
Lecture Set 5:
Design and Classes

This Set:
l Basics of program design
l Pseudo-code
l Objects and classes
l Heaps
l Garbage Collection
l More about Creating Objects and classes in Java
l Methods
l Equality
l Printing an object
l Constructors, Accessors, Mutators
l Unit testing

CMSC 131 - Lecture Set #5 1

The Software Lifecycle (“waterfall”)

2CMSC 131 - Lecture Set #5

Requirements

Design

Coding

Testing

Deployment

Maintenance

Evolution
What customers want

What you plan to do

Your program

Did you meet requirements?

Delivery (documentation, etc.)

Bug fixes

New versions

The Software Lifecycle (actual)

3CMSC 131 - Lecture Set #5

Requirements

Design

Coding

Testing

Deployment

Maintenance

Evolution

In the Real World,
Requirements and Design Rule

Getting requirements right is essential for successful projects
FBI electronic case file (junked after $180m)

IRS system upgrade in late 90s (junked after >$2bn)

FAA air-traffic control (false starts, >$10bn spent)

Good design makes other parts of lifecycle easier
In “the real world” coding typically < 30% of total project costs
A good design improves:

efficiency (speed)

efficiency (memory)

ease of coding

ease of debugging

ease of expansion
4CMSC 131 - Lecture Set #5

Usability Matters

5CMSC 131 - Lecture Set #5

Program Design

There are many aspects to good design
Architecture

Modeling

Requirements decomposition

Pseudo-code

In this class we will focus on latter

6CMSC 131 - Lecture Set #5

What Is “Pseudo-code”?

When developing a complex part of a program (an algorithm), one of the tools
often useful is pseudo-code.
It's not English, not programming language -- somewhere between.
Captures the flow of the program without worrying about language-specific
details.

7CMSC 131 - Lecture Set #5

Objects

Bundles of (related)
data (“state”)

operations (“behavior”)

Data often referred to as instance variables
Operations usually called methods
Invoking operations can change state (values stored in instance variables)

8CMSC 131 - Lecture Set #5

Sample Student Class

9CMSC 131 - Lecture Set #5

Name

ID

DOB

Major

State Methods

getAge date → age

getGrades sem., class → grades

etc.

etc.

Sample Student Object

10CMSC 131 - Lecture Set #5

Kerry KeenanName

444230695ID

06-22-1987DOB

CMSCMajor

State Methods

getAge date → age

getGrades sem., class → grades

etc.

etc.

Accessing State / Methods
If

o is an object

v is an instance variable of the object

m is a method of the object

Then
o.v is how to access the data v in o

o.m() is how to invoke m in o

So
If you have already done String str = “Jan”

Then str is a String
str is an instance of an object!

Methods of this object: equals, compareTo, etc.

str.equals(), str.compareTo(), etc. invokes these methods on that object

11CMSC 131 - Lecture Set #5

Object-Oriented Programming

Programs are collections of interacting objects
Writing programs involves identifying what the objects should be and
programming them
Object-oriented languages provide features to ease object-oriented
programming
Defining objects involves indentifying

state

methods

12CMSC 131 - Lecture Set #5

Classes

“Blueprints” (“templates”) for objects
Classes include specifications of

Instance variables (including types, etc.) to include in objects

Implementations of methods to include in objects

Classes can include other information also, as will be
seen later

static methods / instance variables

public / private methods, instance variables

And so on

13CMSC 131 - Lecture Set #5

Student Class Example

Conceptually:
Instance variables:

String name

int ID

int dateOfBirth

String major

Methods
getAge()

getGrades()

etc.

The actual class implementation will include code for the methods
This describes a blueprint for student objects

14CMSC 131 - Lecture Set #5

StudentClassExample1/Studen
t.java

How Are Objects Created?

In Java: using new
Recall:

Scanner sc = new Scanner(System.in);

Invoking new:
creates fresh copies of instance variables in the “heap”

returns the “address” where the fresh variables are stored

Heap? Address?

15CMSC 131 - Lecture Set #5

Driver.java

Heap = “Fresh Memory”

While a program is running, some memory is used to store
variables

Terminology: stack

We have been representing the stack as a table, e.g.

