1 Principles of Rational Decision

So also, the games in themselves merit to be studied
and if some penetrating mathematician meditated
upon them he would find many important results, for
man has never shown more ingenuity than in his plays.

—G. W, Leibniz {quoted in Ore, 1960)

Two Paradigims of Rational Decision

There are two well-developed theories of rational decisionmaking: the
theory of coherent individual decision of Ramsey, de Finetti, and Sav-
age, which is based on the principle of maxinum expected utility, and the
theory of games of von Neumann and Morgenstern, which is based on
the concept of equilibrium.! In the most satisfactory part of the theory of
games, the theory of zero-sum two-person games, von Neumann and
Morgenstern showed that a game-theoretic equilibrium corresponds to
each player playing his or her security strategy—the strategy which max-
imizes the minimum possible gain (the maximin strategy).

Example: Justice as Fairness 1. A group of ten people, of which you
are one, is to divide one million dollars. All agree that a just dis-
tribution scheme is one that would be chosen by a rational, self-
interested agent if he or she were to be one of the recipients but
had no information as to which one. Accordingly, each person is
assigned a numeral from 1 to 10 by lot and you are chosen to
divide the money by numeral among the members. We assume,
for present purposes, that utility is proportional to money. If you
choose by maximin, then you will evaluate each distribution
scheme according to the least amount of money you could receive
under that scheme. Your unique security strategy consists in
choosing to divide the money equally. If you choose to maximize
your expected utility, you evaluate each distribution scheme
according to the average of the payoffs to each of the ten num-
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bers, weighted by the probability that you have that number. As
it is part of the conception of fairness that you have equal prob-
ability of holding any number, all distribution schemes look
equally good. If, for example, the entire million is to be given to
number one and you have a one in ten chance of being number
one, your expected payoff is one hundred thousand dollars. This
is just the payoff that you would get if the million were shared
equally.

What is the proper relationship between the rationality concepts of
expected utility theory and game theory? The two theories have devel-
oped in the absence of a univacal answer to this question. Luce and
Raiffa (1957) suggest in one place that for a decisionmaker facing a sit-
uation of risk (where the chances of factors other than the decisionmak-
er's own choice are known), the proper rule is to maximize expected
utility, but in situations of uncertainty (where the chances are not
known) one should choose one’s security strategy. But this suggestion
makes nonsense of the theory of subjective probability which they
develop later and which is meant to apply under uncertainty. Shubik
(1982, p. 2) makes the cut in a different place:

The general n-person game postulates a separate “free will” for each of the con-
tending parties and is therefore fundamentally indeterminate. To be sure, there
are limiting cases, which game-theorists caill “inessential games,” in which the
indeterminacy can be resolved satisfactorily by applying the familiar principle
of self-seeking utility maximization or individual rationality. But there is no prin-
ciple of societal rationality, of comparable resolving power, that can cope with
the “essential” game, and none is in sight. Instead, deep-seated paradoxes, chal-
fenging our intuitive ideas of what kind of behavior should be called “rational,”
crop up on all sides.

Can the elusive concept of free will bear the weight put on it here? Must
we decide such issues before we know how to interact rationally with a
person—or an automaton? Would it not be preferable to have a unified
theory of rational action, such that in game situations each player can
treat the others as part of nature?

To complicate matters further, both classical game theory and decision
theory have been vigorously criticized, notably by Herbert Simon (1957,
1972, 1986), for ignoring computational, procedural, and other bound-
ing aspects of the process of reasoning. | believe that such considera-
tions hold part of the key to the correct view of the relation of game
theory to individual decision theory.

Deliberation can be modeled as a dynamic process with informational
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feedback, a process that is carried out by deliberators motivated by
considerations of expected utility and having finite computational
resources. Consideration of games played by such bounded Bayesian
deliberators grounds and illuminates equilibrium concepts of classical
game theory under certain special assumptions, and suggests how that
theory must be modified in situations where these assumptions fail.

This chapter will provide an introduction to some essential concepts
of game theory and expected utility theory. Chapters 2 and 3 will show
how models of dynamic deliberation can provide a bridge between
them.

Expected Utility

The origin of the concept of an expecied value is contemporaneous with
the origin of mathematical probability theory itself. The utility concept
was introduced later, and went through a considerable evolution before
taking its present form.

The mathematical theory of probability was conceived as an instru-
ment for evaluating gambles in games of chance. It was assumed that
the natural measure of value of a gamble was the cxpectation of the
payoff—with the payoff of each outcome being measured in terms of
liquid assets: gold or coin of the realm. The expected value is just the
sum over outcomes of the probability of the outcome times the payoff
associated with that outcome. For example, consider two gambles on
independent flips of a fair coin with the following payoffs:

Gambie 1: 4 ducats if heads; 0 if tails
Gamble 2: 7 ducats if two heads (HH) on two flips; 0 otherwise

Evaluating by expected payoff in ducats, gamble 1 has an expected pay-
off of (/2)(4) + (¥2}(0) = 2; gamble 2 has an expected payoff of (*4)(7) +
(¥)(0) = 7; and gamble 1 is to be preferred to gamble 2.

This expected value or “moral hope” was from the beginning taken
as the correct quantity for assessing gambles. Intellectual effort was
focused more on the question of computing the probabilities than on
the philosophical justification of the expectation principle. Later on,
with the law of large numbers, a frequentist gloss became available: the
expected payoff is almost surely the average payoff one would achieve
in a very long series of independent trials of the gamble.

The move from expected ducats to expected utility was precipitated
by a puzzle, known as the §t. Petersburg paradox after the journal in
which Daniel Bernoulli published a landmark discussion of the problem
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in 1783. In the St. Pelersburg game, a fair coin is to be flipped until it
comes up heads. If it comes up heads on the nth toss, you wiil be paid
2" ducats. There is no limit to the number of tosses. What is the value
of this game?

