Games with incomplete information
and common priors

Chapter summary

In this chapter we study situations in which players do not have complete information
on the environment they face. Due to the interactive nature of the game, modeling such
situations involves not only the knowledge and beliefs of the players, but also the whole
hierarchy of knowledge of each player, that is, knowledge of the knowledge of the
other players, knowledge of the knowledge of the other players of the knowledge of
other players, and so on. When the players have beliefs (i.e. probability distributions) on
the unknown parameters that define the game, we similarly run into the need to
consider infinite hierarchies of beliefs. The challenge of the theory was to incorporate
these infinite hierarchies of knowledge and beliefs in a workable model.

We start by presenting the Aumann model of incomplete information, which models
the knowledge of the players regarding the payoff-relevant parameters in the situation
that they face. We define the knowledge operator, the concept of common knowledge,
and characterize the collection of events that are common knowledge among the
players.

We then add to the model the notion of belief and prove Aumann'’s agreement
theorem: it cannot be common knowledge among the players that they disagree about
the probability of a certain event.

An equivalent model to the Aumann model of incomplete information is a Harsanyi
game with incomplete information. After presenting the game, we define two notions
of equilibrium: the Nash equilibrium corresponding to the ex ante stage, before players
receive information on the game they face, and the Bayesian equilibrium corresponding
to the interim stage, after the players have received information. We prove thatin a
Harsanyi game these two concepts are equivalent.

Finally, using games with incomplete information, we present Harsanyi's
interpretation of mixed strategies.

As we have seen, a very large number of real-life situations can be modeled and analyzed

using extensive-form and strategic-form games. Yet, as Example 9.1 shows, there are
situations that cannot be modeled using those tools alone.
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Figure 9.1 The game of Matching Pennies, in extensive form and strategic form

Suppose that Player I knows that he is playing Matching Pennies, but believes that Player II
does not know that the pure strategy R is available to her. In other words, Player I believes that
Player 11 is convinced that she has only one pure strategy, L. Suppose further that Player II does
in fact know that she (Player II) is playing Matching Pennies, with both pure strategies available.
How can we model this game? Neither the extensive-form nor the strategic-form descriptions of
the game enable us to model such a state of players’ knowledge and beliefs. If we try to analyze
this situation using only the depictions of the game appearing in Figure 9.1, we will not be able to
predict how the players will play, or recommend an optimal course of action.

For example, as we showed on page 52, the optimal strategy of Player I playing Matching
Pennies is the mixed strategy [3(T), 3(B)]. But in the situation we have just described, Player 1
believes that Player II will play L, so that his best reply is the pure strategy T

Note that Player I's optimal strategy depends only on how he perceives the game: what he knows
about the game and what he believes Player 11 knows about the game. The way that Player Ii really
perceives the game (which is not necessarily known to Player I) has no effect on the strategy chosen
by Player I.

Consider next a slightly more complicated situation, in which Player I knows that he is playing
Matching Pennies, he believes that Player 1I knows that she is playing Matching Pennies, and he
believes that Player II believes that Player I does not know that the pure strategy B is available to
him. Then Player I will believe that Player I believes that Player I will play strategy T, and he will
therefore conclude that Player 11 will select strategy R, and Player I's best strategy will therefore
be B.

A similar situation obtains if there is incomplete information regarding some of the payoffs. For
example, suppose that Player I knows that his payoff under the strategy profile (T, L) is 5 rather
than 1, but believes that Player 1I does not know this, and that she thinks the payoff is 1. How
should Player I play in this situation? Or consider an even more complicated situation, in which
both Player I and Player II know that Player I's payoff under (T, L} is 5, but Player 1I believes
Player I does not know that she (Player TI) knows this; Player Il believes Player I believes Player II

Situations like those described in Example 9.1, in which players do not necessarily
know which game is being played, or are uncertain about whether the other players know
which game is being played, or are uncertain whether the other players know whether
the other players know which game is being played, and so on, are called situations of
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i “incomplete information.” In this chapter we study such situations, and see how they can

be modeled and analyzed as games.

! Notice that neither of the situations described in Example 9.1 is well defined, as we have

E not precisely defined what the players know. For example, in the second case we did not
specify what Player I knows about what Player Il knows about what Player I knows about

Z- :' what Player Il knows, and we did not touch upon what Player 11 knows. Consideration of
E' E hierarchies of levels of knowledge leads to the concept of common knowledge, which we

i touched upon in Section 4.5 (page 87). An informal definition of common knowledge is:
1

. 3 Definition 9.2 A fact F is common knowledge among the players of a game if all the
1 players know F, all the players know that all the players know F, all the players know
: that all the players know that all the players know F, and so on (for every finite number
1 of levels).)

1 Definition 9.2 is incomplete, because we have not yet defined what we mean by a
“fact,” nor have we defined the significance of the expression “knowing a fact.”” These
concepts will be modeled formally later in this chapter, but for now we will continue with
an informal exposition.

| 1 So far we have seen that in situations involving several players, incomplete knowledge
. of the game that is being played leads us to consider infinite hierarchies of knowledge.
. B In decision-making situations with incomplete information, describing the information
| i { that decision makers have usually cannot be captured by labeling a given fact as “known”
|

or “unknown.” Decision makers often have assessments or beliefs about the truthfulness
of various facts. For example, when a person takes out a variable-rate loan he never has
_ precise knowledge of the future fluctuations of the interest rate (which can significantly
I3 affect the total amount of loan repayment), but he may have certain beliefs about future
! rates, such as *I assign probability 0.7 to the event that there will be lower interest rates
over the term of the loan.” To take another example, a company bidding for oil exploration
rights in a certain geographical location has beliefs about the amount of oil likely to be
found there and the depth of drilling required (which affects costs and therefore expected
profits). A trial jury passing judgment on a defendant expresses certain collective beliefs
about the question: is the defendant guilty as charged? For our purposes in this chapter,
the source of such probabilistic assessments is of no importance. The assessments may be
based on “objective” measurements such as geological surveys (as in the oil exploration
example), on impressions (as in the case of a jury deliberating the judgment it will render in
a trial), or on personal hunches and information published in the media (as in the example
of the variable-rate loan). Thus, probability assessments may be objective or subjective.?
In our models, a decision maker’s beliefs will be expressed by a probability distribution
function over the possible values of parameters unknown to him.
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1 A simple example of a fact that is common knowledge is a public event: when a teacher is standing before a class,
that fact is common knowledge among the students, because every student knows that every student knows . .. that
the teacher is standing before the class.

2 A formal model for deriving an individual's subjective probability from his preferences was first put forward by
Savage [1954], and later by Anscombe and Aumana [1963] {see also Section 2.8 on page 26).
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Example 9.1 [Contin;:ed) Returning to the Matching Pennies example, suppose that Player 1 attributes

9.1

Games with incomplete information and common priors

The most widely accepted statistical approach for dealing with decision problems in
situations of incomplete information is the Bayesian approach.? In the Bayesian approach,
every decision maker has a probability distribution over parameters that are unknown to
him, and he chooses his actions based on his beliefs as expressed by that distribution.
When several decision makers (or players) interact, knowing the probability distribution
(beliefs) of each individual decision maker is insufficient: we also need to know what each
one’s beliefs are about the beliefs of the other decision makers, what they believe about
his beliefs about the others’ beliefs, and so on. This point is illustrated by the following
example. ’

probability p( to the event: “Player IT knows that R is a possible action.” The action that Player I
will choose clearly depends on py, because the entire situation hinges on the value of p\: if py = 1,
Player I believes that Player II knows that R is an action available 10 her, and if py = 0, he believes
that Player II does not know that R is possible at all. If 0 < p; < I, Player I believes that it is
possible that Player II knows that R is an available strategy. But the action chosen by Player I
also depends on his beliefs about the beliefs of Player II: because Player I's action depends on
pi, it follows that Player II's action depends on her beliefs about pi, namely, on her beliefs about
Player I’s beliefs. By the same reasoning, Player I's action depends on his beliefs about Player II's
beliefs about his own beliefs, p). As in the case of hierarchy of knowledge, we see that determining
the best course of action of a Player requires considering an infinite hierarchy of beliefs. «

Adding beliefs to our model is a natural step, but it leads us to an infinite hierarchy
of beliefs. The concepis of knowledge and of beliefs are closely intertwined in games
of incomplete information. For didactic reasons, however, we will treat the two notions
separately, considering first hierarchies of knowledge and then hierarchies of beliefs.

The Aumann mode! of incomplete information and the
concept of knowledge

In this section we will provide a formal definition of the concept of “knowledge,” and then
construct hierarchies of knowledge: what each player knows about what the other players
know. We will start with an example to illustrate the basic elements of the model.

