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Reasoning Based Expected Utility Procedure

R. Cubitt and R. Sugden. The reasoning-based expected utility procedure. Games and
Economic Behavior, 2010.
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Reasoning-Based Solution Concepts

A categorization is a ternary partition of the players choices (rather
than a binary partition of what is in and what is out): strategies are
accumulated, deleted or neither.

Example: RBEU (reasoning based expected utility):

I accumulate strategies that maximize expected utility for every
possibly probability distribution

I delete strategies that do not maximize probability against any
probability distribution

I accumulated strategies must receive positive probability, deleted
strategies must receive zero probability
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RBEU: Example

L R

U 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

L R

U 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

L R

U 1,1 1,1

M1 0,0 1,0

M2 2,0 0,0

B 0,2 0,0

S+ = {L}
S− = {B}

S+ = {L,R}
S− = {B,M1}

S+ = {L,R}
S− = {B,M1}
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RBEU Example 2

l r

u 1,1 0,0

d 0,0 0,0

l r

u 1,1 0,0

d 0,0 0,0

S+ = {L}
S− = {B}

S+ = {L,R}
S− = {B,M1}
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RBEU Example 2

l r

u 1,1 0,0

d 0,0 0,0

l r

u 1,1 1,0

d 1,0 0,1

S+ = {u, l}
S− = ∅

S+ = {L,R}
S− = {B,M1}
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RBEU Example 2

l r

u 1,1 0,0

d 0,0 0,0

l r

u 1,1 0,0

d 0,0 0,0

S+ = {u, l}
S− = ∅

S+ = {u, l}
S− = {d , r}
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RBEU Example 3

L R

u 1,1 1,0

d 1,0 0,1

L R

u 1,1 1,0

d 1,0 0,1

S+ = {L}
S− = {B}

S+ = {L,R}
S− = {B,M1}
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RBEU Example 3

L R

u 1,1 1,0

d 1,0 0,1

L R

u 1,1 1,0
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RBEU Example 3

L R

u 1,1 1,0
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RBEU Example 3

L R

u 1,1 1,0

d 1,0 0,1

L R

u 1,1 1,0

d 1,0 0,1

S+ = {u}
S− = ∅

S+ = {u}
S− = ∅
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When are two games the same?

I Whose point-of-view? (players, modelers)

I Game-theoretic analysis should not depend on “irrelevant”
mathematical details

I Different perspectives: transformations, structural, agent

Eric Pacuit 7



The same decision problem

A

A

o1 o2 o3

D1

A

o1 o2 o3

D2
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Thompson Transformations

Game-theoretic analysis should not depend on “irrelevant” features of
the (mathematical) description of the game.

F. B. Thompson. Equivalence of Games in Extensive Form. Classics in Game Theory,
pgs 36 - 45, 1952.

(Osborne and Rubinstein, pgs. 203 - 212)
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A

A

B

o1 o2 o3 o4 o5 o6

A A

A

B

A A

o1 o2 o1 o2

BBB

A AAAAA

o3 o4 o5 o6

Addition of Superfluous Move
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A

A

B

o1 o2 o3 o4 o5 o6

A A

A

o1 o2

B

A AAA

o3 o4 o5 o6

Coalescing of moves
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A

A

B

o1 o2 o3 o4 o5 o6

A A

A

B

o1 o2 o3 o4 o5 o6

A A A

Inflation/deflation
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A

A

B

o1 o2 o3 o4 o5 o6

A A

A

A

o1 o2 o3 o5 o4 o6

A B B

Interchange of moves
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Theorem (Thompson) Each of the previous transformations preserves
the reduced strategic form of the game. In finite extensive games
(without uncertainty between subhistories), if any two games have the
same reduced normal form then one can be obtained from the other by a
sequence of the four transformations.

Eric Pacuit 14



Other transformations/game forms

Kholberg and Mertens. On Strategic Stability of Equilibria. Econometrica (1986).

