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1 Relations

Suppose that X is a non-empty set. The set X ×X is the cross-product of X with itself.
That is, it is the set of all pairs of elements (called ordered pairs) from X. For example,
if X = {a, b, c}, then

X ×X = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (c, c)}

A relation R on a set X is a subset of X × X (the set of pairs of elements from X).
Formally, R is a relation on X means that R ⊆ X ×X. It is often convenient to write a R b
for (a, b) ∈ R. To help appreciate this definition, consider the following example. Suppose
that X is the set of people in a room. Further, suppose that everyone in the room is pointing
at some person in the room. A relation can be used to describe who is pointing at whom,
where for a, b ∈ X, a R b means that person a is pointing at person b. A second example of
a relation is “taller-than”, denoted T ⊆ X ×X, where a T b means that person a is taller
than person b. Typically, we are interested in relations satisfying special properties.

Definition 1.1 (Key Properties of relations) Suppose that R ⊆ X ×X is a relation.

• R is reflexive provided for all a ∈ X, a R a

• R is irreflexive provided for all a ∈ X, it is not the case that a R a

• R is complete provided for all a, b ∈ X, a R b or b R a (or both)

• R is symmetric provided for all a, b ∈ X, if a R b then b R a

• R is asymmetric provided for all a, b ∈ X, if aRb then not-b R a /

• R is transitive provided for all a, b, c ∈ X, if a R b and b R c then a R c
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Remark 1.2 As stated, completeness implies reflexivity (let a = b in the above statement).
Often, one states completeness as follows: for all distinct a, b ∈ X, aRb or bRa. In what
follows, we will use the above stronger definition of completeness where completeness implies
reflexivity.

Recall the example of a relation R that describes people pointing at other people in the
room. If R is reflexive, then this means everyone is pointing at themselves. If R is irreflexive,
then this means that no-one is pointing at themselves. This example illustrates the fact that
irrelexivity is not the negation of reflexivity. That is, there are examples of relations that are
neither reflexive nor irreflexive. If R is complete, then this means that every person in the
room is either pointing at somebody or being pointed at. Symmetry of R means that every
person that is being pointed at is pointing back at the person pointing at them. Asymmetry
of R means that nobody is pointing back at the person pointing at them. Similar to the
relationship between reflexivity and irreflexivity, asymmetry is not the negation of symmetry.
Finally, picturing transitivity of the relation R is a bit more complicated. If the relation R
is transitive, then everyone is pointing at the person that is being pointed to by the person
that they are pointing at.

Exercise 1 Suppose that there are 5 people in a room. Draw a picture of a situation
where the people are pointing at each other and the relation that describes the situation is
transitive.

Exercise 2 What properties does the “better-than” relations satisfy?

Notation 1.3 (Describing Relations) Suppose that R ⊆ X × X is a relation. We will
often use the following shorthand to denote elements in the relation: If x1, . . . , xn ∈ X, then

x1 R x2 R · · ·xn−1 R xn

means that for all i = 1, . . . , n− 1, (xi, xi+1) ∈ R or (xi, xj) ∈ R for all j < i if R is assumed
to be transitive (or j ≤ i if R is assumed to also be reflexive). For example, if R is transitive
and reflexive, then a R b R c means that (a, a), (a, b), (b, b), (a, c), (b, c), (c, c) ∈ R. /

The following two definitions will play an important role in this course.

Definition 1.4 (Cycle) A cycle in a relation R ⊆ X × X is a set of distinct elements
x1, x2, . . . , xn ∈ X such that for all i = 1, . . . , n− 1, xi R xi+1, and xn R x1. A relation R is
said to be acyclic if there is no cycles. /

Definition 1.5 (Maximal Elements) Suppose that X is a set and S ⊂ X. An element
a ∈ S is maximal provided there is no b ∈ S such that b R a. Let maxR(S) be the set of
maximal elements of Y . /

Exercise 3 Suppose that X has three elements (i.e., X = {a, b, c}. How many cycles can
be formed from elements in X?
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Exercise 4 Is it possible to find a relation that has a cycle and a non-empty set of maximal
elements? What about a relation that has a cycle, a non-empty set of maximal elements,
and is complete and transitive?

