
Lecture Set #12:
Ternary Operator
and Switch

• Method Overloading Warning
• ternary operator: The ?:

(conditional operator)
• switch

CMSC 131 - Lecture Set #12 1

Method Overloading

Method definition
public static void f(int x, float y){
 body
}
prototype:

public static void f(int x, float y)
signature:

f(int, float)
You can only overload methods if they have different signatures.
Implicit widening conversions are allowed

Beware of subtle problems with widening conversions

CMSC 131 - Lecture Set #12 2

CMSC 131 - Lecture Set #12 3

The Conditional Operator

The only ternary operator (has 3 operands)
? Between first operand and second operand

: Between second operand and third operand

Format:
boolean-expression ? expression1 : expression2

Purpose:
test to see if (boolean-expression) is true or false

whole expression takes on the value of expression1 when boolean-
expression was true

whole expression takes on the value of expression2 when boolean-
expression was false

CMSC 131 - Lecture Set #12 4

What is another way to write
this if-else-if statement?

if (grade == ‘A’){
System.out.println (“I’m very happy”);

}else if (grade == ‘B’){
System.out.println (“I’m relatively happy”);

}else if (grade == ‘C’){
System.out.println (“At least I get credit”);

}else{
System.out.println (“Check with the

professor”);
}

Switch
- But only when testing equality to the same variable on every level
- AND only when using integral types

●

CMSC 131 - Lecture Set #12 5

The switch Statement:
General Form

 switch (control-expression) {
 case case-label-1 :
 statement-sequence-1
 break;
 case case-label-2 :
 statement-sequence-2
 break;
 …
 case case-label-n :
 statement-sequence-n
 break;
 default :
 default-statement-sequence
 break;
 }

The optional “default” case is
executed if no other case
matches

The control-expression is
one of the following types:
char, int, short, byte

Each case label must be a value in
type of control expression

You may have any number of statements,
including if-else and loops

The “break” statement jumps
out of the switch statement

CMSC 131 - Lecture Set #12 6

The default Case
default is optional

If omitted, and no case matches, then the switch statement does nothing
However: you should always include a default case, even if you want nothing to be done if no
case matches (you should never rely on implicit behavior!)
Although cases are not required to be in order … (following is legal):

● switch (option) {

● case 2:

● …

● case 9:

● …

● default:

● …

● case 1:

● …

● }

… it is much better to list cases:
in increasing order

with default last

CMSC 131 - Lecture Set #12 7

Case Continuation
The control expression can have one of the following types: char, int, short, byte

not float, double, boolean, long

not a String or other object

Case continuation also called “cascading case behavior”, “falling through to the next case”, etc.
It is occasionally handy for combining of cases

e.g. case-insensitivity

switch (grade) {

case ‘a’:

case ‘A’:

System.out.println (“I’m very happy”);

break;

…

}

Be very careful about using this cascading behavior!
Always insert break statements after every case

Then remove ones you do not want

CMSC 131 - Lecture Set #12 8

Why Use switch?

switch can also be implemented using if-else
switch also restricted in terms of data types in control
statements
Including break statements is a pain
However

switch often more efficient (compiler generates better code)

Code can be more compact because of case-continuation
behavior

Sometimes case analysis is clearer using switch

	Slide 1
	Method Overloading
	The Conditional Operator
	What is another way to write this if-else-if statement?
	The switch Statement: General Form
	The default Case
	Case Continuation
	Why Use switch?