Elmes and Reny. On The Strategic Equivalence of Extensive Form Games. Journal of
Economic Theory (1994).

G. Bonanno. Set-Theoretic Equivalence of Extensive-Form Games. IJGT (1992).
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Games as Processes

I When are two processes the same?

I Extensive games are natural process models which support many
familiar modal logics such as bisimulation.

I From this point-of-view, “When are two games the same?” goes
tandem with asking “what are appropriate languages for games”

J. van Benthem. Extensive Games as Process Models. IJGT, 2001.
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I [a ∪ b]〈c ∪ d〉p: “for each choice between a or b there is a choice
between c or d ending in a p-state.

I Strategies as programs: “if she plays this, then I will play that”
[((turnE)?;σ) ∪ (turnA?; τ))∗](end→ p)

I 2Aϕ: “A has a strategy to ensure that ϕ is true”

I Knoweldge/beliefs:
KE (〈a〉p ∨ 〈b〉p), ¬KE 〈a〉p ∧ ¬KE 〈b〉p
KA2Eϕ vs. 2EKAϕ

I preferences, ...
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Action and Powers

A

p
E

q r

E

A A

p q p r
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Action and Powers

A

p
E

q r

E

A A

p q p r

A can force {p}, {q, r}, E can force {p, q}, {p, r}
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Action and Powers

A

p
E

q r

E

A A

p q p rp p

A A

A can force {p}, {q, r}, E can force {p, q}, {p, r}
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Action and Powers

A

p
E

q r

E

A A

p q p r

(p ∧ (q ∨ r))↔ ((p ∧ q) ∨ (p ∧ r))

Eric Pacuit 18



Epistemic Models of Games

“The aim in giving the general definition of a model is not to propose an
original explanatory hypothesis, or any explanatory hypothesis, for the
behavior of players in games, but only to provide a descriptive framework
for the representation of considerations that are relevant to such
explanations, a framework that is as general and as neutral as we can
make it.” (pg. 35, Stalnaker)

Eric Pacuit 19



Backwards Induction

Invented by Zermelo, Backwards Induction is an iterative algorithm for
“solving” and extensive game.

Eric Pacuit 20



(1, 0) (2, 3) (1, 5) A

(3, 1) (4, 4)

B B

A
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(1, 0) (2, 3) (1, 5) (4, 4)

(3, 1) (4, 4)

(2, 3) B

A
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(1, 0) (2, 3) (1, 5) (4, 4)

(3, 1) (4, 4)

(2, 3) B

A
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(1, 0) (2, 3) (1, 5) (4, 4)
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(1, 0) (2, 3) (1, 5) (4, 4)
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A
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(1, 0) (2, 3) (1, 5) (4, 4)

(3, 1) (4, 4)

(2, 3) (1, 5)

(2, 3)
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BI Puzzle

A B A

(2,1) (1,6) (7,5)

(6,6)
R1 r R2

D1 d D2
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BI Puzzle

A (1,6) (7,5)

(2,1) (1,6) (7,5)

(6,6)
R1

D1
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A B A 3, 3

2, 2 1, 1 0, 0

L

T t

l

T

L
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A A A 3

2 1 0

L

T t

l

T

L
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A1 A2 A3 3

2 1 0

L

T t

l

T

L
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A B C 3

2 1 0

L

T t

l

T

L
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A B A 3, 3

2, 2 1, 1 0, 0

L

T t

l

T

L
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Bob

A
nn

U t l

T 2,2 2,2 U

LT 1,1 0,0 U

LL 1,1 3,3 U

A B A 3, 3

2, 2 1, 1 0, 0

L

T t

l

T

L
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R. Aumann. Backwards induction and common knowledge of rationality. Games and
Economic Behavior, 8, pgs. 6 - 19, 1995.

R. Stalnaker. Knowledge, belief and counterfactual reasoning in games. Economics and
Philosophy, 12, pgs. 133 - 163, 1996.