Exercise 5 Prove that if R is acyclic, then maxR(Y ) 6= ∅. Is the converse true? (Why or
why not?)

Relations are an important mathematical tool used throughout Economics, Logic and
Philosophy. We will use relations to describe a decision maker’s preferences over a set
of objects X. This means, among other things, that a decision maker’s preferences are
comparative. So, if we say that the decision maker “prefers red wine”, then this means that
the decision maker prefers red wine to the other available alternatives (e.g., red wine more
than white wine). In most cases, we will assume that the relations representing a decision
maker’s preference satisfies certain properties:

Definition 1.6 (Rational Preference) A relation R ⊆ X × X is called a (rational)
preference ordering provided R is complete and transitive. /

Unless stated otherwise, we always assume that a decision maker’s preference on a set X
is a complete and transitive ordering on X.

Exercise 6 The assumption that a decision maker’s preferences are complete and transitive
is not uncontroversial. Find arguments for and against these assumptions.

In order to simplify our discussion, we will make use of the following notation.

Notation 1.7 (Strict Preference, Indifference) If R is a preference on X. Let PR ⊆
X ×X denote the strict sub-relation of R and IR ⊆ X ×X the indifference sub-relation of
R defined as follows:

• for all a, b ∈ X, a PR b iff a R b and it is not the case that b R a

• for all a, b ∈ X, a IR b iff a R b and b R a /

Notation 1.8 (Preferences) We will use� to denote a rational preference ordering with�
denoting the associated strict preference ordering and ∼ the associated indifference ordering.
So, a � b means “the decision maker (weakly) prefers a to b”, a � b means “the decision
maker strictly prefers a to b” and a ∼ b means “the decision maker is indifferent between a
and b”. /

Exercise 7 Give an example of something about which you have a weak preference, some-
thing about which you have a strict preference and something about which you are indifferent.

The following Lemma gathers some important facts about rational preferences. These
facts will be used quite often without explicit reference. The proofs of these facts are imme-
diate from the definitions.
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Lemma 1.9 Suppose that � is a rational preference ordering on X. Then,

• � is transitive and irreflexive

• ∼ is an equivalence relation (reflexive, transitive and symmetric)

• For all a, b, c ∈ X, if a � b and b � c, then a � c

• For all a, b, c ∈ X, if a ∼ b and b � c, then a � c

• � is acyclic

• For all a, b ∈ X, either a � b, b � a or a ∼ b

• For all a, b ∈ X, if a 6� b, then b � a

There is an alternative way to characterize rational preferences which is used in some
texts. I conclude this brief introduction to relations by giving the details of this equivalent
approach to defining a rational preference.

Definition 1.10 (Negative Transitivity) A relation R ⊆ X ×X is negatively transi-
tive provided for all a, b, c ∈ X, if a 6R b (this means that it is not the case that a R b, i.e.,
(a, b) 6∈ R) and b 6R c, then a 6R c. /

Fact 1.11 A relation R is negatively transitive if, and only if, for all a, b ∈ X, if a R b,
then for all x ∈ X, either a R x or x R b.

Proof. Suppose that R is negatively transitive. We will show that for all a, b ∈ X, if a R b,
then for all x ∈ X, either a R x or x R b. Let a, b ∈ X and suppose that a R B. Let
x ∈ X and suppose that a 6R x and x 6R b. Then, by the negative transitive property, a 6R b,
contradicting our assumption. Hence, a R x or x R b. Suppose that for all a, b ∈ X, if a R b,
then for all x ∈ X, either a R x or x R b. We must show that R is negatively transitive.
Suppose that a 6R b and b 6R c. Suppose that, contrary to the negative transitive property,
a R c. Then since, b ∈ X, we have either a R b or b R c, which contradicts our assumption.
Thus, a 6R c, as desired. qed

Theorem 1.12 Suppose that R′ is negatively transitive and irreflexive. Then, define R by
aRb iff it is not the case that bR′a and aIb iff neither aR′b nor bR′a. Then, R is complete
and transitive. Furthermore, PR = R′ and IR = I.

