
1 Primitive Operations & Principles

1. Apply your knowledge of Java’s precedence relations to determine to answer the following
questions:

(a) What is printed by the following statement:

System.out.println(2 * 4 / 4 + 2);

(a)

(b) Add parentheses to the expression

2 * 4 / 4 + 2

so that it computes 6.

2. For this question and its parts, use the following definitions:

public static int op(int x, int y) {

return x + y;

}

public static double op(double x, double y) {

return x * y;

}

public static double op(int x, double y) {

return 2 * (x + y);

}

(a) What is the result of evaluating:

System.out.println(op(op(1, 2), 2));

(a)

(b) What is the result of evaluating:

System.out.println(op(op(1, 2), 2.0));

(b)

2 Questions about Classes

1. Recall that any attempt to divide a number by 0 throws an ArithmeticException. The class
ArithmeticException is a subclass of Java’s RuntimeException class.

With this in mind, assume that the statement badMethodCall() in the code fragment below
always generates various ArithmeticExceptions, but in no particular order, but at least one
of these is a divide by zero exception.

try {

badMethodCall(); // generates several Arithmetic Exceptions,

// but in no particular order.

} catch(<exception 1>) {

return;

} catch(<exception 2>) {

return;

Assume that the programmer writes:

try {

badMethodCall();

} catch(RuntimeException re) {

System.err.println("Caught a runtime exception.");

return;

} catch(ArithmeticError ae) {

System.err.println("Caught an Arithmetic exception.");

return;

}

Which of the following statements is true?

A. Sometimes the program prints "Caught an Arithmetic exception", but sometimes
the program prints "Caught a runtime exception."

B. The program always prints "Caught a runtime exception."

C. The program always prints "Caught an Artithmetic exception."

D. We do not have enough information to choose from any of these possibilities.

Page 2

2. Given the following partial definitions:

public class Person implements Comparable< Person > { ... }

public class Student extends Person {

private String studentID;

...

}

public class Teacher extends Person {

private String facultyID;

...

}

(a) Write the equals method on the class Person:

(b)

(c) Override the equals method on the Teacher class so that two Teachers are equal if they
are equal according to the class Person and have equal teacherIDs.

Page 3

3 Using Arrays and ArrayLists . . .

1. In the space below, write the rightPartition method that takes an array of Comparable

objects and a Comparable object called pivot. The rightPartition method then returns a
new ArrayList that contains all of the objects from the original ArrayList that are greater the
pivot.

public static ArrayList<Comparable> rightPartition(

Comparable[] array, Comparable pivot) { // begin here

Page 4

2. Write the eitherOr method that takes two ArrayLists of distinct integers, meaning that no
integer appears more than once in either list, and returns a new ArrayList of integers that
appear in one or the other. For example:

eitherOr([1,2,3], [2,3,4]) => [1,2,3,4]

eitherOr([], [1,2,3]) => [1,2,3]

eitherOr([3,2,1], [1,2,3]) => [1,2 3]

etc.

Note: for this question, the order of elements in any of these ArrayLists is unimportant. You
may assume that each parameter is an ArrayList that contains no duplicate integers.

You may only use the ArrayList operators discussed in class in your implementation.

public static eitherOr(

ArrayList<Integer> list1, ArrayList<Integer> list2) {

Page 5