Example 9.3 | Assume thatracing cars are produced in three possible colors: gold, red, and purple. Color-blind

individuals cannot distinguish between red and gold. Everyone knows that John is color-blind, but
no one except Paul knows whether or not Paul is color-blind too. John and Paul are standing side
by side viewing a photograph of the racing car that has just won first prize in the Grand Prix, and
asking themselves what color it is. The parameter that is of interest in this example is the color of

3 The Bayesian approach is named afier Thomas Bayes, 1702-1761, a British clergyman and mithematician who
formulated a special case of the rule now known as Bayes’ rule.
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9.1 The Aumann model and the concept of knowledge

the car, which will later be called the state of nature, and we wish to describe the knowledge that
the players possess regarding this parameter.

If the color of the car is purple, then both color-blind and non-color-blind individuals know that
fact, so that both John and Paul know that the car is purple, and each of them knows that the other
knows that the car is purple. If, however, the car is red or gold, then John knows that it is either red
or gold. As he does not know whether or not Paul is color-blind, he does not know whether Paul
knows the exact color of the car. Because Paul knows that John is color-blind, if the car is red or
gold he knows that John does not know what the precise color is, and John knows that Paul knows
this.

We therefore need to consider six distinct possibilities (three possibilities per car color times two
possibilities regarding whether or not Paul is color-blind):

¢ The car is purple and Paul is not color-blind. John and Paul both know that the car is purple, they
each know that the other knows that the car is purple, and so on.

e The car is purple and Paul is color-blind. Here, too, John and Paul both know that the car is
purple, they each know that the other knows that the car is purple, and so on.

o The car is red and Paul is not color-blind. Paul knows the car is red; John knows that the car is
red or gold; John does not know whether or not Paul knows the color of the car.

e The car is gold and Paul is not color-blind. Paul knows the car is gold; John knows that the car is
red or gold; John does not know whether or not Paul knows the color of the car.

o The car is red and Paul is color-blind. Paul and John know that the car is red or gold; John does
not know whether or not Paul knows the color of the car.

 The car is gold and Paul is color-blind. Paul and John know that the car is red or gold; John does
not know whether or not Paul knows the color of the car.

In each of these possibilities, both John and Paul clearly know more than we have explicitly
writien above. For example, in the latter four situations, Paul knows that John does not know
whether Paul knows the color of the car. Each of the six cases is associated with what will be
defined below as a state of the world, which is a description of a state of nature (in this case, the
color of the car) and the state of knowledge of the players. Note that the first two cases describe
the same state of the world, because the difference between them (Paul’s color-blindness) affects
neither the color of the car, which is the parameter that is of interest to us, nor the knowledge of the
players regarding the color of the car. <

The definition of the set of states of nature depends on the situation that we are analyzing.
In Example 9.3 the color of the car was the focus of our interest — perhaps, for example,
because a bet has been made regarding the color. Since the most relevant parameters in
a game are the payoffs, in general we will want the states of nature to describe all the
parameters that affect the payoffs of the players (these are therefore also called “payoft-
relevant parameters”). For instance, if in Example 9.3 we were in a situation in which
Paul’s color-blindness {or lack thereof) were to affect his utility, then color-blindness
would be a payoff-relevant parameter and would comprise a part of the description of the
state of nature. In such a model there would be six distinct states of nature, rather than
three.

Definition 9.4 Let S be a finite set of states of nature. An Aumann model of incom-
plete information (over the set S of states of nature) consists of four components
(N, Y, (Fiien, 5), where:
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e N is a finite set of players;

Y is a finite set of elements called states of the world;*

F; is a partition of Y, for each i € N (i.e., a collection of disjoint nonempty subsets of
Y whose unionis Y);

« 5: Y — § is a function associating each state of the world with a state of nature.

The .interpretation is that if the “true” state of the world is w,, then each player i €
N knows only the element of his partition F; that contains w,. For example, if ¥ =
lwy, w2, w3} and F; = {{w, w-}, {w3}}, then player i cannot distinguish between w; and
w;. In other words, if the state of the world is w;, player { knows that the state of
the world is either w; or ws, and therefore knows that the state of the world is not
ws. For this reason, the partition F; is also calied the information of player i. The
element of the partition J; that contains the state of the world w is denoted Fi(w).
For convenience, we will use the expression “the information of player " to refer both
to the partition F; and to the partition element Fi(w.) containing the true state of the
world.

Definition 9.5 An Aumann situation of incomplete information over a set of states of
nature S is a quintuple (N, Y, (Fi)ien 5 w,), where (N, Y, (Fiien, 5) is an Aumann
model of incomplete information and v, € Y.

The state w, is the “true state of the world” and each player knows the partition element
Fi(w,) in his information partition that contains the true state. A situation of incomplete
information describes a knowledge structure at a particular state of the world, i.e., ina
particular reality. Models of incomplete information, in contrast, enable us to analyze all
possible situations.

Example 9.3 E{E‘oﬂﬁnueﬂ} _An ‘Aunmannmode} of incomplete information f;this examph;. is as follows:
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N = {John, Paul}.

S — {Purple Car, Red Car, Gold Car}.

Y= [wg.l! W1, W2, W2, mp}-

John's Partiﬁon is -FJ = {{wg.l » Wg 2, Wr wr.Z}! {wp”'
Paul’s partition is j-P i {{wg,li wl‘.l}: {wg.Z}a {wr.2}$ {wp}}
o The function s is defined by

s{wg 1) = 8(wg,2) = Gold Car, s(w;,) = s{w2) = Red Car, s(wp) = Purple Car.

The state of the world w, is associated with the situation in which the car is purple, in which
case both John and Paul know that it is purple, and each of them knows that the other knows that
the car is purple. It represents the two situations in the two first bullets on page 323, which differ
only in whether Paul is color-blind or not. As we said before, these two situations are equivalent,
and can be represented by the same state of the world, as long as Paul’s color-blindness is not

4 We will later examine the case where Y is infinite, and show that some of the results obtained in this chapter also
hold in that case.
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payoff relevant, and hence is not part of the description of the state of nature. The state of the world
wg, | 15 associated with the situation in which the car is gold and Paul is color-blind, while the state of
the world w,; is associated with the situation in which the car is red and Paul is color-blind; in both
these situations, Paul cannot distinguish which state of the world holds, because he is color-blind
and cannot tell red from gold. The state of the world w, » is associated with the situation in which
the car is gold and Paul is not color-blind, while the state of the world w; > is associated with the
situation in which the car is red and Paul is not color-blind; in both these cases Paul knows the true
color of the car. Therefore, Fp{wg2) = {wg2], and Fp(wg,1) = {wg,1, @ t).

As for John, he is both color-blind and does not know whether Paul is color-blind. He therefore
cannot distinguish between the four states of the world (w1, @r,1, @y 2, w2}, 50 that Fi(w,) =
F:l(wg.2) = Fi{we,1) = Fi(wr2) = [wg.h Wy, Wy 2, w2}

The true state of the world is one of the possible states in the set Y. The Aumann model along
with the true state of the world describes the actual situation faced by John and Paul. «

Definition 9.6 An event is a subset of Y.

In Example 9.3 the event {wyg |, w; 2} is the formal expression of the sentence “the car
is gold,” while the event {awy,|, wg2, wp} is the formal expression of the sentence “the car
is either gold or purple.”

We say that an event A obtains in a state of the world w if w € A. It follows that if event
A obtains in a state of the world w and if A € B, then event B obtains in w.

Definition 9.7 Let (N, Y, (Fi)ien, 5) be an Aumann model of incomplete information, let
i be aplayer, let w € Y be a state of the world, and let A C Y be an event. Player i knows
Ainw if

Fi(w) < A. (8.1)

If Fi(w) € A, then in state of the world w player i knows that event A obtains (even
though he may not know that the state of the world is w), because according to his
information, all the possible states of the world, F;(w), are included in the event A,

Definition 9.8 Let (N, Y, (Fi)ien, 5) be an Aumann model of incomplete information, let
i be a player; and let A C Y be an event. Define an operator K; : 2¥ — 2Y by®

Ki(A):={weY: Fi(w) € A} (9.2)

We will often denote K;(A), the set of all states of the world in which player i knows
event A, by K;A. Thus, player i knows event A in state of the world w, if and oaly if
w, € K;A. The definition implies that the set K; A equals the union of all the elements in
the partition F; contained in A. The event K ;(K; A) (which we will write as K ; K; A for
short) ts the event that player j knows that player i knows A:

KjK,'A = {(D eY: Fj(w) c K,‘A}. (93)

---------------------------------- LR R N N P N N Y PN RN N ¥

5 The collection of all subsets of ¥ is denoted by 2V,
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Example 9.3 |(Gonrinued) Denote A = {3}, B = {na), and C = {wr.1, wez). Then

KJA ={wp] = A, KJB =@, KJC::@,

KpA = {wp] = A, KpB = {2}, KpC = {ex2).
The content of the expression KpB = {ar} is that only in state of the world w2 does Paul know
that event B obtains (meaning that only in that state of the world does he know that the car is red).

