
CMSC131

Data Structures, Generics,

ArrayList, the notion of a "for each" loop,

the Stack

I have read the pre-existing code in P6

1. Yes

2. No

3. P6 was posted?

22 of 22

The December 14th final at 4pm is in:

1. ARM 0135

2. ARM 0135

3. ARM 0135

4. ARM 0135

22 of 22

Polymorphism and Arrays
• With polymorphism, we can have (for example) the

interfaces Animal and Comparable and classes
that implement them called ComparableCat and
ComparableDog.

• We can then create an array of Animal references
or an array of Comparable references, either of
which could contain both ComparableCat and
ComparableDog objects.

• However, if we want to invoke any method that is not
defined within the interface on an object, we have to
explicitly cast to a specific type like ComparableCat
or ComparableDog before doing so.

Multi-use Data Structures
• What if we wanted to create a more complex

data structure that could contain any type of
object?

• We could have it contain Object
references, but then we would need to cast
things every time we wanted to use them.

• We would also potentially need to write a
great deal more code for error-checking
and/or error-handling and would have less
compiler-level checking possible.

Generics
• In C++ you can have a template data

structure for which you explicitly say what
type of value it can hold when you declare
the structure.

• In Java, a similar feature was added in Java
version 5.0 which is called Generics.

ArrayList<Type>
• A useful "collection" data structure provided

by Java is an array-based, resizable list.

• It has similarities to the StringBuffer
class in how it can have a structure behind
the scenes that has a greater capacity than
its utilized size.
– Unlike with StringBuffer, we can not access

the current capacity information.
– We do have a method ensureCapacity() that

can be used before a large number of additions
that will grow the internal structure to at least that
size in a single operation.

Declaring and Filling an ArrayList

ArrayList<Integer> arrName;

arrName = new ArrayList<Integer>();

arrName.add(11);

arrName.add(20);

arrName.add(2010);

//This line would NOT compile.

arrName.add("hi");

Copying an ArrayList
ArrayList<Integer> newArr;

newArr = new ArrayList<Integer>(oldArr);

Iterable<Type>
• Among other things, the ArrayList<Type>

class is a Collection that implements the
Iterable<Type> generic interface.

• We can iterate through each of the individual
elements of an ArrayList<Type> object
using the syntax of a "for each" loop:

for (Typename iteratedVal : collection)
{

//process the iteratedVal object

}

Iterating through an ArrayList
for (Integer i : arrName) {

 System.out.print(i + " ");

}

System.out.println();

NOTE: You cannot alter a list while iterating
through it. If you want to perform that type of
operation, you would need to create a duplicate
of the list and iterate through that one while
altering the other.

One way to delete all Even Numbers

ArrayList<Integer> a2;

a2 = new ArrayList<Integer>(a1);

for (Integer i : a1) {

if (i%2 == 0) {

a2.remove(i);

}

}

The idea of a stack
• Some data structures have very limited and

strict access rules, though specific libraries
can add non-standard access methods.

• We have discussed the idea of a stack
previously when discussing memory.

• The standard ways to access a general use
stack are via push() and pop() or peek().
– The idea is to push a value onto the top of a stack

and to pop a value off the top with no way to
access anything not at the top. You can peek at
the value on the top also.

Stack<Type>
• There is a Collection provided by Java called
Stack.

• This Stack class is also generic class.

• It implements the push, pop, peek access
methods as well as others which are part of
the Collection interface, such as a search
method contains, and a method to get an
Iterator for the structure called iterator.

• You can use it by importing java.util.Stack

Our own stack implementation?
• What if we wanted to write our own Stack class

which only had public methods that are explicitly
part of the idea of a stack? (We will in next week’s
lab.)

• We could hold the values in an ArrayList and could
try to mimic some of the things we saw in
StringBuffer and even try to "help out" the Java
garbage collection algorithm.

• Rather than importing java.util.Stack we could
import our own class. We could even swap our
stack into an existing program by making this
change if it was only using the methods that are
really stack methods.

Consider the following code:
public static void main(String [] args) {
Integer[] values = new Integer[10];
int top = -1;
for (int i=0; i<5; i++) {

top++;
values[top] = new Integer(i);

}
System.out.println(values[top]);
top--;
System.out.println(values[top]);

}

At the end of this code, is the Integer which
contains the value 4 ready for garbage collection?

The Integer which contains the
value 13 will be "collected" by Java.

1. Yes

2. No

3. Not sure.

19 of 22

The Integer which contains the
value 4 should be "collected".

1. Yes

2. No

3. Not sure.

0 of 5

60

Would this help?
public static void main(String [] args) {
Integer[] values = new Integer[10];
int top = -1;
for (int i=0; i<5; i++) {

top++;
values[top] = new Integer(i);

}
System.out.println(values[top]);

 values[top] = null;
top--;
System.out.println(values[top]);

}

At the end of this code, is the Integer which
contains the value 4 ready for garbage collection?

Copyright © 2012 : Evan Golub

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	PowerPoint Presentation

