
CMSC 131 - Lecture Set #3

Lecture Set #3:
Conditional and Iterative Structures

Control Structures
l if branching
l if / else branching
l logical operators
l nesting of control structures
l proper indenting and spacing conventions
l java identifier naming conventions
l named constants
l while loop
l do-while loop
l for loop 1

CMSC 131 - Lecture Set #3 2

Control Flow and Conditionals

Control flow: the order in which statements are executed
General rule: top to bottom

Several Control Structures that change that

Conditional statements: permit control flow to be dependent on (true/false)
conditions

if

if-else

CMSC 131 - Lecture Set #3 3

if and if-else
The if and if-else statements should have the following form:
if (condition) {
 statements;
}

tests the condition

if true statement is done; otherwise it is skipped

if (condition) {
 statements1;
} else {
 statements2;
}

tests the condition

if true, statements1 is done; otherwise statements2 is done

CMSC 131 - Lecture Set #3 4

Java and White Space

http://java.sun.com/docs/codeconv/html/CodeConv
TOC.doc.html

You can add: carriage returns, spaces, tabs
wherever you want in Java

Properly used, this makes your program easier to read and understand

CMSC 131 - Lecture Set #3 5

Logical Operators
Used for forming more complex conditions.

“and” &&

if (temp >= 97 && temp <= 99) {
System.out.println(“Patient is healthy”);

}

“or” ||

if (months >= 3 || miles >= 3000) {
System.out.println(“Change your oil”);

}

“not”: !

if (! phone.equals(“301-555-1212”)) {
System.out.println(“Sorry, wrong number”);

}

CMSC 131 - Lecture Set #3 6

Blocks

What happens?
if (i > 10)

i = 10;
saturate = true;

Desired: both i, saturate are set only when i > 10
Actual: only the i=10 statement is dependant

Only one statement can be associated with if

The saturate assignment statement is not part of the
if

Blocks solve this problem

CMSC 131 - Lecture Set #3 7

Blocks
What happens?

if (i > 10)
i = 10;
saturate = true;

 else
 k = 100;

Desired: both i, saturate are set only when i > 10
Actual: syntax error

Only one statement can be associated with if

The saturate assignment statement is not part of the if

The else can’t find the if it belongs to

Blocks solve this problem also

CMSC 131 - Lecture Set #3 8

What Blocks Are
Blocks are sequences of statements “glued together” into one
Form:

{
 <statement 1>;
 <statement 2>;
 …
}

Example:
if (i > 10) {

i = 10;
saturate = true;

 } else {
i = i+1;

 }
if, if-else, {…} are statement constructors

They take statement(s) and convert them into a new statement

Implications: if statements, etc. can also appear inside (“be nested within”) one another

block

block

CMSC 131 - Lecture Set #3 9

Issues with if-else

Nested If/Elses can be Ugly and Confusing!
indent and block carefully

The “Dangling Else” Problem
Java rule: else is associated with “innermost” possible if

Cascading Elses

WE WILL USE { … } FOR ALL IF, IF-ELSE, IF-ELSE-IF, STATEMENTS

CMSC 131 - Lecture Set #3 10

In Projects
You must use meaningful variable names

it must tell the purpose of that variable – what it is meant to hold

it can not have so much abbreviation that only you can read it

You must use Java convention indenting and brace placement
the indenting show the purpose in nesting

with braces in the “Java determined” places with respect to the lines of
code

Java convention of capitalization of identifiers
variables and methods start with lower case

classes and interfaces start with upper case

variables, methods, classes and interface use camelCase

constants are all uppercase with underscores between words

You must have “Fully Blocked” if statements and looping structures
You must have all lines less than or equal to 80 columns of text
You must use "named constants" for any literal values that will not
change during program execution.

CMSC 131 - Lecture Set #3 11

Named Constants
If same value should be used in several places, how to ensure consistency?

i.e. Check on temperature may be performed more than once

i.e. Same prompt might be printed in several places

final int MAX_OK_TEMP = 99;
Just like a regular variable declaration/initialization, except…

● Special term final
● Necessity of initial value

● Any valid variable name will work, but convention is to use all capitals

Difference from non-final variables: assignment attempt leads to error!
literals (= named values)

e.g.
if (temp >= 212 || temp <= 32) …
if (temp >= BOILING || temp <= FREEZING)
e.g.