The content of K;B = @ is that there is no state of the world in which John knows that B obtains;
i.e., he never knows that the car is red and that Paul is not color-blind. From this we conclude that

Y K;KpC = K)B = 0. 9.4)

This means that there is no state of the world in which John knows that Paul knows that the car
is red. In contrast, ey, € KpKjA, which means that in state of the world w, Paul knows that John
knows that the state of the world is w, (and in particular, that the car is purple). -

We can now present some simple results that follow from the above definition of
knowledge. The first resuit states that if a player knows event A in state of the world w,
then it is necessarily true that @ € A. In other words, if a player knows the event A, then
A necessarily obtains (because the true state of the world is contained within it).5

Theorem 9.9 K;A C A for every event A € Y and every playeri € N.

Proof: Letw € K;A. From the definition of knowledge it follows that Fi(w) © A. Since
w € F;(w) it follows that @ € A, which is what we needed to prove. O

Our second result states that if event A is contained in event B, then the states of the
world in which player i knows event A form a subset of the states of the world in which
the player knows event B. In other words, in every state of the world in which a player
knows event A, he also knows event B.

Theorem 9.10 For every pair of events A, B C Y, and every playeri € N,
AcCcB = KACK;B. (9.5)

Proof- We will show that w € K;A implies that w € K; B. Suppose that w € Ki;A. By
definition, Fi{w) € A, and because A € B, one has F;(w) € B. Therefore, w € K; B,
which is what we need to show. ]

Our third result” says that if a player knows event A, then he knows that he knows event
A, and conversely, if he knows that he knows event A, then he knows event A.

Theorem 9.11 For every event A C Y and every playeri € N, we have K:K;A = KA.

Proof: Theorems 9.9 and 9.10 imply that K; K; A € K;A. We will show that the opposite
inclusion holds, namely, if w € K;A thenw € K; K; A. Ifw € K; A then Fi(w) € A. There-
fore, for every o’ € Fi(w), we have o’ € Fi(0") = Fi(w) € A. It follows that o € K;A.
As this is true for every o’ € Fi(w), we deduce that Fi{(w) € K; A, which implies that
we K;K;A. Thus, K;A € K KA, which is what we wanted (o prove. O

& In the literature, this is known as the “axiom of knowledge.”
7 One part of this theorem, namely, the fact that if a player knows an event, then he knows that he knows the event,
is known in the literature as the “axiom of positive introspection.”
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More generally, the knowledge operator X; of player i satisfies the following five
properties, which collectively are called Kripke's S5 System:

1. K;Y =Y the player knows that Y is the set of all states of the world.
2. K;ANK;B = K;(A N B): if the player knows event A and knows event B then he
knows event AN B.

. K;A € A: if the player knows event A then event A obtains.

4. K;K;A = K;A: if the player knows event A then he knows that he knows event A, and
vice versa.

5. (K;A) = K;((K;A)): if the player does not know event A, then he knows that he does
not know event A, and vice versa.8-?

[F%)

Property 3 was proved in Theorem 9.9. Property 4 was proved in Theorem 9.11. The
proof that the knowledge operator satisfies the other three properties is left to the reader
(Exercise 9.1). In fact, Properties 1-5 characterize knowledge operators: for every operator
K :2¥ — 2Y satisfying these properties there exists a partition 7 of ¥ that induces K via
Equation (9.2) (Exercise 9.2).

Example 9.12 ia@mthbny; Betty, and Carol are each wearing a hat. Hats may be red () or blue (77). Each oneﬁ

the three sees the hats worn by the other two, but cannot see his or her own hat, and therefore does
not know its color. This situation can be described by an Aumann model of incomplete information
as follows:

s The set of players is N = {Anthony, Betty, Carol}.

= The set of states of nature is
S={(rnrr)(reb),(r,br),(r,b, b, (b, r,r),(b.r,b), (b, b, r), (b, b, b)). A state of nature is
described by three hat colors: that of Anthony's hat (the left letter), of Betty’s hat {the middle
letter), and of Carol (the right letter).

s The set of states of the world is

Y = {@rrr, Wrrby Orpr, Wrphs prr, Ohrpy Whpr, Wi}
o The function s : ¥ — § that maps every state of the world to a state of nature is defined by

5(wrrr) = (r' r1 r)i s(wrrb) . (rv r! b)! 5(wrbr) = (r1 b’ r)a s(wﬂ')b) = (r, b? b)a
5(‘”&#) —~ (b7 I, r)1 s(wbrb) = (bv r, b), E(Cﬂbbr) = (b, b! l"), 5(wbbb) i (b7 b1 b)

The information partitions of Anthony, Betty, and Carol are as follows:

Fa = ({@rrr, Obrr by (@rrby Wb}y (Wrbr, wbbrl, {wrbbv weps)),s (9.6)
FB = {{Wrrr, wrr ) [@rrb, wrbb}s [whrr: Wppr ), {Wors, wppsl), 0.7
Fe = {@rrr, Wrrn}s (@ror, @ron}s {@brr, Worb), {Wpbr, whpsl). (9.8)

For example, when the state of the world is w1, Anthony sees that Betty is wearing a red hat
and that Carol is wearing a blue hat, but does not know whether his hat is red or blue, so that he
knows that the state of the world is in the set {w,,5, wpr5}, Which is one of the elements of his
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8 The first part of this property, i.e., the fact that if a player does not know an event, then he knows that he does not
know it, is known in the literature as the “axiom of negative introspection.”
9 For any event A, the complement of A is denoted by A® := ¥ | A,
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partition F4. Similarly, if the state of the world is wp5, Betty knows that the state of the world is
in her partition element {ws,p, @pbs}s and Carol knows that the state of the world is in her partition
element {wprr, Wprb)-

Let R be the event “there is at least one red hat,” that is,

R= {wrrrv Wrrhy Webr s Wrphy Whrry Whrbs wbbr]- (99)

In which states of the world does Anthony know R? In which states does Betty know that Anthony
knows R? In which states does Carol know that Betty knows that Anthony knows R? To begin
answering the first question, note that in state of the world w,,., Anthony knows R, because

Fal@rrr) = {Wrrr, wpre} € R 9.10)

Anthony also knows R in each of the states of the world @yrp, Wrbrr @orby Whrr, AN Wppy. In
contrast, in the states 5 and wp; he does not know R, because

Fa(wypn) = Falwpss) = (0rpp, wbop) E R. 9.11)
In summary,
KaR = {w eY: FA(m) CRl= {@Wrrrs Wrbrs Wrrby Whrbs Whrrs Whpy )

The analysis here is quite intuitive: Anthony knows R if either Betty or Carol (or both) is wearing
a red hat, which occurs in the states of the world in the set (@rrrs Wrbrs Wrrbs Wbrby Ghrry Wobr }. When
does Betty know that Anthony knows R? This requires calculating KpKaR.

KpKaR=(we Y: Fp(w) € KaAR)
={we?Y: Fg(w) © {wrrrr Wehry Wrrby Whrbs Whbrrs wbbr]}
= (Wrrr, Whrrs Wrbr, Wpbr }- (9.12)

For example, since Fa(wrsr) = {@rbr, @rrr} € K4 R we conclude that @, € KpKaR.Onthe other
hand, since Fa(wsry) = {@prb, wopp} E KaR, it follows that ws., € KpKaR. The analysis here is
once again intuitively clear: Betty knows that Anthony knows R only if Carol is wearing a red hat,
which only occurs in the states of the world [@prr, @brrs @rbry Whbr}-

Finally, we answer the third question: when does Carol know that Betty knows that Anthony
knows R? This requires calculating KcKpKaR.

KcKpKaR={weY: Fe(w) € KgKaR)
= [ﬂ) e¥: Fc(ﬂ)) C [Wrrr, Whrr) Wrbrs wWhpr )} = @. (9.13)

For example, since Fo(w.pr) = {@rbr. wrpp) € KaKaR, we conclude that @, & KcKpKaR. In
other words, there is no state of the world in which Carol knows that Betty knows that Anthony
knows R. This is true intuitively, because as we saw previously, Betty knows that Anthony knows
R only if Carol is wearing a red hat, but Carol does not know the color of her own hat.

This analysis enables us to conclude, for example, that in state of the world w,,, Anthony knows
R, Betty knows that Anthony knows R, but Carol does not know that Betty knows that Anthony
knows R. «4

Note the distinction in Example 9.12 between states of nature and states of the world.
The state of nature is the parameter with respect to which there is incomplete information:
the calors of the hats worn by the three players. The state of the world includes in addition
the mutual knowledge structure of the players regarding the state of nature. For example,
the state of the world w,,, says a lot more than the fact that all three players are wearing red
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hats; for example, in this state of the world Carol knows there is at least one red hat, Carol
knows that Anthony knows that there is at least one red hat, and Carol does not know that
Betty knows that Anthony knows that there is at least one red hat. In Example 9.12 there
is a one-to-one correspondence between the set of states of nature S and the set of states
of the world Y. This is so since the mutual knowledge structure is uniquely determined
by the configuration of the colors of the hats.