J. Halpern. Substantive Rationality and Backward Induction. Games and Economic
Behavior, 37, pp. 425-435, 1998.
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Materially Rational: A player i is materially rational at a state w if
every choice actually made is rational.

Substantively Rational: A player i is substantively rational at a state w
if the player is materially rational and, in addition, for each possible
choice, the player would have chosen rationally if she had had the
opportunity to choose.

E.g., Taking keys away from someone who is drunk.

Eric Pacuit 25
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Theorem (Aumann) In any model, if there is common knowledge that
the players are substantively rational at state w , the the backward
induction solution is played at w .

Eric Pacuit 26



Two propositions ϕ and ψ are epistemically independent for player i in
world w iff Pi ,w (ϕ | ψ) = Pi ,w (ϕ | ¬ψ) and Pi ,w (ψ | ϕ) = Pi ,w (ψ | ¬ϕ)

A possible belief revision policy: Information about different players
should be epistemically independent.

Eric Pacuit 27



Theorem (Stalnaker’s interpretation of Aumann’s theorem) Let G be a
game of perfect information in agent form (i.e., players only move once)
in which for each player different outcomes have different payoffs. Let M
be a model for G in which it is common belief that all agents are
perfectly rational, and that all agents adopt belief revision policies that
treat information about different agents as epistemically independent.
Then in M, the subgame perfect equilibrium strategy profile is realized.
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A B C 3

2 1 0

L

T t

l

T

L
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1. If Shakespeare had not written Hamlet, it would never have been
written.

2. If Shakespeare didn’t write Hamlet, someone else did.

1. is a causal counterfactual, and 2. is an expression of a belief revision
policy.

Eric Pacuit 30



1. General Smith is a shrewd judge of character—he knows (better
than I) who is brave and who is not.

2. The general sends only brave men into battle.

3. Private Jones is cowardly.

I believe that (1) Jones would run away if he were sent into battle and
(2) if Jones is sent into battle, then he won’t run away.

Eric Pacuit 31



1. Ann cheats — she has seen her opponent’s cards.

2. Ann has a losing hand, since I have seen both her hand and her
opponent’s.

3. Ann is rational.

So, I conclude that she will not bet. But how should I revise my beliefs if
I learn that Ann did bet?

It may be perfectly reasonable for me to be disposed to give up 2.

I believe that (1) I Ann were to bet, she would lose (since she has a
losing hand) and (2) If I were to learn that she did bet, I would conclude
she will win.
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Bob
A
nn

U t l

T 2,2 2,2 U

LT 1,1 0,0 U

LL 1,1 3,3 U

A B A 3, 3

2, 2 1, 1 0, 0

L

T t

l

T

L

I The backward induction solution is (LL, l)

I Consider a model with a single possible world assigned the profile
(TL, t).
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I T is a best response to t, so Ann is materially rational. She is also
substantively rational. (Why?)

I Bob doesn’t move, so Bob is materially rational. Is he substantively
rational?
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LT 1,1 0,0 U
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2, 2 1, 1 0, 0
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T t
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T

L

I Is Bob substantively rational? Would t be rational, if he had a
chance to act?

I Suppose that Bob is disposed to revise his beliefs in such a way that
if Ann acted irrationally once, she will act irrationally later in the
game.
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T 2,2 2,2 U

LT 1,1 0,0 U

LL 1,1 3,3 U

A B A 3, 3

2, 2 1, 1 0, 0

L

T t

l

T

L

I Bob’s belief in a causal counterfactual: Ann would choose L on her
second move if she had a chance to move.

I But we need to ask what would Bob believe about Ann if he learned
that he was wrong about her first choice. This is a question about
Bob’s belief revision policy.
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Models of Extensive Games

Let Γ be a non-degenerate extensive game with perfect information. Let
Γi be the set of nodes controlled by player i .

A strategy profile σ describes the choice for each player i at all vertices
where i can choose.

Given a vertex v in Γ and strategy profile σ, σ specifies a unique path
from v to an end-node.

