CMSC131
Lecture Set O:
Course Introduction

Topics In this set:

. Course information
».Computer terminology basics
3. Jools needed for this course

CMSC 131 - Lecture Slides - set 1

Basic Info @

Name: “Object-Oriented Programming |’
Class meetings: Lab and Lecture
Instructor: Tom Reinhardt

4 TAs: Ahmed Elgohary, Ujjwal Goel, Ugur Koc,

Xuetong Sun

Office Hours
» WIll be Posted
= All in AVW building:
= 1112 (TA's), 3239 (Tom Reinhardt)

CMSC 131- Lecture Slides — set 1

QERSIT,
S . O
o)

What Is This Course? kit

A fast-paced introduction to techniques for writing computer programs!
Skill Development in Programming
Conceptual Understanding of Programming
Beginning of “computer science”
Intensive, but assumes you are starting at level 0.
Keys to success
Attend all classes and lab sections
Start assignments early — and continue until you truly understand
Get help early if you are having trouble — instructor & TAs
Study every day
it doesn’t work to cram for these exams
ask questions as soon as you realize you are confused
Check announcements every day

CMSC 131- Lecture Slides — set 1

Course Software

Eclipse
An IDE (integrated development environment)
We will use it for writing Java™ programs
Access to Eclipse (it’s free!)

You can install it on your own machine: http://
www.cs.umd.edu/eclipse

Also accessible in some labs around campus
CVS (Concurrent Versions System)
A version-management system
You will use it for submitting your projects
Both of these — Demonstrations on Wednesday

CMSC 131- Lecture Slides — set 1

http://www.cs.umd.edu/eclipse

Computer Organization i

Hardware:

physical parts of computer
examples
Monitor, mouse, keyboard
Chips, boards
Cables, cards
etc.
Software:

non-physical (“logical”) parts of computer
Programs = instructions for computer to perform

CMSC 131- Lecture Slides — set 1

&
How Programs Are Executed Qi

TN
]

foo.exe

N

Program “foo” initially
stored in secondary
storage

COPY »

Program copied
into main memory

CMSC 131 - Lecture Slides - set 1
CMSC 131- Lecture Slides — set 1

CPU executes
program instruction-
by-instruction

SERSIT)

Hardware Overview it

CPU = central processing unit
Executes the "instructions® in programs
Main memory = random-access memory = “RAM”
Stores data that CPU accesses, including instructions
FAST, but smaller and temporary; wiped out when computer is shut off!
Secondary memory: Hard disks, CDs, DVDs, flash memory, etc.
Stores data that can be loaded into main memory
SLOWER, but larger and permanent

I/O devices
How you communicate with your machine
Keyboard, monitor, mouse, speakers, etc.
Networking equipment
How others communicate with your machine
Networking “cards”, cables, etc.

CMSC 131- Lecture Slides — set 1

Main Memory

Computer data consists of off
and on pieces (often written
as O's and 1’s)

bit: A single cell in main
memory that can hold either a
0or1

byte: A sequence of 8 bits

- word: Unit of memory (size
varies by computer - often a
sequence of 4 bytes)

Main memory: table of bytes
indexed by “addresses”

CMSC 131 - Lecture Slides - set 1

Address Byte value

0

How Many Different Values can @
: ey
be stored in a...

-Bit?
2
-Two bits?
4=2x2
Byte?
256 =2X2X2X2X2X2Xx2x2=28
Word?
4,294,967,296 = 232

CMSC 131- Lecture Slides — set 1

WERSIT,

Oe N O«\
18 /56
LSNP L

Other Standard Terminology

Prefixes for bit and byte multiples

Decimal
Value Sl
1000 k kilo-
1000° M mega-
1000° G giga-
1000° T tera-
1000° P peta-
1000° E exa-
10007 Z zetta-
1000° Y yotta-

Binary
Value IEC JEDEC
1024 Ki kibi- K kilo-

1024% Mi mebi- M mega-

1024° Gi gibi- G giga-
1024° Ti tebi-
1024° Pi pebi-
1024° Ei exbi-
10247 Zi zebi-
1024° Yi yobi-

One kilobyte is
approximates one
Kibibyte which is
approx 1000 bytes
(actual 1024 bytes).

210 =1
220 =1
230 =1

024
0242
0243

230=1,073,741,824

CMSC 131- Lecture Slides — set 1

10

How Are Characters, Etc.,
Represented? Bt

Via encoding schemes
Example: ASCII

American Standard Code for Information
Interchange

Early standard for encoding a single character in a bytes
In ASCII:
+ ‘A" 01000001, ‘B> 01000010, ‘C’ 01000011, ...
‘a” 01100001, ‘b’ 01100010, ‘c’ 01100011,...
1" 00110001, 2’ 00110010, ‘3 00110011, ...
00101100
etc.