Rest of memory is called heap and can be used for other
purposes, including storing new objects

16CMSC 131 - Lecture Set #5

Variable Value
x 3

y 4.5

Main Memory

Stack grows, shrinks
during program execution
(why?)
So does “allocated heap”
(part of heap in use)
Unallocated part of heap
is called “free”

17CMSC 131 - Lecture Set #5

Allocated
Heap

Stack

Free
Heap

Object Creation

New space allocated in
heap to store instance
variables
Reference (= address) to
this space is returned

Scanner sc = new (…);

18CMSC 131 - Lecture Set #5

Allocated
Heap

Stack

Free
Heap

sc

Strings Are Objects

Where is new in
String name = “Narita”; ?

Java provides it!
String is special because it is used so often

Java automatically “fills in” new

You can too:

 String name = new String(“Narita”);

19CMSC 131 - Lecture Set #5

In Java, 9 Sorts of Variables

8 primitive types
Types are the 8 built-ins (int, byte, double, etc.)

Reference type
Objects always stored in heap (including all data)

Reference to objects are another type, and hold one memory address
(typically one word)

Stack holds local variables
e.g. int x

e.g. String str; // str is reference variable

Heap holds allocated memory (i.e., with “new”)
e.g. Scanner sc = new Scanner(System.in);

e.g. str = “Jan Plane”; // str is reference created above

20CMSC 131 - Lecture Set #5

Example

int x = 7;
float y = 3.3;
String f = “cat”;

21CMSC 131 - Lecture Set #5

HeapStack

x 7

y 3.3

“cat”

f

Heap Issues

What happens if new is called
and there is no free heap?

Crash!

What happens if following are
executed?

String s;
s = new String(“cat");
s = new String(“dog");
s = new String(“cow");

Wasted heap
“cat”, “dog” no longer
referenced by stack

Crashes become a problem!

22CMSC 131 - Lecture Set #5

HeapStack

s

“cat” “dog” “cow”

Garbage Collection

This “heap management” or “memory management” issue is central in CS
Java copes by invoking garbage collector to reclaim unused but still-allocated
heap space
Garbage collector reclaims memory in allocated heap and returns it to free
heap
In previous example, “cat” and “dog” would be reclaimed

23CMSC 131 - Lecture Set #5

Example

String a = new String (“abc”);
String b = new String (“abc”);
if (a == b) {

println (“Equal”);
} else {

println (“Not equal”);
}

=> Not equal

24CMSC 131 - Lecture Set #5

Stack

a

b

Heap

“abc” “abc”

Contrasting Example

String a = new String (“abc”);
String b = a;
if (a == b){

println (“Equal”);
} else {

println (“Not equal”);
}

=> Equal
This is called ALIASING: Two variables
refer to same object.
Can be DANGEROUS!!
What if we really want to make a copy?
 String a = "abc"
 String b = new String(a);

25CMSC 131 - Lecture Set #5

HeapStack

a

b

“abc”

“equals”

== checks if two reference variables refer to the same object
Methods like str.equals() check if two different objects have the same
“content”
Other classes will have an equals method also

26CMSC 131 - Lecture Set #5

Classes in Java

Class declarations have the following form in Java:

public class Student {

}

When you create a class in Eclipse, it generates this
template for you

27CMSC 131 - Lecture Set #5

Visibility modifier:
more later in class

class keyword class name

class body: instance variables, methods

Anatomy of an Instance
Variable Declaration

public int IDNum;

28CMSC 131 - Lecture Set #5

Visibility modifier Normal variable ceclaration

Anatomy of a Method
Declaration (1)

… for methods that do not return values

 public void acceptTokens (int tokensPassedIn){
 tokenLevel = tokenLevel + tokensPassedIn;
 …
}

29CMSC 131 - Lecture Set #5

Visibility
modifier

void
keyword

method name parameter list

body

Anatomy of a Method
Declaration (2)

… for methods that return values

 public int lastFour (){
 … return id % 10000;
}

30CMSC 131 - Lecture Set #5

Visibility
modifier

return
type

method name parameter list

body

Return Type

Methods that return values must specify the type of the value to be returned
The bodies of these methods use return to indicate when a value is to be
returned
The value being returned must have the same type as the return type

31CMSC 131 - Lecture Set #5

Revisit Student/Driver

Object Creation

Once a class is defined, objects based on that class can be created
using new:

new Student()
To assign an object to a variable, the variable’s type must be the
class of the object