The St. Petersburg Game

Possible outcome Probability Payoff

H 1A 2 ducats
™ V4 4 ducats
TTH T 8 ducats

The expected payoff is the infinite sum: (12)(2) + (4)4) + (W)8) . ..
=1+ 1+ 1..., which exceeds any finite value. Should everyone be
willing to pay any amount whatsoever to get into this game? Would
you? Bernoulli's rationale for a negative answer (following Gabriel Cra-
mer)? is that value is not properly measured in monetary units, but rath-
er in terms of a theoretical quantity, utility. Money, and most other real
goods, have declining marginal utility: an extra ducat on top of a 10-
ducat gain adds more utility than an extra ducat on top of a 1,000-ducat
gain. Bernoulli even suggests a typical utility function: utility =
log(money). The St. Petersburg game has finite expected utility given
the logarithmic utility function.?

Example: Justice as Fairness 2. Again, a group of ten people of
which you are one is to divide a million dollars. You are to select
a distribution scheme by number, as before, which will maximize
your own expected utility under the fairness assumption that all
numbers are equally likely to be your number and under the Ber-
noullian assumption that utility = log(money). The unique max-
imal distribution scheme here is the egalitarian one with every-
one getting $100,000 or 5 utiles (log of 100,000 is 5). The scheme
which gives all the money ($1,000,000 or 6 utiles) to number one
has an expected utility for you of only %0 of a utile. Any utility
function with strictly declining marginal utility will give the result
that equal shares maximize your expected utility. The concave
shape of the utility function here gives the egalitarian conclusions
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which depended on preference for security (on the maximin deci-
sion rule) in the previous example, Justice as Fairness 1.1

The utility hypothesis did not come to Bernoulli—or Cramer—from
out of a vacuum. Utilitarian ideas were in the air, floated by (among
others) Francis Hutcheson, professor of moral philosophy at Glasgow
and teacher of both Adam Smith and David Hume.? Questions about
the nature of utility did not much occupy probabilists following Ber-
noulli but they remained within the province of economists and moral
philosophers, who discussed them from an ethical and psychological
point of view.

It was generally assumed that utility was a psychological quantity,
and that there was no difficulty in principle in comparing the utilities of
different individuals. Thus, we have Alfred Marshall’s remark (quoted
in Savage, 1954) that the declining marginal utility of money is well illus-
trated by the fact that the rich man will take a taxi while the poor man
will walk. It is here assumed as a matter of course that the disutility of

Utility

Money

Figure 1.1, Bernoulli’s utility function
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walking is approximately the same for the rich and the poor, and so it
must exceed the marginal utility of cab fare for the rich but not the poor.
It is easy to appreciate how, in the hands of James Mill, Jeremy Ben-
tham, and John Stuart Mill, utilitarianism could have generated a pow-
erful movement for radical social reform.

Example: Justice as Fairness Meets Utilitarianism. You believe in the
version of justice as fairness that takes maximization of expected
utility as the principle of individual rational decision. You have a
friend, a utilitarian, who believes in maximizing total utility of
the group. Each of you is to come up with a just plan to distribute
one million dollars among 10 people of three different types: 3 of
type 1, 4 of type 2, and 3 of type 3. You both believe that utility
is an empirical psychological property and that the types in ques-
tion are so specified as to determine the individual’s utility func-
tion for money. You agree what the utility functions are for each
type.® Then you and your friend will agree on the correct distri-
bution scheme. You maximize your expected utility under the fic-
titious supposition that you have an equal chance of being any
one of the ten, that is, that you have 0.3 probability of being of
type 1, and so on. Then the quantity that your distribution
scheme must maximize is just one tenth of the quantity that your
friend’s scheme is maximizing.

By the end of the nineteenth century, the sort of conceprion of utility
that we find in the English utilitarians came under positivistic attack,
notably by Vilfredo Pareto. If utility was to be interpreted in terms of
consumers’ bebavior, rather than in the manner of introspective psy-
chology, then interpersonal comparisons of utility seemed to make no
sense. Indeed, even with respect to one consumer the measurement of
utility on a numericat scale appeared to be unjustified. Consumers sim-
ply made their choices, and the operational part of utility talk seemed
to consist solely of preference ordering.

In his manual of political economy (1927) Pareto used the ordinal
indifference curve approach developed by Francis Ysidro Edgeworth.
But while Edgeworth thought that utility was measurable and that the
indifference curves derived from utility functions, Pareto took them as
primitive. The entire theory, he wrote, “rests on no more than a fact of
experience, that is on the determination of the quantities of goods which
constitute combinations between which the individual is indifferent.”
This acerbic footnote follows: “This cannot be understood by literary
economists and metaphysicians. Nevertheless, they will want to inter-



Principles of Rational Decision 7

fere by giving their opinions; and the reader with some knowledge of
mathematics can amuse himself by perusing the foolish trash they will
put out on the subject.”

To some extent, Pareto’s position was anticipated by William Stanley
Jevons. In his Theory of Political Economy (1871) Jevons addressed these
skeptical remarks to the question of interpersonal comparisons of utility:
“The susceptibility (to pleasure} of one mind may, for all we know, be a
thousand times greater than that of another. But, provided that the sus-
ceptibility was different in a like ratio in all directions, we should never
be able to discover the difference. Every mind is inscrutable to every
other mind.”

Lionel Robbins’ influential discussions in the thirties (1932, 1938)
echoed Jevons'. In 1938, he noted how his faith in utilitarian welfare
economics had been shaken:

I am not clear how these doubts first suggested themselves; but I well remember
haw they were brought to a head by my reading somewhere—I think in the
works of Sir Henry Maine—the story of how an Indian official had attempted to
explain to a high cast Brahmin the sanctions of the Benthamite system. “But
that,” said the Brahmin, “cannot possibly be right. 1 am ten times as capable of
happiness as that untouchable over there.” T had no sympathy with the Brah-
min. But 1 could not escape the conviction that, if | chose lo regard men as
equally capable of satisfaction and he to regard them as differing according to a
hierarchical schedule, the difference between us was not one which could be
resotved by the same methods of demonstration as were available in other ficlds
of social judgement.

