
CMSC131

Java Packages

Java Packages
• There are different uses of the Java
package system, some for organization,
some for access protection, some which
involve both.

• In most of the projects this semester we used
packages to organize things.

• There can be sub-packages contained within
a package.

• We can use import statements to gain
access to public classes and interfaces in
packages or can use fully qualified names to
access specific things.

Why packages?
Some advantages of packages are:

– Two classes in different packages can have the
same name without being a direct conflict and
we could even have both used within the same
project via qualified naming.

– Classes can be designed so that some of the
classes in the same package can be accessed
by others in the package but not by outsiders.

NOTE: There is a "default package" even if we
don't define our own package.

Access / Visibility Summary

Modifier
Within
Class

Within
Package

Subclass
(more to come)

Outsiders

public YES YES YES YES

protected
(more to come)

YES YES YES NO

default
(no modifier)

YES YES NO NO

private YES NO NO NO

The import statement
They go at the top of the .java files to tell Java

"where" to look for classes and interfaces
referred to in your code.

Allows us to avoid needing to use naming such
as java.util.Date but rather be able to
use Date by using import java.util.*;

No code is actually brought into the .java file
with the import statement. This differs
greatly from the C++ include statement
you will see later.

The package statement
Your .java files will be in a folder named for the

package, and each will have a package
statement at the top of the form:
package packagename;

Sub-Packages
• A package might have a variety of classes within it

but also contain sub-packages.
• These sub-packages might feel "right" to organize

to be within the package but have their own self-
contained purpose, thus a sub-package.

• For example, the java.util package is
something that we've been using. By importing
java.util.* we get direct access to the classes
at that level.

• However, we do not get this access for the
java.util.concurrent.* classes unless we
import that as well.

.jar files
• Related to packages, once development is

done, you might provide a package to
someone by creating a .jar file containing the
entire package's directory for easy
portability.

• The .jar file needs to be placed somewhere
that is listed within your CLASSPATH.

• There are other uses for .jar files. For
example, you can create a "standalone"
"executable" of your Java program.

• Structurally, a .jar file is essentially a .zip
format archive file.

Copyright © 2012 : Evan Golub

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	PowerPoint Presentation

