interchange the chronological order of two information sets h and h′. So, before
the transformation h comes before h′, whereas after the transformation h′ comes before h. Hence it
is possible that before the transformation we eliminate si at h because it is strictly dominated at h′,
whereas after the transformation we can no longer do so because h now comes after h′. That is, the
transformation of interchange of decision nodes may have important consequences for the output of the
backward dominance procedure—and hence for the concept of common belief in future rationality.

It can be verified that the transformation of interchange of decision nodes has no consequences for
the concept of extensive form rationalizability. This is most easily seen by studying the associated
algorithm—the iterated conditional dominance procedure. In that procedure, whenever a strategy si is
strictly dominated at a decision problem Γk−1(h) for player i, we eliminate it at all decision problems
Γk−1(h′) in the game. Hence, the precise chronological order of the information sets does not play a
role, only the structure of the various decision problems Γk−1(h) in the game. Since the transformation
of interchange of decision nodes does not change this structure of the decision problems Γk−1(h) in the
game, it easily follows that the iterated conditional dominance procedure—and hence the concept of
extensive form rationalizability—is invariant under the transformation of interchange of decision nodes.

5.4. Behavioral Comparison

In this section we ask whether there is any logical relationship between the strategy choices selected
by common belief in future rationality, and those selected by extensive form rationalizability. The
answer is “no”. This can already be concluded from the example in Figure 1. There, we have seen
that common belief in future rationality uniquely selects strategy e for player 2, whereas extensive form
rationalizability uniquely selects strategy f for this player. Hence, in this example both concepts yield
completely opposite strategy selections for player 2.

There are other examples where common belief in future rationality is more restrictive than extensive
form rationalizability, and yet other examples where it is exactly the other way around. Consider, for
instance, the game from Figure 3. There, common belief in future rationality yields strategy choices
(a, c) and b for player 1, and strategy choices f and g for player 2. Extensive form rationalizability,
on the other hand, uniquely selects strategies b and f. So here extensive form rationalizability is
more restrictive.

Now, replace in the example in Figure 1 the outcome 3, 0 by 5, 0. Then, common belief in future
rationality would select strategy b for player 1, and strategy e for player 2, whereas extensive form
rationalizability would select strategy b for player 1, and strategies e and f for player 2. So here common
belief in future rationality is more restrictive.

Note, however, that in each of these examples the set of outcomes induced by extensive form
rationalizability is always a subset of the set of outcomes induced by common belief in future rationality.
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My conjecture is that this is true in general, but I could not find a formal proof yet. (In fact we know that
it is true for all generic games with perfect information – see the paragraph below). So I leave this here
as an interesting open problem.

An important special class of dynamic games, both for theory and applications, is the class of games
with perfect information. These are games where at every stage only one player moves, and he always
observes the choices made by others so far. Such a game is called generic if, for every player i and every
information set h ∈ Hi, two different choices at h always lead to outcomes with different utilities for i.

In Perea [1] it has been shown that for the class of generic dynamic games with perfect information,
the concept of common belief in future rationality leads to the unique backward induction strategies for
the players. Battigalli [3] has proved that extensive form rationalizability, and hence common strong
belief in rationality, leads to the backward induction outcome, but not necessarily to the backward
induction strategies, in such games. As a consequence, for generic games with perfect information
both concepts lead to the same outcome, namely the backward induction outcome, but not necessarily to
the same strategies for the players.
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