: Example 9.13 L.afﬂm:, [Harry, and Tom are in a toom with two windows, one facing north and the other

facing south. Two hats, one yellow and one brown, are placed on a table in the center of the room.
After Harry and Tom leave the room, Arthur selects one of the hats and places it on his head. Tom
and Harry peek in, each through a different window, watching Arthur (so that they both know the
color of the hat Arthur is wearing). Neither Tom nor Harry knows whether or not the other player
who has left the room is peeking through a window, and Arthur has no idea whether or not Tom or
Harry is spying on him as he places one of the hats on his head. An Aumann model of incomplete
information describing this situation is as follows:

o N = {Arthur, Harry, Tom).

o S = {Arthur wears the brown hat, Arthur wears the yellow hat}.

¢ There are eight states of the world, each of which is designated by two indices:

Y = {wpg, 0p,T, W H, W, TH, Wy,8, Wy, T, Wy H, Wy, 1a}. The left index of & indicates the color of
the hat that Arthur is wearing (which is either brown or yellow), and the right index indicates
which of the other players has been peeking into the room (Tom (T), Harry (H), both (TH), or
neither(9)).

o Arthur’s partition contains two elements, because he knows the color of the hat on his
head, but does not know who is peeking into the room: Fu = {{wng, Wb H, @pT, Wy TH])
{C"y,ﬂ: Wy, Hy Wy I, wy.TH}]°

o Tom’s partition contains three elements, one for each of his possible situations of information:
Tom has not peeked into the room; Tom has peeked into the room and seen Arthur wearing the
brown hat; Tom has peeked into the room and seen Arthur wearing the yellow hat. His partition
is thus Fr= {[a)b,ﬂ: {y Hy Wy, @, wy,H]' {wl:l.Tv wb.TH}v [wy.'rv wy.TH}]-

For example, if Tom has peeked and seen the brown hat on Arthur’s head, he knows that
Arthur has selected the brown hat, but he does not know whether he is the only player who
peeked (corresponding to the state of the world wy, 1) or whether Harry has also peeked (state of
the world ey, y)-

o Similarly, Harry’s partition is
Fu = {{ong, w1, Wy g, @y T) {WbH. wb,THY, (@)1, @y THY).

¢ The function s is defined by

5(wy,0) = s(wn, 1) = 5(wp, 1) = 5(wp, 1) = Arthur wears the brown hat;
s(wy,g) = s(wy,1) = s(wy,n) = s(wyn) = Arthur wears the yellow hat.

In this model, for example, if the true state of the world is w. = wy,Tu, then Arthur is wearing
the brown hat, and both Tom and Harry have peeked into the room. The event “Arthur is wearing
the brown hat” is B = {wy g, e T, Wb H, wp,7H}- Tom and Harry know that Arthur’s hat is brown
only if they have peeked into the room. Therefore,

KB = {an, 1, wp,1H). KuB = {wpu, w1l (9.14)

Given Equation (9.14), since the set Ky B is not included in any of the elements in Tom’s partition,
we conclude that Kt KyB = @. In other words, in any state of the world, Tom does not know
whether or not Harry knows that Arthur is wearing the brown hat, and therefore, in particular, this is
the case at the given state of the world, wy Ty. We similarly conclude that Ky KB = @: in any state
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of the world, Harry does not know that Tom knows that Arthur is wearing the brown hat (and in
particular this is the case at the true state of the world, wy tw). This is all quite intuitive; Tom knows
that Arthur is wearing the brown hat only if he has peeked into the room, but Harry does not know !
whether or not Tom has peeked into the room.
Note again the distinction between a state of nature and a state of the world. The objective fact |
about which the players have incomplete information is the color of the hat atop Arthur’s head. |
Each one of the four states of the world {wy g, wy 1. @y, wy,TH} corresponds to the state of nature
“Arthur wears the yellow hat,” yet they differ in the knowledge that the players have regarding the
state of nature. In the state of the world wy », Arthur wears the yellow hat, but Tom and Harry do .
not know that *while in state of the world wy y, Arthur wears the yellow hat and Harry knows that, |
but Tom does not know that. Note that in both of these states of the world Tom and Arthur do not |
know that Harry knows the color of Arthur’s hat, Harry and Arthur do not know whether or not |
Tom knows the color of the hat, and in each state of the world there are additional stalements that i
can be made regarding the players’ mutual knowledge of Arthur’s hat. - |
T e e e — R —_— |

The insights gleaned from these examples can be formulated and proven rigorously.

Definition 9.14 A knowledge hierarchy among players in state of the world w over the
set of states of the world Y is a system of “yes"” or “no” answers to each question of the
form “in a state of the world w, does player i\ know that player i knows that player i3
knows . . . that player iy knows event A”? for any event A C Y and any finite sequence
TR of players'® in N.

The answer to the question “does player /| know that player i» knows that player i3
knows . . . that player i; knows event A?” in a state of the world w is affirmative if @ €
K; Ki.--- K;A, and negative if € K, Kj, - -- K, A. Since for every event A and every
sequence of players i, i, . .., ijtheevent K; K;, -+ K; Als well defined and calculable in |
an Aumann model of incomplete information, every state of the world defines a knowledge |
hierarchy. We have therefore derived the following theorem.

Theorem 9.15 Every situation of incomplete information (N, Y, (Fi)ien, 5, 0s) uniguely |
determines a knowledge hierarchy over the set of states of the world Y in state of the |
world w,.

For every subset C € S of the set of states of nature, we can consider the event that
contains all states of the world whose state of nature is an element of C:

s (C):={we?Y:sw)eCl. (9.15)

For example, in Example 9.13 the set of states of nature {yellow} corresponds to the
event {wy g, Wy H, Wy,G wy,n} in Y. Every subset of S is called an event in §. We define
knowledge of events in S as follows: in a state of the world w player i knows event C
in S if and only if he knows the event s 1(C), ie., if and only if w € K;(5~ L(C)). In the
same manner, in state of the world w player i) knows that player i knows that player i3
knows . . . that player i; knows event C in § if and only if in state of the world w player i)
knows that player i> knows that player i3 knows ... that player i; knows 5~ (o))

10 A player may appear several times in the chain iy, f2, ... i1. For example, the chain player 2 knows that player 1
knows that player 3 knows that player 2 knows event A is a Jegitimate chain.
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Corollary 9.16 is a consequence of Theorem 9.15 (Exercise 9.10).

Corollary 9.16 Every situation of incomplete information (N, Y, (F)ien, 5, w, ) uniquely
determines a knowledge hierarchy over the set of states of nature S in state of the world
.

Having defined the knowledge operators of the players, we next turn to the definition
of the concept of common knowledge, which was previously defined informally (see
Definition 9.2).

Definition 9.17 Let (N, Y, (Fi)ien, 5) be an Aumann model of incomplete information,
let A S Y be an event, and let w € Y be a state of the world. The event A is common
knowledge in w if for every finite sequence of plavers iy, ia, ..., i,

we Ky Ki...Ki KA. (9.16)

That is, event A is common knowledge at state of the world w if in w every player
knows event A, every player knows that every player knows event A, elc. In Examples
9.12 and 9.13 the only event that is common knowledge in any state of the world is ¥
(Exercise 9.12). In Example 9.3 (page 322) the event {w,} (and every event containing it)
is common knowledge in state of the world wy, and the event {wg, 1, w2, w1, wr 2} (and
the event Y containing it) is common knowledge in every state of the world contained in
this event.

Example 9.18 | &brahamselects an integer from the set {5, 6,7, 8,9, 10, 11, 12, 13, 14}. He tells Jefferson

whether the number he has selected is even or odd, and tells Ulysses the remainder left over from
dividing that number by 4. The corresponding Aumann mode! of incomplete information depicting
the induced situation of Jefferson and Ulysses is;

N = [Jefferson, Ulysses]).

§=1{56,7,8,9,10,11, 12, 13, 14}: the state of nature is the number selected by Abraham.

Y = {ws, wg, wy, wy, w9, wip, w11, 12, 013, W13).

The function s : ¥ — § is given by s(wy) = k forevery k € S.