M(Γ) = 〈W ,∼i , σ〉 where σ : W → Strat(Γ) and ∼i⊆W ×W is an
equivalence relation.

If σ(w) = σ, then σi (w) = σi and σ−i (w) = σ−i

(A1) If w ∼i w
′ then σi (w) = σi (w

′).
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Rationality

hvi (σ) denote “i ’s payoff if σ is followed from node v”

i is rational at v in w provided for all strategies si 6= σi (w),
hvi (σ(w ′)) ≥ hvi ((σ−i (w

′), si )) for some w ′ ∈ [w ]i .
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Substantive Rationality

i is substantively rational in state w if i is rational at a vertex v in w
of every vertex in v ∈ Γi
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Stalnaker Rationality

For every vertex v ∈ Γi , if i were to actually reach v, then what he would
do in that case would be rational.

f : W × Γi →W , f (w , v) = w ′, then w ′ is the “closest state to w where
the vertex v is reached.

(F1) v is reached in f (w , v) (i.e., v is on the path determined by
σ(f (w , v)))

(F2) If v is reached in w , then f (w , v) = w

(F3) σ(f (w , v)) and σ(w) agree on the subtree of Γ below v
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A B A
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

W = {w1,w2,w3,w4,w5} with σ(wi ) = s i

[wi ]A = {wi} for i = 1, 2, 3, 4, 5

[wi ]B = {wi} for i = 1, 4, 5 and [w2]B = [w3]B = {w2,w3}
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A B A
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

I W = {w1,w2,w3,w4,w5} with σ(wi ) = s i

I [wi ]A = {wi} for i = 1, 2, 3, 4, 5

I [wi ]B = {wi} for i = 1, 4, 5 and [w2]B = [w3]B = {w2,w3}

Eric Pacuit 38



A B A
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

w1 w2 w3

w4 w5

It is common knowledge at w1 that if vertex v2 were reached, Bob
would play down.
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A B

v2

A
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

w1 w2 w3

w4 w5

It is common knowledge at w1 that if vertex v2 were reached, Bob
would play down.
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A B

v2

A
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

w1 w2 w3

w4 w5

Bob is not rational at v2 in w1 add asdf a def add fa sdf asdfa adds asdf
asdf add fa sdf asdf adds f asfd
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A B

v2

A
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

w1 w2 w3

w4 w5

Bob is rational at v2 in w2 add asdf a def add fa sdf asdfa adds asdf asdf
add fa sdf asdf adds f asfd
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A B

v2

A

v3
(3, 3)

(2, 2) (1, 1) (0, 0)

a a a

d d d s1 = (da, d), s2 = (aa, d),
s3 = (ad , d), s4 = (aa, a),
s5 = (ad , a)

w1 w2 w3

w4 w5

Note that f (w1, v2) = w2 and f (w1, v3) = w4, so there is common
knowledge of S-rationality at w1.
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Aumann’s Theorem: If Γ is a non-degenerate game of perfect
information, then in all models of Γ, we have C (A− Rat) ⊆ BI

Stalnaker’s Theorem: There exists a non-degenerate game Γ of perfect
information and an extended model of Γ in which the selection function
satisfies F1-F3 such that C (S − Rat) 6⊆ BI .

Revising beliefs during play:

“Although it is common knowledge that Ann would play across if v3 were
reached, if Ann were to play across at v1, Bob would consider it possible
that Ann would play down at v3”
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F4. For all players i and vertices v , if w ′ ∈ [f (w , v)]i then there exists a
state w ′′ ∈ [w ]i such that σ(w ′) and σ(w ′′) agree on the subtree of Γ
below v .

Theorem (Halpern). If Γ is a non-degenerate game of perfect
information, then for every extended model of Γ in which the selection
function satisfies F1-F4, we have C (S − Rat) ⊆ BI . Moreover, there is
an extend model of Γ in which the selection function satisfies F1-F4.

J. Halpern. Substantive Rationality and Backward Induction. Games and Economic
Behavior, 37, pp. 425-435, 1998.
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