Lord Robbins needn’t have gone to India for his illustration. Consider
the following specimen of nineteenth-century chauvinism from Edge-
worth’s Mathematical Psycliics (1881, pp. 77-78):

But equality is not the whole of distributive justice . . . in the minds of many
good men among the moderns and the wisest of the ancients, there appears a
deeper sentiment in favor of aristocratic privilege—the privilege of man above
brute, of civilized above savage, of birth, of talent, and of the male sex. This
sentiment of right has a ground of alilitarianism in supposed differences of
capacity . . .

If we suppose that capacity for pleasure is an attribute of skill and talent . . .
we may see a reason deeper than Economics may afford for the larger pay,
though often more agreeable work, of the aristocracy of skill and talent. The
aristocracy of sex is similarly grounded upon the supposed superior capacity of
the man for happiness . . . upon the sentiment—

Woman is the lesser man, and her passions unte mine
Are as moonlight unto sunlight and as water unto wine.
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Hlustration: Parcio Optimality. If we agree with Pareto that utility has
only a personal and ordinal significance, what is left of utilitarianism as
a social philosophy? One can still express certain qualitative features
that every utilitarian measure of social welfare would have. We say that
a social state 52 weakly Parcto dominates a state S1 when some member of
society prefers S2 to 51 and no member prefers 51 to 52. 52 strongly
Pareto dominates S1 if and only if all members of society prefer 52 to S1.
The judgment that a social state is preferable to one which it strongly
Pareto dominates is an ordinally expressible remainder of the utilitarian
doctrine that social utility is the sum of individual utilities. The stronger
principle that a social state is preferable to one which it weakly Pareto
dominates is motivated by the additional utilitarian principle that every-
one counts equally. The ordinal remainder of this principle is, roughly,
that everyone counts for something. We will say that a Pareto optimal
social state is one which is not weakly Pareto dominated by any other.

The concept of utility was partly rescued from Paretian skepticism by
Frank Ramsey in 19267 and by John von Neumann and Oskar Morgen-
stern in 1944. Ramsey’s analysis went deeper than that of von Neumann
and Morgenstern, but was for a long time little known among econo-
mists.® When von Neumann and Morgenstern independently rediscov-
ered one of Ramsey’s key ideas and published it in Theory of Games and
Economic Behavior, they carried cardinal utility back into respectability.

The idea in question was to consider preferences not only for goods
or prospects, but also for gambles over goods. If you know only that my
preference order for desserts is

Raspberries and cream
Chocolate mousse
Blueberry pie
Cheesecake

you cannot sensibly answer the question as to whether the difference in
utility between the first two items is equal to the difference in utility
between the second two. But if you are, in addition, told that | am indif-
ferent between a gamble which gives me raspberries and cream (RC) if
heads; cheesecake (Ch) if tails, and one which gives me chocolate
mousse (CM) if heads; blueberry pie (BP) if tails, then I can conclude
that these differences are equal:
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Utility Gamble 1 = Utility Gamble 2
BURC) + Y2L(Ch) = Y“BUCM) + YWLU(BP)
URC) — U(CM) = W(BP) — U(Ch)

Pareto had already remarked that if a natural criterion for equality of
differences of utility could be found, then utility could be measured on
a numerical scale. Given a conventional choice of the zero point and the
size of a unit “utile,” the utility values would be unique.’

The extension of the preference ordering to gambles provided the req-
uisite criterion for quantifying utility. Cardinal utility was, after all, jus-
tified in a way strictly in accord with the Paretian methodology. Given
von Neumann-Morgenstern utility, Bernoulli's idea about the declining
marginal utility of money again makes perfect sense. It is an empirical
claim about utility differences for a given individual, and it reduces to a
claim about that individual’s preferences over gambles. The interperson-
al comparisons of utility assumed by the classical English utilitarians,
however, are not rescued by the von Neumann-Morgenstern construc-
tion. Since the data do not determine the choice of zero point and unit,
quantities such as (1) the sum of utilities over different persons and (2)
the utility of that member of the group who is worst off in terms of
utility are not given any determinate sense.

Example: Personal Justice. Ten followers of von Neumann and
Morgenstern are deciding how to distribute one million dollars
among them. Each is an expected utility maximizer. Each
attempts to find a just distribution scheme among numbers 1 to
10, where players will be assigned numbers later by fair lottery.
Each seeks a distribution scheme that maximizes expected utility
according to his or her own utility function. So each player has a
personal conception of justice, and no interpersonal comparison
of utilities is involved. Nevertheless, if each player’s utility func-
tion exhibits a declining marginal utility for money then all play-
ers v;gll agree that the egalitarian distribution scheme is the fair
one.

Von Neumann and Morgenstern quantified utility by bringing in
known chances. But at least some thinkers with empiricist worries about
utility also have empiricist worries about chance. This wider skepticism
raises questions about the availability of probability to quantify utility.
Ramsey had already answered this question in 1926 by constructing
both personal utility and personal probability out of preferences over
gambles.
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The key move is to find subjective surrogates for the chances that von
Neumann and Morgenstern used to scale the decisionmaker’s utilities.
Ramsey started by identifying propositions that have no values in and
of themselves to the decisionmaker, and whose truth or falsity does not
modify the value of payoffs. He calls these propositions “ethically neu-
tral.” A proposition, p, is ethically neutral with respect toa collection of
payoffs, B, for an agent if she is indifferent between B with p true and
B with p false. A proposition, p, is ethically neutral for an agent if it is
ethically neutral for her with respect to maximal collections of payoffs.!!
The nice thing about ethically neutral propositions is that the expected
utility of gambles on them depends only on their probability and on the
utility of the contemplated payoffs. The utility of the ethically neutral
propositions themselves is not a complicating factor. In our illustration
of the von Neumann-Morgenstern utility scale, I tacitly assumed that
the propositions describing the outcome of the coin flip (H or T} were
ethically neutral.

We can identify an ethically neutral proposition, H, for which the
decisionmaker has personal probability (degree of belief) Y2 when there
are two payoffs, A and B, such that she prefers A to B but is indifferent
between the two gambles: (1) Get A if His true, Bif H is false; (2) get B
if H is true, A if H is false. For the purpose of scaling the decisionmaker’s
utilities, such a proposition is just as good as the proposition that a fair
coin comes up heads.