Student s = new Student();
Each object has its own copies of all the instance variables in the
class (except for certain kinds we’ll study later)
Instance variables and methods in an object can be accessed using
“.” or using setter (mutator) methods

s.IDNum = 123456789;
s.setIDNum(123456789);

32CMSC 131 - Lecture Set #5

Constructors (overloaded)
Special “methods” in class definitions to specify how objects are created
Form of a constructor definition:

Student (String nameDesired, int IDDesired, int
tokensDesired) {

name = nameDesired;
id = IDdesired;
tokenLevel = tokensDesired;

}
Can have more than one constructor, provided argument lists are different

Student (int IDDesired) {
id = IDDesired;

}
Java includes default constructor (no arguments), which you can redefine
(overriding the default)

Student () {
tokenLevel = 3;

}

33CMSC 131 - Lecture Set #5

summaryExample/Student.java
CallingOtherMethods.java

Equality Testing

34CMSC 131 - Lecture Set #5

• Need to define what it means for two students to
be equal

public boolean equals(Student otherStudent) {
if (otherStudent == null) {

return false;
 } else if (id == otherStudent.id) {

return true;
 } else {

return false;
}

}

Objects to Strings

What happens if we try to print a Student object?
invoke println using a Student object as an argument?

Student s1 = new Student ();

System.out.println (s1);

Something like this prints:
Student@82ba41

35CMSC 131 - Lecture Set #5

Java Knows “How” To Print
Any Object
Why?

Every class has a default toString method

toString converts objects into strings

System.out.println calls this method to print an object

Default: object type and address

toString can be overridden!

 // The method for converting Students to strings

 public String toString () {
 return (name + “: ” + id);
 }

36CMSC 131 - Lecture Set #5

Static Data Members and
Static Methods

Not contained in or associated with an object of that type
Accessed by the ClassName.variableName or by ClassName.methodName
rather than by objectName.variableName or by objectName.methodName

37CMSC 131 - Lecture Set #5

MpgCalculator0/1.java

Set / Get Methods

We have been using = to modify instance variables and accessing variables
directly to read values
Generally, this is not good practice because it imposes restrictions on class
implementation
Better

set methods to set values (mutators)

get methods to read values (accessors)

38CMSC 131 - Lecture Set #5

Set Methods (Mutators)
public void setID(int newID) {
 id = newID;
}

Can also do consistency checking

public void setTokenLevel(int newTokenLevel) {
 if (newTokenLevel <= 3) {
 tokenLevel = newMonth;
 } else {
 System.out.println (
 "Bad argument to setTokenLevel: " + newTokenLevel);
 }
}

39CMSC 131 - Lecture Set #5

Get Methods (Accessors)

Sole purpose is to return values of state
 public int getID () {

 return id;

}

Why use them?
The state information may not always be stored in a single instance
variable, since implementations may change

You give designers option of changing instance variables

Can log/monitor usage

40
CMSC 131 - Lecture Set #5

moreAdvancedClasses

C
M

SC
13

1 –
lec
tur

e
Se
t 6

41

Parameters and Constructors
Recall that methods / constructors can have parameters

public Student (String newName, int IDDesired) {
name = newName;

id = IDDesired;
tokenLevel = 3;

}
What is printed by the following?

String newName = “Joe”;
Student s = new Student(newName + “ Schmoe”, 123456789);
System.out.println (s.name);
System.out.println (newName);

Joe Schmoe
Joe

C
M

SC
13

1 –
lec
tur

e
Se
t 6

42

How Does Java Evaluate
Method / Constructor Calls?

int newName = “Joe”;
Student s = new Student

(newName + “ Schmoe”, 123456789);
1. Arguments are evaluated using stack in effect at call

site (place where method called)
newName + “ Schmoe”, evaluates to Joe Schmoe

123456789 evaluates to 123456789

2. Stack frame (temporary addition to stack) created to
associate method parameters with values

3. Stack frame put into stack
4. Body of method executed in modified stack
5. Stack frame removed from stack

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

43

Testing: The problem

Problems:
need to be able to make sure all parts are tested

need to know in testing exactly which part was not as expected

need to be able to keep the tests for modifications made later

Unit testing helps overcome this problems of making
sure everything is tested

Unit testing: test each class and each part of the class (unit)
individually

Goal is to eliminate inconsistencies between the API and the
actual working of the code