Since Jefferson knows whether the number is even or odd, his partition contains two elements,
corresponding to the subset of even numbers and the subset of odd numbers in the set ¥:

Fi = {{ws, wy, wy, w11, w13}, {ws, wg, wig, @12, w14} .17

» As Ulysses knows the remainder left over from dividing the number by 4, his partition contains
four elements, one for each possible remainder:

Fu = ({ws, wia}, (ws, wy, w3}, {ws, wio, w14), {7, @1}). (9.18)

In the state of the world ws, the event that the selected number is even, ie., A=
{ws, wy, wip, wi2, w14}, is common knowledge. Indeed, K;A = KyA = A, and therefore it fol-
lows that K; K, ... K, K;, A = A for every finite sequence of players iy, i, ..., i;. Since wg € A,
it follows from Deﬁmuon 8.17 that in state of the world wg the event A is common knowledge
among Jefferson and Ulysses. Similarly, in state of the world wy, the event that the selected
number is odd, B = {ws, w7, we, w), w3), is common knowledge among Jefferson and Ulysses
(verify?). «
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Remark 9.19 From Definition 9.17 and Theorem 9.10 we conclude that if event A is
common knowledge in a state of the world w, then every event containing A is also
common knowledge in w. ¢

Remark 9.20 The definition of common knowledge can be expanded to events in S: an
event C in S is common knowledge in a state of the world w if the event s~ Y(C) is common
knowledge in w. For example, in Example 9.13 in state of the world wy,H the event (in the
set of states of nature) “Arthur selects the brown hat” is not common knowledge among
the players (verify!). ¢

Remark 9.21 Ifevent A is common knowledge in a state of the world v, then in particular
w € K;A and so F(w) C A foreachi € N. In other words, all players know A inw.

Remark 9.22 We can also speak of common knowledge among a subset of the players
M C N: in a state of the world w, event A is common knowledge among the players in
M if Equation (9.16) is satisfied for any finite sequence i\, iz, ..., i of playersin M. &

Theorem 9.23 states that if there is a player who cannot distinguish between « and o',
then every event that is common knowledge in w is also common knowledge in '

Theorem 9.23 If event A is common knowledge in state of the world w, and if w' € Fi(w)
for some player i € N, then the event A is also common knowledge in state of the world

'

Proof: Suppose that ' € Fi(w) for some player i € N. As the event A is common
knowledge in w, for any sequence iy, i2, ..., i; of players we have

w e K;K;IK,':...K,'I._lK,',A. (919)
Remark 9.21 implies that
Fi{w) € K, K;, ...K,',_IK,',A. (9.20)

Since ' € Fi(w') = Fi(w)itfollows that ' € K;, K, ... Ki,_ Ky A. As this is true for any
sequence iy, i, ..., i; of players, the event A is common knowledge in o' O

We next turn to characterizing sets that are common knowledge. Given an Aumann
model of incomplete information (N, Y, (Fi)ien, 5), define the graph G = (Y, V) in which
the set of vertices is the set of states of the world Y, and there is an edge between vertices
w and o' if and only if there is a player { such that o’ € F;(w). Note that the condition
defining the edges of the graph is symmetric: ' € Fi(w) if and only if F;(w) = Fi(e), if
and only if € Fi(w'); hence G = (Y, V) is an undirected graph.

A set of vertices C in a graph is a connected component if the following two conditions
are satisfied:

« For every w, ' € C, there exists a path connecting w with o', i.e., there exist w =
W, wy, ..., wg = such that for each k=1,2,..., K —1 the graph contains an
edge connecting wy. and wy41.

« There is no edge connecting a vertex in C with a vertex that is not in C.



333 )

9.1 The Aumann model and the concept of knowledge

The connected component of @ in the graph, denoted by C(w), is the (unique) connected
component containing «.

Theorem 9.24 Let (N, Y, (F))ien, 5) be an Aumann model of incomplete information
and let G be the graph corresponding to this model. Let w € Y be a state of the world and
let A C Y be an event. Then event A is common knowledge in state of the world w if and
only if A 2 C(w).

Proof: First we prove that if A is common knowledge in w, then C(w) S A. Sup-
pose then that o’ € C(w). We want to show that o' € A. From the definition of a
connected component, there is a path connecting w with «'; we denote that path by
w=w,w,...,wf =« . We prove by induction on k that ;. € A, and that A is com-
mon knowledge in wy, forevery 1 < k < K. For k = 1, because the event A is common
knowledge in w, we deduce that w; = w € A. Suppose now that ;. € A and A is com-
mon knowledge in wy. We will show that ;. € A and that A is common knowledge
in w41 Because there is an edge connecting ey and @, , there is a player i such that
W41 € Fi(ewy). Tt follows from Theorem 9.23 that the event A is common knowledge in
wi+1. From Remark 9.21 we conclude that w;..; € A. This completes the inductive step,
so that in particular o’ = wy € A.

Consider now the other direction: if C(w) € A, then event A is common knowledge in
state of the world w. To prove this, it suffices to show that C(w) is common knowledge
in w, because from Remark 9.19 it will then follow that any event containing C{w), and
in particular 4, is also common knowledge in w. Let / be a player in N. Because C(w) is
a connected component of G, for each w’ € C(w), we have Fi(w') € C(w). It follows that

Cw2 |J F@2 |J o) =cw). ©:21)
w' B C{w) w'eCla)

In other words, for each player i the set C(w) is the union of all the elements of
contained in it. This implies that K;(C(w)) = C(w). As this is true for every playeri € N,

it follows that for every sequence of players i), ia, ..., i,
w € Clw) = K; K, -+ K;,C(w), (9.22)
and therefore C(w) is common knowledge in o. O

The following corollary follows from Theorem 9.24 and Remark 9.19.

Corollary 9.25 In every state of the world w € Y, the event C(w) is common knowledge
among the players, and it is the smallest event that is common knowledge in w.

For this reason, C(w) is sometimes called the conumon knowledge component among
the players in state of the world w.

Remark 9.26 The proof of Theorem 9.24 shows that for each player i € N, the set
C(w) is the union of the elements of F; contained in it, and it is the smallest event
containing w that satisfies this property. The set of all the connected components of the
graph G defines a partition of Y, which is called the meet of Fy, F», ..., F,,. This is the
finest partition that satisfies the property that each partition F; is a refinement of it. We
can therefore formulate Theorem 9.24 equivalently as follows. Let (N, Y, (Fiien, 5) be
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an Aumann model of incomplete information. Event A is common knowledge in state of
' the world @ € Y if and only if A contains the element of the meet containing . ¢

9.2 ) The Aumann model of incomplete information with beliefs

The following mode! extends the Aumann model of incomplete information presented in
the previou’ section.

Definition 9.27 An Aumann model of incomplete information with beliefs (over a set of
states of nature S) consists of five elements (N, Y, (Fidien, 5 P), where:

« N is a finite set of players;
o Y is a finite set of states of the world;
: o F, is a partition of Y, for eachi € N;
! e 5:Y — §isa function associating a state of nature 1o every state of the world;
e Pisa pmbability distribution over Y such that P(w) > 0 foreachw € Y.

Comparing this definition to that of the Aumann model of incomplete information
(Definition 9.4), we have added one new element, namely, the probability distribution P
over Y., which is called the common prior. In this model, a state of the world w, is selected |
by a random process in accordance with the common prior probability distribution P.
After the true state of the world has been selected by this random process, each player i
, learns his partition element F;{w,) that contains w,. Prior to the stage at which private
?I :nformation is revealed, the players share a common prior distribution, which is interpreted
| as their belief about the probability that any specific state of the world in Y is the true one.
| After each player i has acquired his private information Fi(w,), he updates his beliefs.

" This process of belief updating is the main topic of this section.
1
|

The assumption that all the players share a common prior is a strong assumption, and
in many cases there are good reasons 10 doubt that it obtains. We will return to this point
! later in the chapter. In contrast, the assumption that P(w) > Oforallw € Y is not a strong
' assumption. As we will show, a state of the world w for which P(w) = 0 is one to which
all the players assign probability 0, and it can be removed from consideration in Y.
in the following examples and in the rest of this chapter, whenever the states of nature
are irrelevant we will specify neither the set S nor the function s.

Example 9.28 | C-on.side'r me'fﬁﬂo;ving Aumann model‘;

o The set of playersis N = {L, .
« The set of states of the world is Y = [w1, w2, w3, w4l
+ The information partitions of the players aré

F = (o o) ool Fu= o1, w3, @2, @4}}- (9.23)
o The common prior P is

P)=1 Pe)=1 Plwy) =35, Plw)= L (9.24)
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A graphic representation of the players’ partitions and the prior probability distribution is provided
in Figure 9.2. Player I's partition elements are marked by a solid line, while Player IT's partition
elements are denoted by a dotted line.

le ‘. 4
7.0 W], wz':-)

3 . Player II: _ .
%.:.ws: :w4.:i!) *enevsven’

Figure 9.2 The information partitions and the prior distribution in Example 9.28

N ey PR T

What are the beliefs of each player about the state of the world? Prior to the chance move
that selects the state of the world, the players have a common prior distribution over the states of
: the world. When a player receives information that indicates that the true state of the world is in
{_ the partition element F;(w, ), he updates his beliefs about the states of the world by calculating the
conditional probability given his information. For example, if the state of the world is w,, Player |
knows that the state of the world is either w; or ws. Player I's beliefs are therefore

: plw)) i ;
’ s o)) = = = 4, 9.25
.'-_ (e | {1, w2}) P i) ~ T4 = 1 (9.25)
i and similarly
| L
Plon | fon, )= —22D 3 __1 (9.26)

plo)+plw)  1+1

In words, if Player I's information is that the state of the world is in {e), w2}, he attributes probability

3 to the state of the world e, and probability £ to the state of the world w. The tables appearing in
Flgure 9.3 are arrived at through a similar calculation. The upper table describes Player I's beliefs,
o as a function of his information partition, and the lower table represents Player II's beliels as a
function of his information partition.