 System.out.print (“Enter integer: “);
 System.out.print (PROMPT);

CMSC 131 - Lecture Set #3 12

Naming Rules and Conventions
What is legal for variable names?

Letters, digits, $, _

Can’t start variable name with digit

Avoid reserved words

Avoid names starting or ending with $ or _

Use camelCase:
Variables & Methods use lower-case for first letter

Classes/Interfaces use upper-case for first letter

Naming Conventions: Standards developed over time.
Variables and methods: Start with lowercase, and use uppercase for each new word (including instance final variables):

dataList2 myFavoriteMartian showMeTheMoney

Class names: Start with uppercase and uppercase for each new word:

String JOptionPane MyFavoriteClass

Named class constants (static variables whose value never change): All uppercase with underscores between words:

MAX_LENGTH DAYS_PER_WEEK BOILING_POINT

Make variable names not too long, not too short
Bad: crtItm

Bad : theCurrentItemBeingProcessed

Good : currentItem

CMSC 131 - Lecture Set #3 13

Meaningful Variable Names

Choose names for your variables to reflect their purpose not their
type
Make it readable to someone else
Help prevent mistakes in order of the relational operators

Bad Good
typedValue == 5 menuOption == 5

integer > 13 age > 13

input1 > 45 && input2 > 100 height > 45 && weight > 100

val1 < 100 || val1 > 999 non3dgt < 100 || non3dgt > 999

CMSC 131 - Lecture Set #3 14

Loops in Java

So far our programs execute every program statement
at most once
Often, we want to perform operations more than once:

“Sum all numbers from 1 to 10”

“Repeatedly prompt user for input”

Loops allow statements to be executed multiple times.
Loop types in Java:

while

do-while

for

Called “iteration”

CMSC 131 - Lecture Set #3 15

while and do-while Loops
while and do-while loops contain:

A statement, called the body

A boolean condition

Idea: the body is executed one more time as long as the condition is true

while-loop: The condition is tested before each body execution
● while(condition){
● body

● }

do-while-loop: The condition is tested after each body execution
● do{

● body

● } while (condition);

Main difference: do-while loop bodies always executed at least once because it is
“bottom tested” rather than “top tested”

CMSC 131 - Lecture Set #3 16

Types of loops

indefinite iteration
usually tests something that is coming from outside the loop structure (e.g.
input)

needs to eventually change from true to false

counted iteration
something that is controlled inside the loop

to start at some value and count up or down until some set ending point

CMSC 131 - Lecture Set #3 17

for loop

for-loop: The counter is set, the condition is tested before each body
execution, the update is performed at the end of each iteration

● for(initialization ; condition ;
update){

● body

● }
Usually used for counted loops, but any of the parts can be left empty.

CMSC 131 - Lecture Set #3 18

Infinite Loops

Loops can run forever if condition never becomes false
Be careful when programming loops!

Add statements for termination into loop body first

Often these statements are at end of body

e.g.

while (i <= 10) {
 System.out.println(i);
 i = i + 1;
}

CMSC 131 - Lecture Set #3 19

Variables, Blocks and Scoping

Variables can be declared anywhere in a Java program
When are the declarations active?

After they are executed

Only inside the block in which they are declared

Scope rules formalize which variable declaration are active when
Global variables: scope is entire program

Local variables: scope is a block

CMSC 131 - Lecture Set #3 20

Nested Loops

while, do-while are statement constructors (like if and if-else: they use blocks)
Loops can thus be used inside other loops!

CMSC 131 - Lecture Set #3 21

Outer loop

Nesting Example
public class NestedLoops {

 public static void main(String[] args) {

 int rowNumber = 1;
 while (rowNumber < 10) {
 int colNumber = 1;
 while (colNumber < 10) {
 System.out.print((rowNumber + colNumber) % 2);
 colNumber = colNumber + 1;
 }
 System.out.println();
 rowNumber = rowNumber + 1;
 }
 }
}

Inner loop

	Slide 1
	Control Flow and Conditionals
	if and if-else
	Java and White Space
	Logical Operators
	Blocks
	Blocks
	What Blocks Are
	Issues with if-else
	In Projects
	Named Constants
	Naming Rules and Conventions
	Meaningful Variable Names
	Loops in Java
	while and do-while Loops
	Types of loops
	for loop
	Infinite Loops
	Variables, Blocks and Scoping
	Nested Loops
	Nesting Example