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

44

Unit Testing
Unit testing helps overcome this problems of making sure everything is tested in
a structured way

Unit testing: test each unit individually (micro level – each method or specifically
each interaction described in the API)

Goal is to eliminate errors within classes

Needs for unit testing
Method for defining tests = inputs, expected outputs

Method for running tests

Method for reporting results

One possibility: write a driver for each class
Driver class contains main method

main method creates objects in class to be tested, calls methods, prints outputs

User checks outputs, determines correctness

Good: easy, no special tools needed

Bad: tedious, relies on human inspection of outputs

Another approach: JUnit

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

45

JUnit

A unit-testing tool for Java
Includes capabilities for:

Test definition, including output checking

Test running (execution)

Result reporting

Seamless integration with Eclipse
Note

In this class we will use JUnit 3.8.1 for some and Junit 4 for others – to
expose you to both

So, when given a choice select JUnit 3

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

46

Structure of a JUnit 3.8.1 Test
Case
import junit.framework.TestCase;

public class FunnyIntegerSetTest01 extends TestCase {

 public void testInsert() {
FunnyIntegerSet set = new FunnyIntegerSet ();
set.insert(3);
assertTrue (set != null);

 }

 public void testFindClosest() {
FunnyIntegerSet set = new FunnyIntegerSet ();
set.insert (3);
set.insert (6);
assertEquals (6, set.findClosest(5));

 }
}

Test case name

JUnit library

Needed (will see
why later in
semester)

Tests

Assertions (result checkers)

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

47

A Test Case Is … A Class!

assertion checkers
● assertTrue(expression);

– If statement is true, keep running test; otherwise, halt test, report “fail”

● assertFalse(expression);
– If statement is false, keep running test; otherwise, halt test, report “fail”

● assertEquals(expression1, expression2);

– If expression1, expression2 equal, keep running test; otherwise, halt test,
report “fail”

If test terminates without failing an assertion and without throwing an uncaught
exception, then it passes that test

It continues with all subsequent tests regardless of passing or failing the current
test

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

48

Hints on Testing

Give names to tests that relate to class being tested
Develop some tests before you code

Helps you to clarify what you are supposed to be doing

Gives you some ready-made tests to run while you code

Use tests to debug
How many tests?

Statement coverage: develop tests to make sure each
statement in class is executed at least once (including
constructors)

Decision coverage: develop tests to make each condition (if
statement) in program both true and false

You should at least reach statement coverage in your own
testing

C
M

SC
13
1 -
Le
ctu
re

Se
t

#5

49

Taking Care of Corner Cases

FunnyIntegerSet example from CVS
Set of null was a corner case that we needed to test for

Write new test cases or new asserts in the test cases that
already exist to take care of this

public void testNullSet(){
FunnyIntegerSet s = null;
s.insert(4);
assertEquals(s.findClosest(3),4);

}

	Slide 1
	The Software Lifecycle (“waterfall”)
	The Software Lifecycle (actual)
	In the Real World, Requirements and Design Rule
	Usability Matters
	Program Design
	What Is “Pseudo-code”?
	Objects
	Sample Student Class
	Sample Student Object
	Accessing State / Methods
	Object-Oriented Programming
	Classes
	Student Class Example
	How Are Objects Created?
	Heap = “Fresh Memory”
	Main Memory
	Object Creation
	Strings Are Objects
	In Java, 9 Sorts of Variables
	Example
	Heap Issues
	Garbage Collection
	Example
	Contrasting Example
	“equals”
	Classes in Java
	Anatomy of an Instance Variable Declaration
	Anatomy of a Method Declaration (1)
	Anatomy of a Method Declaration (2)
	Return Type
	Object Creation
	Constructors (overloaded)
	Equality Testing
	Objects to Strings
	Java Knows “How” To Print Any Object
	Static Data Members and Static Methods
	Set / Get Methods
	Set Methods (Mutators)
	Get Methods (Accessors)
	Parameters and Constructors
	How Does Java Evaluate Method / Constructor Calls?
	Testing: The problem
	Unit Testing
	JUnit
	Structure of a JUnit 3.8.1 Test Case
	A Test Case Is … A Class!
	Hints on Testing
	Taking Care of Corner Cases