A Player I's Information | @ wy w3 wy
B Player I's beliefs: {w}, w>} ;3 0 0
f {w3, ws} 0 0 3 1
&
| P Player 1I's Information W) w3 w3 Wy

Player 1's beliefs: {w), w3} 3 0 % o0

| :I {w3, W4} 0 % o0 2
|3 Figure 9.3 The beliefs of the players in Example 9.28
. l For example, if Player II's information is {2, w,) (i.e., the state of the world is either a» or w,), he

LB - attributes probability $ to the state of the world w, and probability  to the state of the world w;.

W A player’s beliefs will be denoted by square brackets in which states of the world appear alongside
| the probabllmes that are ascribed to them. For example, © 5 (w2), 5(0)4)] represents beliefs in which
' probablhty £ is ascribed to state of the world w;, and probability 2 % is ascribed to state of the world




Games with incomplete information and common priors

wy. The calculations performed above yield the first-order beliefs of the players at all possible states
of the world. These beliefs can be summarized as follows:

« In state of the world w; the first-order belief of Player 1 is [%(wl), :',_-(wg)] and that of Player I is
(@), §ws)l.

« T state of the world w, the first-order belicf of Player Lis [1(w1), 1(@»)] and that of Player II
is [2(w2), 3(wa)l.

o In state of the world w; the first-order belief of Player Lis [5(w3), L (wy)] and that of Player Il is
(@), (el

« In state of the world wy the first-order belief of Player I is [%(w;), %(w.;)] and that of Player I is

(@), 3.

Given the first-order beliefs of the players over Y, we can construct the second-order beliefs, by
which we mean the beliefs each player has about the state of the world and the first-order beliefs

of the other player. In state of the world w; (or w») Player | attributes probability % to the state of
the world being w; and probability % to the state of the world being 2. As we noted above, when
the state of the world is wj, the first-order belief of Player W is [2(e1), 3(w3)), and when the state

of the world is w», Player II's first-order belief is [%(wg), %(w.q)]. Therefore:

o In state of the world w, (or @») Player I attributes probability % to the state of the world being w,
and the first-order belief of Player 11 being [%(wl), %(w3)], and probability % to the state of the
world being w; and Player II's first-order belief being [2(2), (i)l

We can similarly calculate the second-order beliefs of each of the players in each state of the world:

« In state of the world ws (or wy) Player 1 attributes probability % to the state of the world being w3
and the first-order belief of Player II being [3(w), 3(3)], and probability § to the state of the
world being w; and Player I’s first-order belief being [%(wz), %(cm)].

o In state of the world e, {or w3) Player 11 attributes probability % to the state of the world being
; and the first-order belief of Player I being [$(e1), L{w2)], and probability # to the state of the
world being w3 and Player I's first-order belief being [3 (), L))

« In state of the world w; (or wy) Player II attributes probability -g- to the state of the world being
w, and the first-order belief of Player I being [%(wl). %(wz)], and probability % to the state of the
world being 4 and Player I's first-order belief being [%(w;), -‘3-(w4)].

These calculations can be continued to arbitrarily high orders in a similar manner to yield belief
hierarchies of the two players. |

— —_— — SR - s e ——

Theorem 9.29 says that in an Aumann model, knowledge is equivalent to belief with
probability 1. The theorem, however, requires assuming that P(w) > 0 foreach w € ¥;
without that assumption the theorem’s conclusion does not obtain (Exercise 9.21). In
Example 9.36 we will see that the conclusion of the theorem also fails to hold when the
set of states of the world is infinite.

Theorem 9.29 Let (N, Y, (Fiien, 5, P) be an Awmann model of incomplete information
with beliefs. Then for each w € Y, for each player i € N, and for every event A & Y,
player i knows event A in state of the world w if and only if he attributes probability 1 to
that event:

PA| Filw) =1 & Fi(w) € A. (9.27)
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Notice that the assumption that P(w) > 0 for every w € Y, together with w € Fi(w)
for every w € Y, yields P(F;(w)) > 0 for each player i € N and every state of the world
w € Y, so that the conditional probability in Equation (9.27) is well defined.

Proof: Suppose first that F;(w) € A. Then
P(A | Fi(w)) = P(Fi(w) | Fi(w)) =1, (9.28)
so that P(A | Fi(w)) = 1. To prove the reverse implication, if P(A | Fi{w)) = 1 then

P(AN Fi(®)) _

P(A | Flo) = —5mns = 1, (9.29)

which yields P(A N Fj(w)) = P(Fi{w)). From the assumption that P(w') > 0 for each
o’ € Y we conclude that A N Fi(w) = Fi(w), that is, Fj(w) C A. O

A sitation of incomplete information with beliefs is a vector (N, Y, (F; Yien, 5, P, ,)
composed of an Aumann model of incomplete information with beliefs (N,7Y,
(Fi)ien, 5, P) together with a state of the world w, € Y. The next theorem follows natu-
rally from the analysis we performed in Example 9.28, and it generalizes Theorem 9.15
and Corollary 9.16 to situations of belief.

Theorem 9.30 Every situation of incomplete information with beliefs (N, Y, (Fidien,
5, P, w.) uniquely determines a mutual belief hierarchy among the players over the states
of the world Y, and therefore also a mutual belief hierarchy over the states of nature §.

The above formulation is not precise, as we have not formally defined what the term
“mutual belief hierarchy” means. The formal definition is presented in Chapter 11 where
we will show that each state of the world is in fact a pair, consisting of a state of nature
and a mutual belief hierarchy among the players over the states of nature . The inductive
description of belief hierarchies, as presented in the examples above and the examples
below, will suffice for this chapter.

In Example 9.28 we calculated the belief hierarchy of the players in each state of the
world. A similar calculation can be performed with respect to events.

Emhple 9.28 | (Continued) onsider the situation'in which w, = @, and the event A = {w;, ws). As i’layer

S A U i T L S

I's information in state of the world é; fs [y, an}, the conditional probability that he ascribes to

event A in state of the world w, (or w>) is

PAN{w, @) _ Pla)) _
P({w, @2}) P(lonw)) $+1

Because Player II's information in state of the world w) is {w), w3}, the conditional probability that

he ascribes to event A in state of the world w, (or ws3) is

P(AN{w,es)) _ Plesh) 1§
P(wnol)  P(opws))  1+1

PA | {w, n]) =

=11 (9.30)

PA | {w1, an)) = =1 (9.31)
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Second-order beliefs can also be calculated readily. In state of the world e, Player I ascribes
probability % to the true state being ), in which case the probability that Player II ascribes to event
Ais %; he ascribes probability % to the true state being w», in which case the probability that Player
11 ascribes to event A is (1)/(} + 3) = 2. These are Player I's second-order beliefs about event A
in state of the world w;. We can similarly calculate the second-order beliefs of Player Il, as well ag

all the higher-order beliefs of the two players. «
! L . z . : —_

Exa;'riple 9.31 | Consider, ag;m the Am-na-nn model of incompfete information with beliefs presente_d 1_1]_-_7

Example 9.28, but now with the common prior given by |

Pw;) =Plws) = 1, Plw) =Plw3) = 1. (9.32) :
The partitions 7 and Jy; are graphically depicted in Figure 9.4. I
:l a8 A I: :. LN ] l: I
@O wy; @2 :1)
) = n Player I: (:
Player II: :. .
@':owz,: Emo:%)

cevssa® seses®

Figure 9.4 The information partitions and the prior distribution in Example 9.31

Since w; € Fi(ws), w2 € Fy(w,), and @y € Fi(ws) in the graph corresponding to this Aumann
model, all states in ¥ are connected. Hence the only connected component in the graph is ¥
(verify!), and therefore the only event that is common knowledge in any state of the world w is Y
(Theorem 9.24). Consider now the event A = {w2, w3} and the situation in which w, = w. What
is the conditional probability that the players ascribe to A? Similarly to the calculation performed

in Example 9.28,

P(A N ), w2}) P({wn)) 1 .
L2 = =25 =4 (9.33)

PAllwr oD = —pro o)~ Plwnwsl)  1+7

and we can also readily calculate that both players ascribe probability § to event A in each state of
the world. Formally:

(0:q=PA|R)=2]=Y, [o:gq=PA|Faw)=3}=Y 034
Tt follows from the definition of the knowledge operator that the event “Player [ ascribes probability
% to A” is common knowledge in each state of the world, and the event “Player II ascribes probability
2 1o A” is also common knowledge in each state of the world. In other words, in this situation the
probabilities that the two players ascribe to event A are both common knowledge and equal to each
other.