The procedure just described extends in a straightforward way to
identify more surrogates for chance. Consider a wheel of fortune with
100 possible outcomes which are ethically neutral. The decisionmaker
prefers A to B but is indifferent between (1} A if outcome i, B otherwise,
and (2) A if outcome j, B otherwise, for all possible outcomes i and j.
Then the decisionmaker regards the 100 possible outcomes as equiprob-
able, and the disjunction of N outcomes as having probability of N/100.
For a richer assortment of surrogate chances consider a wheel of fortune
with more sides, or consider sequences of outcomes for repeated flips
of a coin. A rich enough preference ordering has enough ethically neu-
tral propositions to approximate the external scaling probabilities used
by von Neumann and Morgenstern to any desired degree of precision.

These are the key ideas of the procedure by which Ramsey extracted
from a rich and coherent preference ordering over gambles both a sub-
jective utility and a subjective degree of belief such that the preference
ordering agrees with the ordering by magnitude of expected utility. Util-
ity now has shed the psychological and moral associations with which
it was associated in the eighteenth and nineteenth centuries. The theory
of expected utility is now a part of logic: the logic of coherent preference.
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Ramsey proved a representation theorent to the effect that any coherent
preference ordering over a rich enough set of gambles has associated
with it a unique probability and a utility unique up to choice of zero
point and magnitude of the unit utile, such that the ordering by expect-
ed utility agrees with the preference ordering. If we hold that rational
preferences over a meager set of gambles (a) should be coherent and (b)
should be embeddable in a coherent set of preferences over an enriched
set of gambles, we keep the existence of a probability-utility represen-
tation whereby rational preferences over the meager set of gambles goes
by expected utility, although we lose uniqueness. In this sense, we can
say that the only normative content implied by the use of an expected
utility model is that preferences should be coherent.!?

If one has some sort of coherent moral preferences for society, these
preferences must as well admit of an expected utility representation. So
coherent social preferences over a rich set of prospects give rise to a
corresponding social utility function unique up to choice of a conven-
tional zero point and unit of measurement. When does the social utility
have a utilitarian representation? That is, when is it the case that there
are choices of zero points and units of measurement for individual util-
ity scales and for the social utility scale, such that social utility is the
sum of individual utilities? John Harsanyi answered this question in
1955 by proving the appropriate representation theorem. Neglecting
technical details, the theorem says that coherent social preferences
which satisfy the Pareto condition!® with respect to individual prefer-
ences have a utilitarian representation. So, it seems that the moral con-
tent of modern utilitarianism consists of nothing more and nothing less
than the Pareto condition.

Rawls (1971) identified two great traditions in Western ethics: the
social contract tradition, whose essential leading idea is justice as fair-
ness, and the utilitarian tradition. When seen in the light of modern
utility theory, there is considerable convergence between these tradi-
tions. As Harsanyi (1955} pointed out, under certain conditions justice
as fairness entails utilitarianism. Suppose (1) you derive your social util-
ity ordering by applying the expected utility version of justice as fairness
to a society with categories and (2) your preferences conditional on
being in a category coincide with the preferences of anyone in that cat-
egory.'” Then you are a utilitarian.

It is evident that the whole question of utilitarianism has been pro-
foundly transformed by the evolution of the utility concept. Contem-
porary philosophy has been a little slow in catching up; a considerable
amount of contemporary discussion of the ethics of utilitarianism
remains stuck in the nineteenth century. We cannot pursue these impli-
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The Theory of Ganes

The theory of games is almost entirely a creation of the twentieth cen-
tury. Game-theoretic problems were considered in the 1920s by Borel
(1924) and von Neumann (1928), and the subject emerged full-blown in
von Neumann and Morgenstern's Theory of Games and Economic Behavior
in 1944,

Von Neumann and Morgenstern argue that there is a difference in
principle between rational decisionmaking for a single individual, such
as Robinson Crusoe, acting against nature, and for a member of a group
of interacting rational individuals (1947, pp. 11-12);

nomic kind—based on motives of the same nature as his own. A participant in
a social exchange economy, on the other hand, faces data of this last type as
well: they are the product of other participants’ actions and volitions . . | Hjs
actions will be influenced by his expectation of these, and they in turn reflect
the other participants’ expectation of his actions,

The difficulty that is here Supposed to arise in the case of the social
exchange cconomy is not so much the “free will” of the other partici-
Pants as the role of mutyal expectations, expectations of expectations,
and so forth that can existin a community of utility maximizers, These
May seem to threaten a kind of self-reference in which the mutually
interacting optimization problems of the various actors are not capable
of joint solution, This is really the problem to which the theory of games
is addressed. It wiil become clearer when we discuss von Neumann and
Morgenstern’s justification of thejr concept of a solution for a game.
First, however, lot me introduce a few of the concepts of the theory.
In the simplest sort of situation, a normal-form game, the players all
choose simultaneously and independently among their respective pos-
sible acts, and the payoffs are determined by the combination of acte
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chosen. A game is called zero-sunt if (for some scaling of the players’
utilities) the total payoff for every possible combination of acts is zero.

The simplest zero-sum games are those involving only two players,
and it is here that the von Neumann-Morgenstern theory has its great-
est success. Such a game can be specified by a payoff matrix for one
player, since the second player’s preferences can be represented by pay-
offs which are just the negative of those of the first player. Here is an
example:

Row’s payoff matrix

Ci c2 C3
R3 1 -1 -1
R2 1 0 1
R1 -1 -1 1

If Row does his act 3 and Column does her act 1, then Row gets payoff
I'and Column therefore gets payoff —1; whereas if they both do their
respective act 2, they both get payoff 0. A simultaneous choice of acts
by all players is called a Nash equilibriunt if no player can improve his or
her payoff by a unilateral defection to a different act. In other words, at
a Nash equilibrium, each player naximizes his or her utility conditional on
the other player’s act. For example, [R1, C1] is not a Nash equilibrium,
because if Column plays 1 then Row is better off playing either 2 or 3.
Likewise, [R3, C1] is not a Nash equilibrium because if Row plays 3,
Column would do better playing 2 or 3. (Remember that Row’s losses
are Column’s gains.) You can verify that [R2, C2] is the unique Nash
equilibrium of the game. If Column plays 2 Row can do no better than
to play 2 himself (indeed in this case the alternatives are strictly worse)
and Column is in a similar situation when Row plays 2. In a famous
passage, von Neumann and Morgenstern (1947, p. 148) argue for the
centrality of the Nash equilibrium concept:

Let us now imagine that there exists a complete theory of the zero-sum two-
person game which tells a player what lo do, and which is absolutely convine-
ing. If the players knew such a theory then each player would have to assume
that his strategy has been “found out” by his opponent. The opponent knows
the theory, and he knows that the player would be unwise not fo follow it . . .
a satisfactory theory can exist only if we are abie to harmonize the hwo ex-
tremes . . . strategies of player 1 “found out” or of player 2 “found out.”
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The harmony in question is Nash equilibrium, and the argument is sup-
posed to show that an adequate theory of rational behavior in game-
theoretic situations will have the consequences that if each player makes
a rational choice, the result will be a Nash equilibrium. Then, if there is
such an adequate theory of rational behavior, in any game like our
example in which a unique Nash equilibrium exists the rational choice
for each player must be to choose the act that is a constituent of the
unique Nash equilibrium. In this way, if we have existence and unique-
ness of Nash equilibria in general, we can turn the Nash equilibrium
concept itself into a theory of rational choice.

Let us pause to consider this argument in the light of subjective
expected utility theory. It is far from airtight. Here I want to emphasize
one rather large and important gap. Suppose that there is a theory of
rationality which is absolutely convincing, and suppose not only that
both players know it but that it is common knowledge. (Each knows
that the other knows it and that the other knows that he knows it, and
so forth.)!” Suppose that the calculation needed to extract the relevant
information is finite,and that it is moreover small enough to take vir-
tually no effort on the part of the players. Does it follow that each player
can find out the other player’s strategy? Only if the inputs to the theory
are themselves common knowledge among the players. Von Neumann
and Morgenstern are assuming that the payoff matrix is common knowl-
edge to the players, but presumably the players’ subjective probabilities
might be private. Then each player might quite reasonably act to maxi-
mize subjective expected utility, believing that he will 10t be found out,
with the result not being a Nash equilibrium.

For a rather crude illustration of this possibility, suppose in the fore-
going example that Row plays 3 because he is almost sure that Column
will play 1, thinking that Column is almost sure that he will play 1 in
response to the mistaken belief that Column will play 3, etc. And sup-
pose that Column plays 3 because she is almost sure that Row will play
3, because she thinks that Row thinks that she will play 1, etc. Each
maximizes expected utility with the result being [R3, C3], which is not
an equilibrium. For simplicity, this example uses degrees of belief that
are nearly zero or one, but more complex and interesting examples of
the phenomenon are possible. It has been recently studied by Bernheim
(1984) and Pearce (1984), who call it rationalizable strategic behavior.

In two-person games, there is a relatively simple way to identify the
rationalizable acts. An act is strongly dominated for a player if she has
some other act that gives a better payoff no matter what the other player
does. For example, in the zero-sum game for which Row’s payoff matrix
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is as follows, Row’s act 2 strongly dominates Row’s act 1, but Column has
no strongly dominated acts.'®

1 2
R2 1 2
R1 0 0

It is clear that no strongly dominated act is rationalizable, since no
beliefs about the other player’s acts can make it look as attractive as the
act which dominates it. Conversely, Pearce (1984) and Bernheim (1984)
showed that in two-person games those acts which remain after iterated
deletion of strongly dominated strategies are all rationalizable. This
principle extends to n-person games, if we do not require that one play-
et’s beliefs make other players’ actions probabilistically independent.!”
Thus, in a game like our first example, where no strategies are strongly
dominated, all strategies are rationalizable.

Von Neumann and Morgenstern neglected the possibility of rational-
izable nonequilibrium strategics, even though they developed a theory
of personal utility, because they never took the extra step with Ramsey
to subjective probability. They assume that the information in the payoff
matrix is the complete input for a theory of rational decision—an atti-
tude that is perhaps still the prevalent one in game theory. I can find no
principled argument for this assumption, and the theory of personal
probability as developed by Ramsey, de Finetti, and Savage appears to
contradict it.

In order for the von Neumann-Morgenstern argument for Nash equi-
librium to work, all the inputs for rational decision must be common
knowledge; otherwise the hypothesis that the other player can find out
your strategy and make a best reply lacks a foundation. Therefore let us
suppose that each player’s prior personal probabilities are common
knowledge, as is both the payoff matrix and the fact that the players are
expected utility maximizers. Does the argument for Nash equilibrium
now succeed? To see that it does not, let us modify our example as fol-
lows:

R3 1 0 -1
R2 0 o 0
Rl -1 o 1
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[R2, C2] is still the unigue Nash equilibrium. Now suppose that each
player’s prior probabilities over the other player’s actions are |5, 15, 14]
and that this is common knowledge, as is the payoff matrix and the fact
that the players are subjective expected utility maximizers. These
assumptions are compatible with any play by any player (with no pros-
pect of being found out) and thus with any outcome of the game. Here
uniqueness of the Nash equilibrium does not entail uniqueness in the
recommendations of the underlying theory of individual rational behav-
ior, 50 even common knowledge of the prior probabilities does not guar-
antee that a player’s choice of action will be found out. It is apparent
that we must build in even stronger assumptions about common knowl-
edge and tell a more complicated story in order to make the argument
for Nash equilibria valid. I will return to this question in the next chap-
ter. For the moment, let us take the Nash equilibrium concept with a
grain of salt, and proceed.

In the case of two-person zero-sum games, von Neumann and Mor-
genstern were able to establish a deep connection between security
(maximin gain) strategies on the parts of the individual players and
Nash equilibria of the game. Suppose that you and [ are playing such a
game, and our strategies form a Nash equilibrium. Then by the defini-
tion of equilibritun, neither of us would profit by a unilateral change of
strategy. Since the game is zero-sum, my profit is your loss and con-
versely. So neither of us can lose by the other's unilateral change of
strategy. In other words, we are both playing security strategies. So, in
this special case, it is 2 necessary condition for a Nash equilibrium that
each player play his or her security strategy.

