
Set 08 Answers

1. Consider the following class:
public class Tornado {
 private static final int MAX_STRENGTH = 7;
 public String name = _Bill_;
 private void causeDamage() {
 // imagine code here
 }
 public static int calculateTrajectory() {
 // imagine code here
 }
}

Below, assume that the variable _t_ refers to a Tornado object. The table below
has rows corresponding to various expressions related to the Tornado class. The
columns list various places where one might consider using those expressions. Clearly
place a _V_ in any box where the corresponding expression is valid syntax when used in
the corresponding context.

 static

method
of
Tornado
class

non-
static
method
of
Tornado
class

method
of some
other
class

name V

MAX_STRENGTH V V

causeDamage() V

calculateTrajectory() V V

t.name V V V

t.MAX_STRENGTH V V

t.causeDamage() V V

t.calculateTrajectory() V V V

Tornado.name

Tornado.MAX_STRENGTH V V

Tornado.causeDamage()

Tornado.calculateTrajectory() V V V

2. Where can you use a _continue_ statement?

Inside of any loop.

3. Describe how a continue statement behaves in a while loop.
Goes to top of loop immediately and checks the boolean condition to see if looping
should continue.

4. Describe how a continue statement works in a for-loop.
It will execute the statement that is usually processed at the end of an iteration through
the loop, and then check the boolean condition to see if looping should continue.

5. Where can you use a _break_ statement?
Either in a switch statement or in a loop. (We will learn about "switch" statements later.)

6. Describe how a break statement behaves.

Causes the inner-most loop or switch statement to be exited immediately.

7. Write some faulty code that generates a null-pointer exception, catch the exception
immediately and print out _exception caught_ in your catch block.

 String s = null;
try {
 int x = s.length(); // throws exception
} catch (NullPointerException e) {
 System.out.println("exception caught");
}

8. Write some code that prompts the user for a numerical value, and reads their input
into an int variable. Run the program, and try entering some text (like _cat_) instead of
a number. Notice what kind of exception is thrown. Now modify your program so that it
catches this exception, and instead of crashing the program, have it tell the user that
he/she must enter a NUMBER, and then prompt them for input again.

 Scanner s = new Scanner(System.in);
 boolean goodNumberEntered = false;

 while (true) {
 System.out.println("enter a number: ");
 try {
 int n = s.nextInt();
 } catch(java.util.InputMismatchException e) {
 s.nextLine(); //removes previous input from stream
 System.out.println(_No, you MUST ENTER A NUMBER!_);
 continue;
 }
 break;
 }

9. Write a method called smallSum that takes two int parameters, x and y. If the
absolute value of the sum of the integers is more than 100, throw
an ArithmeticException, passing the String _I don_t like big numbers_ to the constructor
of the exception. If the sum is less than 100, then return the sum. Write a quick driver to
test out your method. After making sure everything works correctly, modify the driver so
that it catches the exception and prints out the message that was passed to the exception_s
constructor, but doesn_t crash the program.

public static int smallSum(int x, int y) {

 if (Math.abs(x + y) > 100) {

 throw new ArithmeticException("I don_t like big numbers!");

 }

 return x + y;

}

public void static main(String[] args) {

 try {

 smallSum(50, 60);

 } catch (ArithmeticException e) {

 System.out.println(e.getMessage());

 }

}

10. Explain the relationship between exception handling and the call stack. What
happens if an exception is thrown but not caught anywhere in your program?

 When an exception is thrown, Java looks for an appropriate _catch_ block in the
place where the problem occurred. If a catch is not found there, then Java discards the
current frame on the call stack, and looks for an appropriate catch block in the previous
frame. If none is found, that frame is discarded, etc. If the exception is not caught
anywhere, then the program terminates, and the exception propagates to the _outside
world_, which for us is the Eclipse IDE. Eclipse displays that red and blue error
notification with stack trace in the console.

11. Under what circumstances will the finally block run?
The finally block ALWAYS runs.