Is it a coincidence that the probabilities g; and ¢y that the two players assign to the
event A in Example 9.31 are equal (both being %)? Can there be a situation in which it
is common knowledge that to the event A, Player I ascribes probability ¢; and Player I
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ascribes probability gy, where gr # gy? Theorem 9.32 asserts that this state of affairs is
impossible.

Theorem 9.32 Aumann’s Agreement Theorem (Aumann [1976)]) Let (N, Y, (Fiien,

s, P) be an Aumann model of incomplete information with beliefs, and suppose thatn = 2

(i.e., there are two players). Let A C Y be an event and let w € Y be a state of the world. If
the event “Player I ascribes probability qy 1o A” is common knowledge in w, and the event
“Player Il ascribes probability qi to A" is also common knowledge in w, then g1 = qq.

Let us take a moment to consider the significance of this theorem before proceeding
to its proof. The theorem states that if two players begin with “identical beliefs about the
world” (represented by the common prior P) but receive disparate information (represented
by their respective partition elements containing ), then “they cannot agree to disagree™:
if they agree that the probability that Player I ascribes to a particular event is qi, then they
cannot also agree that Player IT ascribes a probability gy to the same event, uniess q1 = qu.
If they disagree regarding a particular fact (for example, Player 1 ascribes probability q1
to event A and Player II ascribes probability ¢y to the same event), then the fact that
they disagree cannot be common knowledge. Since we know that people often agree
to disagree, we must conclude that either (a) different people begin with different prior
distributions over the states of the world, or (b) people incorrectly calculate conditional
probabilities when they receive information regarding the true state of the world.

Proof of Theorem 9.32:  Let C be the connected component of w in the graph correspond-
ing to the given Aumann model. It follows from Theorem 9.24 that event C is common
knowledge in state of the world w. The event C can be represented as a union of partition
elements in Fp; that is, C = U F, where F/ e 7 foreach j. Since P(w') > O for every
w' € Y, it follows that P(F} ) = () for every j, and therefore P(C) > 0.

The fact that Player I ascribes probability g; to the event A is common knowledge in w.
It follows that the event A contains the event C (Corollary 9.25), and therefore each one
of the events (F] /);. This implies that for each of the sets F; / the conditional probability
of A, given that Player I's information is FI" , equals gi. In other words, for each j,

P(ANF)
P(F)

As this equality holds for every j,and C = | i F /it follows from Equation (9.35) that

P(A|F)= =q1. (9.35)

PANC) =) P(ANF)=q) P(F)=qP©). (9.36)
i J
We similarly derive that
P(ANC) = guP(C). (9.37)

Finally, since P(C) > 0, Equations (9.36) and (9.37) imply that gy = gy, which is what
we wanted to show. L]

How do players arrive at a situation in which the probabilities g and gy that they ascribe
to a particular event A are common knowledge? In Example 9.31, each player calculates
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the conditional probability of A given a partition element of the other player, and comes
to the conclusion that no matter which partition element of the other player is used for
the conditioning, the conditional probability turns out to be the same. That is why g; is
common knowledge among the players for i=1IL

In most cases the conditional probability of an event is not common knowledge, because
it varies from one partition element to another. We can, however, describe a process of
information transmission between the players that guarantees that these conditional proba-
bilities will become common knowledge when the process is complete (see Exercises 9.25
and 9.26). Suppose that each player publicly announces the conditional probability he
ascribes to event A given the information (i.e., the partition element) at his disposal. After
each player has heard the other player’s announcement, he can rule out some states of the
world, because they are impossible: possible states of the world are only those in which the
conditional probability that the other player ascribes to event A is the conditional proba-
bility that he publicly announced. Each player can then update the conditional probability
that he ascribes to event A following the elimination of impossible states of the world, and
again publicly announce the new conditional probability he has calculated. Following this
announcement, the players can again rule out the states of the world in which the updated
conditional probability of the other player differs from that which he announced, update
their conditional probabilities, and announce them publicly. This can be repeated again
and again. Using Aumann’s Agreement Theorem (Theorem 9.32), it can be shown that
at the end of this process the players will converge to the same conditional probability,
which will be common knowledge among them (Exercise 9.28).

p—— e ———

: E)-(;mple 9.33 | We proyvide niow an examlil;s of the dyﬁmnic-ia ocess just:iescﬁbéd. More exﬁmples can be
foundin Exercises 9.25 and 9.26. Consider the following Aumann model of incomplete information:

o N ={L1}.
o ¥ = {wli w3, @3, C!J4}-
e The information partitions of the players are

ﬁ = {{wlv w'l]’ {w3! w-l”a }:‘I] = {[wlu Gz, 0)3}, [0)4”. (9'38)
« The prior distribution is
Pp(w) = Pu(ws) =3, Pu(w2) =Pulws) = % (9.39)

The partition elements 7y and Fy are as depicted graphically in Figure 9.5.

% o mzo%}

bt ssusnanss
. 2 . .

ot e A Player Il: ¢ s
:.% ..Cob :w;l,.%.: tesssncsa’

/__'\ﬁ"“

Figure 9.5 The information partitions and the prior distribution in Example 9.33
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Let A = {wn, w3}, and suppose that the true state of the world is w;. We will now trace the dynamu:
process described above. Player T announces the conditional probability P(A | (w1, ws)) = 3 L that
he ascribes to event A, given his information. Notice that in every state of the world Player 1 ascnbes
probablhty 3 to event A, so that this announcement does not add any new mformauon to Player I1,

Next, Player II announces the conditional probability P(A | (w3, ws)) = 5 that he ascribes to
A, given his information. This enables Player I to learn that the true state of the world is not wy,
because if it were ws, Player II would have ascribed conditional probability 0 to the event A.

Player I therefore knows, after Player II's announcement, that the true state of the world is ws,
and then announces that the conditional probability he ascribes to the event A is 1. This informs
Player II that the true state of the world is ws, because if the true state of the world were ) or w»
(the two other possible states, given Player II's information), Player I would have announced that he
ascribed conditional probability % to the event A. Player II therefore announces that the conditional
probability he ascribes to the event A is 1, and this probability is now common knowledge among
the two players.

It is left to the reader to verify that if the true state of the world is w; or w;, the dynamic process
described above will lead the two players to common knowledge that the conditional probability of
the event A i 1s 3 .|

Aumann’s Agreement Theorem has important implications regarding the rationality of
betting between two risk-neutral players (or two players who share the same level of risk
aversion). To simplify the analysis, suppose that the two players bet that if a certain event
1 A occurs, Player II pays Player I one dollar, and if event A fails to occur, Player I pays
Player II one dollar instead. Labeling the probabilities that the players ascribe to event A
as g and gy respectively, Player I should be willing to take this bet if and only if q; > %
with Player II agreeing to the bet if and only if gy < % Suppose that Player 1 accepts the
¥ bet. Then the fact that he has accepted the bet is common knowledge, which means that
‘ 1 the fact that ; > 1 is common knowledge. By the same reasoning, if Player I agrees to
|
|
|
1

X PR
P

3 the bet, that fact i 15 common knowledge, and therefore the fact that ¢;; < 5 is common
' knowledge. Using a proof very similar to that of Aumann’s Agreement Theorem, we
conclude that it is impossible for both facts to be common knowledge unless g; = gy = %
|4 in which case the expected payoff for each player is 0, and there is no point in betting (see
[ | Exercises 9.29 and 9.30),

& Note that the agreement theorem rests on two main assumptions:

| 3 « Both players share a common prior over Y.
» The probability that each of the players ascribes to event A is common knowledge
among them.

-

B | Regarding the first assumption, the common prior distribution P is part of the Aumann
model of incomplete information with beliefs and it is used to compute the players’ beliefs
given their partitions. As the following example shows, if each player’s belief is computed
from a different probability distribution, we obtain a more general model in which the
agreement theorem does not hold. We will return to Aumann models with incomplete
information and different prior distributions in Chapter 10.




o 1 A .:_ |

342 Games with incomplete information and common priors

3 Example_§.34 Inthls example we will ShOW'thﬂt-if the two players hav_e d{fferent priofs-,.'.l:hec-arem 9_3;5;“"‘

not hold. Consider the following Aumann model of incomplete information:

N = {L,I}.
Y= {ﬂ)l, uh, a3, (U4].
The information that the two players have is given by

Fr= {{wla wl}r [wl’n (.t)4}}, JFu = {[mh w-l}v [wlv Lt)3]}. (9-40)

Player I calculates his beliefs based on the following prior distribution:
[

Pi(w1) = Py(n) = Pi(ws) = Pilan) = . (9.41)

Player II calculates his beliefs based on the following prior distribution:

Pu(w;) =Pu(ws) = &,  Pylw:) = Pylws) = 3. (942)

The only connected component in the graph corresponding to this Aumann model is ¥ (verify!), so
that the only event that is common knowledge in any state of the world w is Y. Let A = {w;, w3}
A quick calculation reveals that in each state w € ¥

P(A| F(w) =4, Pu(A| Fu(@) =

[T

(9.43)

That is,
([@:q:=PA|Fe)=1=Y, {o:q:=PA|FR@)=3]=Y. 64

From the definition of the knowledge operator it follows that the facts that ¢ = Land qp = %—
are common knowledge in every state of the world. In other words, it is common knowledge in
every state of the world that the players ascribe different probabilities to the event A. This does not
contradict Theorem 9.32 because the players do not share a common prior. In fact, this result is
not surprising; because the players start off by “agreeing” that their initial probability distributions
diverge (and that fact is common knowledge), it is no wonder that it is common knowledge among
them that they ascribe different probabilities to event A (after learning which partition element they
are in). <

s = _.._!