Is it a sufficient condition? The prima facic answer is no. Consider the
game of Matching Pennies. You either hide a penny in your hand, or
not. I guess whether you did. If I guess correctly, 1 give you a penny,
otherwise you give me a penny. Inspection of the payoff matrix will
disclose that there is no Nash equilibrium:

Matching Pennies

C1 C2
R2 1 -1
R1 -1 1

At each combination of acts, unilateral deviation will pay one of the
players. Each act is a security strategy for each player.
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The picture changes radically, however, if one follows Borel (1924) in
allowing nrixed strategies. Each player turns his or her choice of an act
over to a chance device, with the operative choice being the choice of
the chances. (The chance devices of different players operate indepen-
dently.) So, in Matching Pennies, Row can choose any number between
zero and one as the chance of R2; likewise for Column. Any point in the
unit square thus represents mixed strategies for Row and Column. The
payoffs for a combination of mixed strategies are the expected utilities,
using the chance probabilities to compute the expectation. Figure 1.2
shows Row’s payoffs for mixed strategies in Matching Pennies, plotted
as a surface above the unit square. Enlarging the set of objects of choice
to include mixed strategies has created an equilibrium: the combination
of mixed strategies in which each player gives equal chances to each of
her alternatives. This consists of the security mixed strategy for each
player, where each player has an expected payoff of zero. Von Neumann
proved in 1928 that it is true in general for finite two-person zero-sum
games that if mixed strategies are included, there is always a Nash equi-
librium and it will be attained if both players play security strategies.

So we always have existence of an equilibrium. But it may fail to be
unique. There may be many Nash equilibria in a finite two-person zero-
sum game with mixed strategies—but the failure of uniqueness is rela-
tively painless. This is because the equilibria are interchangeable, in the

Figure 1.2, Payoff surface for mixed strategies in Malching Pennies
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following sense: (i) if I play my end of one equilibrium, and you play
your end of another, then the combination of our plays is a third equi-
librium, because any combination of security strategies is an equilibrium
and (ii) all equilibria have the same value for each player, namely that
player’s security level.

If one is willing to buy the rather shaky argument advanced by von
Neumann and Morgenstern for the equilibrium concept, the problem of
rationality has been solved for this special class of games. Rational action
consists here in choosing a security strategy. That all players doso is a
necessary and sufficient condition for their combined play to be at a
Nash equilibrium (that is just as good as any other equilibrium). It is on
this basis that the idea of a security strategy was rather widely applied
in the heady decade following the publication of Theory of Games and
Econontic Behavior. Everyone knew, of course, that the tight connection
between security and equilibrium did not hold for games in general, but
the significance of that fact was not always fully appreciated.

When we pass from finite two-person, zero-sum games to finite n-
person non-zero-sum games, the connection between security and equi-
librium is broken and the picture becomes immensely more complicat-
ed. One remarkable fact is that here mixed strategies still guarantec the
existence of equilibria. This fact was demonstrated by John Nash (1951),
after whom they are named.

We now assume that there are a finite number of players, each with a
finite number of strategies. Each player’s payoff is a function of the
choices of strategy of all players. There need be no special relationship
between payoffs of different players. Two-person zero-sum games mod-
el situations of strict competition, but this larger class of games can mod-
el a whole spectrum of payoff profiles from strict competition to pure
cooperation.

As an illustration of the difficulties introduced by even the simplest
non-zero-sum games, consider the game of Chicken:

Chicken

Column
Don't swerve Swerve

Don't swerve -10,-10 5=5

Lo Swerve -55 0,0
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The name comes from the image of two teenagers driving down the
center of the road on a straight course toward a head-on collision; the
first one who swerves is “chicken.” The ordered pairs in the payoff
matrix list the payoff for Row first and the payoff for Column second. If
one swerves and the other doesn’t the first loses face and the second
gains it. If both swerve their relative status is unchanged. If neither
swerves the result is worse than losing face. The story is slightly mis-
leading here since, as before, we want to think of the players as making
independent decisions at a given time. So let’s suppose that the drivers
must make an irreversible decision at the start by pushing a button in
their computerized hot rods and then ride it out.

There are two pure Nash equilibria in this game: [Row swerves, Col-
umn doesn’t] and [Column swerves, Row doesn’t], as well as an equi-
librium in mixed strategies where each flips a fair coin to decide if she
will swerve.?® We do not have interchangeability. If each picks her end
of that Nash equilibrium that she prefers, neither will swerve, since
each prefers the pure equilibrium in which the other swerves. This
would lead to a definitely nonequilibrium outcome. And the connection
with security strategy is broken because each player’s security strategy
is not to swerve—so the result of both players going for security is again
nonequilibrium.

Although uniqueness fails rather dramatically, we do still have exis-
tence of equilibria. Nash proved this by exhibiting a continuous
function®! which maps the space of mixed strategies (of all players) into
itself for a non-zero-sum game. This function leads each player to put
more weight on strategies which look betler than the status quo. By a
well-known theorem of Brower, this function has a fixed point: a mixed
strategy that gets mapped onto itself. At such a fixed point, no pure
strategy looks better to any player than the mixed strategy associated
with that point. This point is therefore a Nash equilibrium.

Nash also investigated special classes of non-zero-sum games where
interchangeability of equilibrium points does hold. It is evident, how-
ever, that in the general case the status of the equilibrium concept as a
touchstone of rationality is here even shakier than in the case of zero-
sum game theory. In games with multiple equilibria, even if your oppo-
nent knows that you will pick your end of an equilibrium, he cannot
figure out your strategy. And if he cannot figure out your strategy and
the equilibria are not interchangeable, what is your rationale for even
picking an equilibrium in the first place?

Since the pressing problem is too many rather than too few equilibria,
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there has been reason to look for stronger solution concepts that are met
by only some subset of the Nash equilibria. And, indeed, some Nash
equilibria seem to look better than others. Consider the following
game,*? supposing you are Row:

C1 C2
R2 00 00
R1 1,1 00

In this game there are two Nash equilibria, one at [R1, C1] and one at
[R2, €2]. Each is a genuine equilibrium; if Column plays her end of the
equilibrium you can do no better than to play yours. But if you have
even the slightest doubt that she will play C2, R1 will have greater
expected utility.” And if you reason this way, isn't it likely that Col-
umn—being in a symmetric situation—will do so as well?

