Sensor Network Configurations.

ERSIT

There are many factors that determine the cost of a wireless system for your operation. The type and number of sensors and nodes you purchase, the layout of your farm, and the number of species and or areas you choose to sense will impact the number and type of sensors and nodes you purchase. Some example starter configurations are listed below. We will cover the potential returns on investment in the next module.

Tables 1 and 2 illustrate some of the possible sensor configurations for different scenarios. Table 1 shows some potential configurations for a "typical" weather station and a propagation house. These are the different sensors and nodes that can be used, along with the information that the sensors would provide. Table 2 shows a number of different sensor configurations that could be used in a variety of ornamental production settings. These tables are meant to give you an idea of what an installation might look like in these different types of settings, and would vary depending on your particular operation.

Table 1. Potential sensor and node configurations for propagation houses and weather stations.

Common Wireless Sensor Network Configurations By Operation Type										
Operation Type	Monitoring Concentration	Irrigation Automation	Node Model	Sensor Model	Sensor Attributes	Sensors Per Monitored Zone	Nodes Per Monitored Zone			
Propagation Houses	Temperature Relative Humidity Vapor Pressure	X	EM50R Or EM50R (3G)	EC5 Or GS1	Smaller Sensing Area & Reduced Cost (Soil Moisture) Increased Durability (soil moisture)	4	2			
	Deficit			LWS	Leaf Wetness	4				
	Soil Moisture Leaf Wetness			VP3	Air Temp., Relative Humidity, Vapor Pressure Deficit	2				
Weather Station	Temperature Relative humidity	X	EM50R Or EM50R (3G)	VP3	Air Temp., Relative Humidity, Vapor Pressure Deficit	1	1			
	Vapor pressure deficit Photosynthetically active			PAR	Photosynthetically active radiation	1				
	radiation Leaf wetness			LWS	Leaf Wetness	1				
	Wind speed & direction			Sonic Anemometer	Wind speed & direction	1				
	Rain Quantity Grower degree days			Rain Gauge	Rain Quantity	1				

Majsztrik, J., E. Lichtenberg, and M. Saavoss. 2014. Costs and benefits of wireless sensor networks: How a sensor network might benefit your operation. *In*: Managing Irrigation through Distributed Networks Knowledge Center, M. Chappell, P. Thomas, and J.D. Lea-Cox (Eds.). Published online at: https://myelms.umd.edu/courses/1110342 18p.

Table 2. Potential sensor and node configurations for a variety of operation types. Configurations are meant to illustrate potential sensor and node combinations, and the information that would be provided.

Common Wireless Sensor Network Configurations By Operation Type

Operation Type	Monitoring Concentration	Irrigation Automation	Node Model	Sensor Model	Sensor Attributes	Sensors Per Monitored Zone	Nodes Per Monitored Zone
Field Production				10HS	Large		
Nursery (Soil)	C "114" : 1	1/	nM50		Sensing Volume	_	
Nursery (Pot-In-Pot)	Soil Moisture	X	Or EM50G	GS1	Increased Durability	5	1
Agronomic Orchard				EC5	Smaller Sensing Area & Reduced Cost		
Field Production					Large		
Nursery (Soil)		/	Or EM50G	10HS	Sensing Volume		1
Nursery (Pot-In-Pot)	Soil Moisture			GS1	Increased Durability	5	
Agronomic			nC24	EC5	Smaller Sensing Area		1
Orchard					& Reduced Cost		'
Container	Soil Moisture			10HS	Large Sensing Volume		
Production	Electrical		nM50 Or EM50G	GS1	Increased Durability	6	
Greenhouse	Conductivity Temperature			EC5	Smaller Sensing Area & Reduced Cost		2
High	Relative Humidity			GS3	Electrical Conductivity, Substrate Temp., Substrate Moisture	2	
Tunnel	Vapor Pressure Deficit			VP3	Air Temp., Relative Humidity, Vapor Pressure Deficit	2	
Container	Soil Moisture		MEO	10HS	Large Sensing Volume		
Production	Electrical Conductivity		nM50 Or EM50G	GS1	Increased Durability	5	2
Froduction	Temperature			EC5	Smaller Sensing Area & Reduced Cost		
Greenhouse	Relative Humidity			GS3	Electrical Conductivity, Substrate Temp., Substrate Moisture	2	
High Tunnel	Vapor Pressure Deficit	V	nC24	VP3	Air Temp., Relative Humidity, Vapor Pressure Deficit	2	1
	Irrigation Quantity			Flow Meter	Irrigation Quantity		

Majsztrik, J., E. Lichtenberg, and M. Saavoss. 2014. Costs and benefits of wireless sensor networks: How a sensor network might benefit your operation. *In*: Managing Irrigation through Distributed Networks Knowledge Center, M. Chappell, P. Thomas, and J.D. Lea-Cox (Eds.). Published online at: https://myelms.umd.edu/courses/1110342 18p.