Example 9.35 T thi?aiample we will ;how that even if the players share a .t.:.ommc.m prior, if the fact

that “Player II ascribes probability gy to event A” is not common knowledge, Theorem 9.32 does
not hold; that is, it is possible that g; # gu. Consider the following Aumann model of incomplete
information:

N ={LTI}.
Y = {, wy, w3, ws).
The players’ information partitions are

Fi = o, e}, (w3, w4}l Fu = {{w, w2, w3}, {wy}}. (9.45)

The common prior distribution is

P(w1) = P(w;) = P(w3) = P(wy) = }. (9.46)
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The partitions Fy and Fy are depicted graphically in Figure 9.6,

/.lllﬂﬂl..l.tilllc.

P ew wzoa

..; PlayerI: @
/."1 T PlayerII: <
Ez ..m ':w4. 13 feresnrees®

Figure 9.6 The partitions of the players in Example 9.35 and the common prior

The only connected component in the graph corresponding to this Aumann model is ¥ (verify!).
Let A = {w), wy]. In each state of the world, the probability that Player I ascribes to event A is

i,
q1 = 3¢

jwer:q=PA|FRw)=1}=v, (9.47)

and therefore the fact that ¢; = % is common knowledge in every state of the world.
In states of the world w;, w;, and w3, Player IT ascribes probability § to event A:

[weY:qu=P(A| Fu(@) = })} = (w1, 02,03} 2 ¥, (5.48)

and in state of the world w, he ascribes probability 0 to A. Since the only event that is common

knowledge in any state of the world is ¥, the event “Player I ascribes probability § to A” is
not common knowledge in any state of the world. For that reason, the fact that q1 # gu does not
contradict Theorem 9.32.

Note that in state of the world w;, Player I knows that the state of the world is in ey, wal,
and therefore he knows that Player IT’s information is {wy, @2, w3}, and thus he (Player I) knows
that Player II ascribes probability gy = % to the event A. However, the fact that Player II ascribes
probability g = % to event A is not common knowledge among the players in the state of the
world w;. This is so because in that state of the world Player II cannot exclude the possibility
that the state of the world is w; (he ascribes to this probability -:"—). If the state of the world is w;,
Player I knows that the state of the world is in {ws, )}, and therefore he (Player I) cannot exclude
the possibility that the state of the world is wy (he ascribes to this probability %), in which case
Player IT knows that the state of the world is wy, and then the probability that Player II ascribes to
event A is 0 (gn = 0). Therefore, in state of the world w, Player II ascribes probability % to the fact
that Player 1 ascribes probability % to Player I ascribing probability 0 to event A. Thus, in state
of the world @, Player I knows that gy = %, yet this event is not common knowledge among the
players. -

Before we proceed, let us recall that an Aumann model consists of two elements:

= The partitions of the players, which determine the information (knowledge) they possess.
o The common prior P that, together with the partitions, determines the beliefs of the
players.
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The knowledge structure in an Aumann model is independent of the common prior P,
Furthermore, as we saw in Example 9.34, even when there is no common prior, and
instead every player has a different subjective prior distribution, the underlying knowl-
edge structure and the set of common knowledge events are unchanged. Not surpris-
ingly, the Agreement Theorem (Theorem 9.32), which deals with beliefs, depends on the
assumption of a common prior, while the common knowledge characterization theorem
(Theorem 9.24, page 333) is independent of the assumption of a common prior.

An infinite set of states of the world

Thus far in the chapter, we have assumed that the set of states of the world is finite. What
if this set is infinite? With regard to set-theoretic operations, in the case of an infinite set
of states of the world we can make use of the same operations that we implemented in the
finite case. On the other hand, dealing with the beliefs of the players requires using tools
from probability theory, which in the case of an infinite set of states of the world means
that we need to ensure that this set is a measurable space.

A measurable space is a pair (Y, F), with ¥ denoting a set, and F a o-algebra over Y.
This means that F is a family of subsets of ¥ that includes the empty set, is closed under
complementation (i.e., if A € F then A=Y \ A € F), and is closed under countable
unions (i.e., if (4,)% , is a family of sets in F then | J;2; A, € F). Aneventis any element
of . In particular, the partitions of the players, F;, are composed solely of elements of F.

The collection of all the subsets of ¥, 2Y, is a o-algebra over Y, and therefore (¥, 2)
is a measurable space. This is in fact the measurable space we used, without specifically
mentioning it, in all the examples we have seen so far in which Y was a finite set. All the
infinite sets of states of the world ¥ that we will consider in the rest of the section will be
a subset of a Euclidean space, and the o-algebra F will be the o-algebra of Borel sets,
that is, the smallest o-algebra that contains all the relatively open sets'' in Y.

The next example shows that when the set of states of the world is infinite, knowl-
edge is not equivalent to belief with probability 1 (in contrast to the finite case; see
Theorem 9.29 on page 336).

Example 9.36 | Gonsider an Aumann model of incomplete information in which the set of players N = {I

contains only one player, the set of states of the world is ¥ = [0, 1], the o-algebra F is the o'-algebra
of Borel sets,12 and the player has no information, which means that 5 = (¥}. The common prior
P is the uniform distribution over the interval [0, 1].

Since there is only one player and his partition contains only one element, the only event that
the player knows (in any state of the world w) is Y. Let A be the set of irrational numbers in the
interval [0, 1], which is in F. As the set A does not contain Y, the player does not know A. But

—————

b |

P(A| Aw)=PA|Y)=PA)=1forallwe Y. <

----------
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11 When ¥ € B9, aset A C Y is relatively open in Y if it is equal to the intersection of ¥ with an open set in RY.
12 In this case the o-algebra of Borel sets is the smallest o-algebra that contains all the open intervals in {0, 1], and
the intervals of the form [0, @) and (a, 1] fore € (0, 1).
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Next we show that when the set of states of the world is infinite, the very notion of
knowledge hierarchy can be problematic. To make use of the knowledge structure, for
every event A € F the event K; A must also be an element of F: if we can talk about the
event A, we should also be able to talk about the event that “player i knows A.”

Is it true that for every o-algebra, every partition (F;);cn representing the information
of the players, and every event A € F, it is necessarily true that K; A € F? When the set
of states of the world is infinite, the answer to that question is no. This is illustrated in
the next example, which uses the fact that there is a Borel set in the unit square whose
projection onto the first coordinate is not a Borel set in the interval [0, 1] (see Suslin
[1917]).

Example 9.37 | @onmﬂer thetfo’l.lomng Aumann model of incomplete mformatxon

o There are two players N = {I, I0}.

» The space of states of the world is the unit square: ¥ = [0, 1] x [0, 1], and F is the o-algebra of
Borel sets in the unit square.

e Fori =1, II, the information of player i is the i-th coordinate of w; that is, for each x,ye{0,1]
denote

Ar={(x,y)eY: 0=y <1} By={(x,y)eY:0=x <] (9.49)

A, is the set of all points in ¥ whose first coordinate is x, and By is the set of all points in Y
whose second coordinate is y. We then have

Fi={A:0=<x=<1}, Fu=(B:0<y=<1} (9.50)

In words, Player I's partition is the set of vertical sections of ¥, and the partition of Player II is
the set of horizontal sections of ¥. Thus, for any (x, y) € ¥ Player I knows the x-coordinate and
Player II knows the y-coordinate,

Let E C Y be a Borel set whose projection onto the x-axis is not a Borel set, i.c., the set
= {x € [0, 1]: there exists y € [0, 1] such that (x, y) € E} (9.51)

is not a Borel set, and hence F° = Y \ F is also not a Borel set in [0, 1]. Player I knows that the
event E does not obtain when the x-coordinate is not in F:

K(EY=F°x[0,1]. (9.52)

This implies that despite the fact that the set E¢ is a Borel set, the set of states of the world in which
Player I knows the event £° is not a Borel set. <

In spite of the technical difficulties indicated by Examples 9.36 and 9.37, in Chapter 10
we develop a general model of incomplete information that allows infinite sets of states
of the world.

) The Harsanyl model of games W|th incomplete information
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In our treatment of the Aumann model of mcompletc information, we concentrated on
concepts such as mutual knowledge and mutual beliefs among players regarding the true