The two equilibria in this game are distinguished by Selten’s (1975)
notion of a perfect equilibrium. A completely mixed strategy is a mixed
strategy in which every pure strategy gets some positive probability. If
your opponents play mixed strategies, one of your strategies is a best
reply if it maximizes expected utility where the expected utility is calcu-
lated using your opponents’ mixing probabilities. An e-perfect equuilibrinm
is a completely mixed strategy (for all players) in which any pure strat-
egy which is not a best reply has weight less than e. A perfect equilibrinm
is a limit as € approaches 0 of e-perfect equilibria. Every perfect equilib-
rium is a Nash equilibrium, but the converse is not true. In the example,
[R1, C1] is a perfect equilibrium, but [R2, (2] is not since for any com-
pletely mixed strategy, R1 is Row’s unique best reply and C1is Column’s
unique best reply.

Selten (1975, p. 35) views the model as embodying “A Model of Slight
Mistakes”: “There cannot be any mistakes if the players are absolutely
rational. Nevertheless, a satisfactory interpretation of equilibrium points
in extensive games seems to require that the possibility of mistakes is
not completely excluded. This can be achieved by a point of view which
looks at complete rationality as a limiting case of incomplete rationality.”
Myerson (1978, p. 74) commented: “The essential idea behind Selten’s
perfect equilibria is that no strategy should ever be given zero probabil-
ity, since there is always a small chance that any strategy might be cho-
sen, if only by mistake.” For this reason, Selten’s concept is often called
“trembling hand” perfection.
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Myerson pushed the idea one step further. The previous example can
be converted to the next by giving each player a third unattractive alter-
native:

C1 c2 c3
R3 Shet, -7,-7 -7,=7
R2 0,0 0,0 -7,-7
R 1,1 0,0 -9,-9

Now there are three Nash equilibria: [R1, C1), [R2, C2], [R3, C3]. There
are two perfect equilibria for now not only [R1, C1] but also [R2, C2] is
a perfect equilibrium. (To see this consider a path of convergence along
which R1, R3, C1, C3 are equiprobable and grow smaller while R2 and
C2 are equiprobable and converge to 1.) Yet [R1, C1] still may seem the
“best” equilibrium for much the same reason as before. Is one inclined
to think that a “tremble” to R3 or to C3 is not really as likely as one to
R2 or C2? To capture this intuition, Myerson introduced the notion of a
proper equilibrium.

An e-proper equilibrium is a completely mixed strategy such that if a
pure strategy, Al, is a better response than a pure strategy, A2, then the
probability ratio p(A2)/p(Al) is less than €. A proper equiltbriint is a limit
of a sequence of e-proper equilibria as £ approaches zero. Every proper
equilibrium is a perfect equilibrium but not conversely. In the example,
[R1, C1] is proper; [R2, C2] is perfect but not proper; {R3, C3] is a Nash
equilibrium but not a perfect one.

Selten and Myerson proved that perfect and indeed proper equilibria
exist in every game of the kind under consideration. But the problem of
nonuniqueness persists. For example, in the game of Chicken, all equi-
libria are perfect and proper. Considering the symmetry of games like
Chicken, it seems unrealistic to expect a stronger equilibrium concept to
deliver both existence and uniqueness.> Therefore it seems that the sit-
uation for non-zero-sum game theory can never be as simple and ele-
gant as in the von Neumann-Morgenstern theory for zero-sum games.

There is a further complication in game theory which 1 have post-
poned discussing until now. That is the status of games in extensive form.
Here we generalize from the simple model where all players simulta-
neously and independently make their choices to a model which allows
a sequence of moves by different players in varying states of information
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about the moves already made by other players. Von Neumann and
Morgenstern have an argument to the effect that all the complexity of
the extensive-form model can, in the end, be reduced to the simple
normal-form model of one round of simultaneous independent choices.
But, as we shall see, this argument has been seriously challenged.

Following Kuhn {1953), we will model the temporal, causal, and infor-
mational structure of a game in extensive form as a tree. A simple exam-
ple is shown in Figure 1.3. Player A moves first, choosing either act Al
or A2. Then player B either finds herself at the top node, in which case
she knows that A has played Al, or at the bottom node, in which case
she knows that A has played A2. In either case, she must choose
between Bl and B2. Then the game is over; the course of play has tra-
versed a path through the tree; and the payoffs at the end of that path
are received.

The foregoing is a game of perfect information. Each player at each
chaice point knows whatever preceding choices have been made. The
Kuhn model also allows for games where this may not be the case. Con-
sider the tree in Figure 1.4. Here player A begins by choosing A1, A2,
or A3. Then B must move. If A chose Al, B knows it. But otherwise, B
knows only that A chose either A2 or A3. This is indicated by the dotted
line between A2 and A3. The set containing the nodes which these two

Payoff 11

== Payofi 12

Payoff 21

Payoff 22

Figure 1.3, Kuhn tree for a game of perfect information
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acts lead to is known as B's information set at each of these nodes. A
player’s knowledge of preceding play by other players may thus be lim-
ited by his information set. We do, however, assume perfect recall: a
player remembers whatever he knew earlier in the course of play.

A player’s stralegy for an extensive-form game is a comprehensive
contingency plan: a function that maps each information set at which he
could find himself into a choice of action. If each player thought about
how to play the game and independently chose such a strategy, these
strategies would jointly determine the course of play. For this reason,
von Neumann and Morgenstern argued that a game in extensive form
was equivalent to the normal-form game where players choose between
its strategies: the strategic normal-form game for the original extensive-
form game.