11
CMSC 131- Lecture Slides — set 1

Other Character Encodings

International support?
-Unicode

-Most common variation: UTF-8
-Backwards compatible with ASCI|

Unicode Byte1 Byte2 Byte3 Byted4 Example
U+0000-U+007F Oxxxxxx '$' U+0024
(0 to 127) X — 00100100
— 0x24
U+0080-U+07FF 110yyyx 10xxxxx '¢' U+00A2
(128 to 2,047) X X — 11000010,10100010
— 0xC2,0xA2
U+0800-U+FFFF 1110yyy 10yyyyx 10xxxxx ‘€' U+20AC
(2,048 t0 65,535) vy X X — 11100010,10000010,10101100
— 0xE2,0x82,0xAC
U+10000-U 11110zz 10zzyyy 10yyyyx 10xxxxx '{' U+024B62
+10FFFF z y X X — 11110000,10100100,10101101,10100010
(65,536 to — 0xF0,0xA4,0xAD,0xA2

1,114,111)

12
CMSC 131- Lecture Slides — set 1

4\3‘)\\’17‘},

_ b,
Software Overview

Operating system: manages computer's resources; typically runs as soon as
computer is turned on.
Typical responsibilities:
Process management
Determines when, how programs will run on CPU time
Memory management
Controls access to main memory
I/0O, window system, network control
Performs low-level drawing, communication operations
Security
Manages user IDs, passwords, file protections, etc.

Applications: programs users interact directly with; usually are explicitly run.
Examples

Word processors

Games

Spreadsheets

Music software,

Etc

13
CMSC 131- Lecture Slides — set 1

®

Programming Languages

-Used to write programs that run on computers

-Generations of programming languages
“1st (1GL):

2nd (2GL):

3rd (3G
4th (4G
5th (5G

machine code

assembly code

procedural languages
application-specific languages
constraint languages

14
CMSC 131- Lecture Slides — set 1

1st Generation: Machine Code | "«

‘Recall: computer datais O's and 1’s.

‘In machine code, so are programs!
‘Program: sequence of instructions
‘Machine code: instructions consist of 0’'s and 1's

‘Next slide: example machine code instruction from
MIPS (= "Microprocessor without interlocked pipeline

stages”) architecture
‘Popular in mid-, late 90s
‘Instructions are 4 bytes long

15
CMSC 131- Lecture Slides — set 1

Example MIPS Instruction

“Add data in addresses 1, 2, store result in

address 67:

00000000001000100011000000100000
‘broken into parts:

200000[pe001

.

r /
opcode 2

nd address / shift amount /

1st address

destination address

function specifier

CMSC 131- Lecture Slides — set 1

16

Courtesy of Microsoft Encarta Encyclopedia Online. Copyright (c) Microsoft Encarta Online

'
*

17
CMSC 131- Lecture Slides — set 1

O% 33 O«\
18 56
.
RyLM

\QY,RSIrJ,

http://encarta.msn.com/

vRS
Oe\ N O«\
18 / 56
@ < v Q
>

2nd Generation: Assembly

Problem with 1GLs: Who can remember those
opcodes, addresses, etc. as 0’s, 1's?
Solution (1950s): assembly language

* mnemonics = descriptive character strings for opcodes
Let programmers give descriptive names to addresses
MIPS example revisited:
add $1, $2, $6
instead of
00000000001000100011000000100000
for “add contents of addresses 1, 2, store result in 6”

18
CMSC 131- Lecture Slides — set 1

Assemblers

\Q\‘L‘LSIT},

Oe N O«\
18 / 56
@ ey Q

>

TRyL

Computers still only work on machine code (1GL)

Assembly language is not machine code
Assemblers are programs that convert assembly

language to machine code (= “object code”)

(o) =2

assembler

CMSC 131

Lecture Slides — set 1

> (o

19

3rd Generation: Procedural /

Languages s

Problems with 2GLs

Platform dependency
Different kinds (architectures) of computers use different
instruction formats
E.g. x86, Pentium, 68K, MIPS, SPARC, etc.
1GL / 2GL programs written for one kind of machine will
not work on another

Low level. programs difficult to understand

Solution (1960s -- now): procedural languages
Higher-level, “universal” constructs
Examples: Cobol, Fortran, Algol, Pascal, C, C++, Java, C#

20
CMSC 131- Lecture Slides — set 1

\Q\‘L‘LSIT},

Oe N O«\

18 /5(,

LSNP L
>

Compilers

Computers can only execute machine code
Compilers are programs for translating 3GL
programs (“source code”) into assembler / machine
code

: asm
compiler (or exe)

21

CMSC 131
Lecture Slides — set 1