The adequacy of the strategic normal-form representation of exten-
sive-form games was generally taken for granted until questioned by

B2

Figure 1.4. Extensive-form game with information set
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Selten (1965).%" Consider the game tree in Figure 1.5, which is the stra-
tegic normal form of the game:

Blif A2 B2if A2

Al 0,0 0,0
A2 1,1 -1,-1

Since A moves first, he has only two strategies. B has two strategies,
depending on what she plans to do if A does A2. If we look at the matrix
of the normal form, we find two Nash equilibria: [A2, Bl if A2} and [Al,
B2 if A2]. But if we look back at the game tree, we see that the second
equilibrium is quite wacky. B would be foolish to choose B2 if A had
chosen A2, since choosing Bl would surely give her a greater payoff.
(Here B's maximizing expected utility does not depend on B's particular
subjective probabilities, because B knows with certainty at the choice
point at issue that Bl will give a greater payoff.) Thus the strategy B2 if
A2 is not a credible option for B. Seeing this, A will choose A2 and B
will choose B1. The point becomes more vivid in the setting of questions
of nuclear deterrence. Hermann Kahn (1984, p. 59) reports a typical
beginning to a discussion of the policy of mutually assured destruction
(MAD}:

One Gedanken experiment that I have used many limes and in many variations
over the last twenty-five or thirty years begins with the statement: “Let us
assume that the president of the United States has just been informed that a

[0.0]

[1.1]

B2 [-1,-1]

Figure 1.5, A challenge to stralegic normal form
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multimegaton bomb has been dropped on New York City. What do you think
that he would do?” When this was first asked in the mid-1950s, the usual answer
was, “Press every button for launching nuclear forces and go home.” . . | the
dialogue between the audience and myself continued more or less as fol-
lows . . .

Kahn: “What happens next?”

Audience: “The Soviets do the same!”

Kaln: “And then what happens?”

Audicnce: “Nothing. Both sides have been destroyed.”

Kalm: “Why then did the American President do this?”
A general rethinking of the issue would follow, and the audience would con-
clude that perhaps the president should not launch an immediate all-out retal-
jatory attack.

What the audience is beginning to see, in our terms, is that there is an
essential difference between the strategic normal-form representation of
MAD, which treats it as equivalent to Dr. Strangelove’s doomsday
machine, and the extensive-form representation, which pays attention
to the causal and informational context of the decisions involved in
implementing the policy. Even in a situation in which a doomsday
machine would be an effective deterrent a policy of mutually assured
destruction would not be, because it rests on a noncredible threat. The
threat is not credible because in the relevant situation it would not be in
the best interests of the nation to carry it out.?

It is evident that the strategic normal form of an extensive-form game
may fail to capture important causal and informational structure, and
consequently that the Nash equilibrium concept applied to strategic nor-
mal form may be inadequate. In an important paper, Kreps and Wilson
{(1982b) proposed to remedy the situation by an application of expected
utility theory. A strategy (for all players) is sequentially rational if the strat-
egy of each player, starting at each information set, maximizes expected
utility according to her beliefs and the strategies of all the other players.

But what of information sets to which players initially assign proba-
bility zero? What should a player’s beliefs be conditional on reaching
such an information set? Kreps and Wilson put a “consistency” condi-
tion on these conditional probabilities. They must be obtainable as a
limit of well-defined conditional probabilities in a sequence of assess-
ments (degree of belief, strategy pairs) which give each information set
nonzero probability. A sequential equilibrium is then defined as an
assessment which is both consistent and sequentially rational. The fishy
equilibrium in the example of Figure 1.5 cannot be sequential.

The attentive reader has perhaps noticed that the fishy equilibrium is
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also not perfect in the sense of Selten, and indeed his concept of perfect
equilibrium was introduced with these problems of extensive-form
games in mind. Selten’s notion is somewhat stronger than that of Kreps
and Wilson. It can be thought of as adding to the requirement of sequen-
tial rationality an additional requirement of a certain kind of robustness
under “trembles.” Stronger kinds of robustness conditions have been
suggested—for example, the “persistent” equilibria of Kalai and Samet
(1984) and the various types of structural stability investigated by Kohl-
berg and Mertens (1980). For most of these refinements of the Nash
equilibrium concept, it can be shown that at least one such refined equi-
librium exists in every finite non-zero-sum game. None of them, how-
ever, is strong enough to guarantee uniqueness, and thus none solves
the problem of multiple equilibria in non-zero-sum games.

Integrating the Two Paradigms

The theory of subjective probability and utility provides a foundation
for a univocal rationality principle: maximize expected utility. The analysis
initiated by Ramsey shows that the normative content of this theory is
just that preferences should be colierent. There is nothing in the foun-
dations of expected utility theory to limit its applicability in the sort of
situations studied by the theory of games.

In the theory of noncooperative games, rational action is discussed in
terms of a cluster of equilibrium concepts. The central notion is that of
a Nasl equilibrium, and the concept of a security strategy derives its license
from its connection with Nash equilibria in the special case of two-per-
son zero-sum games. The concept of a Nash equilibrium rests on that of
expected utility. A Nash equilibrium is just a combination of strategies
for each player such that if each player has found out the other players’
Strategies each is maximizing expected utility.

But the rationale for assuming that each player will have found out
the other players’ strategies is murky. Von Neumann and Morgenstern’s
argument for this assumption appears to fail even in the case of two-
person zero-sum games. And it is in worse trouble in the non-zero-sum
case as a result of multiple, noninterchangeable equilibria. Doubts about
the von Neumann-Morgenstern argument are, in a way, behind both
proposals to weaken (to rationalizability) and to strengthen (to perfect
or proper equilibrium) the concept of Nash equilibrium. In games in
extensive form the expected utility principle applied at the players’
choice points comes in conflict with the Nash equilibrium principle
applied to overall strategies. The disparity between these two principles
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here provides a further motivation for refinements of the Nash equilib-
rium concept.

All this suggests that the picture of expected utility theory and game
theory as separate theories dealing with separate domains is wildly inac-
curate. Instead, game theory is and should be founded on expected util-
ity theory, but the details of the foundation are open to serious question.
If anything like classical game theory is to emerge, it must be under
stronger assumptions than just common knowledge of Bayesian ration-
ality (that is, expected utility maximization). The strength of assump-
tions needed to derive classical game theory, and the effect on game
theory of weakening those assumptions, are subjects which merit inves-
tigation.