1.1 Two Lemmas about Relations

This section is a digression which can be safely skipped on a first reading. (These Lemmas
are used in a clever proof of Arrow’s Theorem by David Makinson.)

There are two trivial relations on a set X. First, the identity relation I ⊆ X × X is
defined as I = {(x, x) | x ∈ X}. Second, the universal relation is the set of all ordered
pairs: X2 = {(x, y) | x, y ∈ X}.
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Lemma 1.13 Suppose that R ⊆ X × X is a relation and X has at least three elements.
Suppose that

1. R is reflexive, and

2. for all distinct x, y, z, if x R y, then both x R z and z R y.

Then, R = I or R = X2.

Proof. Suppose that |X| ≥ 3 and R satisfies 1. and 2. above. Suppose that R 6= I. We
must show R = X2. Let x, y ∈ X. We must show x R y. If x = y, we are done since R is
reflexive (i.e., I ⊆ R). Suppose that x 6= y. Since R 6= I, there are a, b ∈ X such that a 6= b
and a R b. We have a number of cases to consider:

• Case 1: x = a. There are two subcases:

– Case 1a: y = b. Then, since x = a, y = b and a R b, we have x R y, as desired.

– Case 1b: y 6= b. Then, a, b, y are distinct elements of X with a R b. By item 2
above, we have a R y and y R b. Since x = a, we have x R y, as desired.

• Case 2: x 6= a. There are two subcases:

– Case 2a: y = a. Then, x, y, b are distinct elements of X with y R b. By item 2
above, we have y R x and x R b. Applying item 2 again, we have since x R b and
x, b, y are distinct elements, x R y and y R b. Thus, x R y, as desired.

– Case 2b: y 6= a. Then, a, b, y are distinct elements of X with a R b. By item 2
above, we have a R y and y R b. Applying item 2 again, since a, y, x are distinct
elements of X with a R y, we have a R x and x R y. Thus, x R y, as desired.

qed

Definition 1.14 (Converse of a Relation) IfR ⊆ X×X is a relation, then the converse
of R, denoted R−1 is defined as follows: R−1 = {(x, y) | (y, x) ∈ R}. /

Lemma 1.15 Suppose that X is a set with at least three elements. Let R1 and R2 be reflexive
relations on X such that

1. R1 is almost disjoint with the converse of R2 in the sense that R1 ∩R−12 = I.

2. For all mutually distinct x, y, z ∈ X, if it is not the case that x Ri y (denoted x 6Ri y),
then y Rj z (i, j ∈ {1, 2} with i 6= j)

Then either R1 = X2 or R2 = X2.
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Proof. Suppose that X is a set with at least three elements. Let R1 and R2 be reflexive
relations on X satisfying 1. and 2. above. We first show that R1 = I or R1 = X2. Suppose
that a, b, c are distinct elements of X with a R1 b. Then, by item 1., b 6R2 a (otherwise if
b R2 a, then a R−12 b, and (a, b) ∈ R1 ∩ R−12 with a 6= b). By item 2., if b 6R2 a, then a R1 c.
Furthermore, if b 6R2 a, then c R1 b. (This follows by the converse of item 2: if c 6R1 b, then
b R2 a.) Putting everything together, we have:

• for all mutually distinct a, b, c ∈ X, if a R1 b, then a R1 c and c R1 b.

A similar argument shows that:

• for all mutually distinct a, b, c ∈ X, if a R2 b, then a R2 c and c R2 b.

Since both R1 and R2 are reflexive, Lemma 1.13 implies that Ri= I or Ri= X2 for i = 1, 2.
Suppose that R1 = R2 = I. Then, since there are at least three elements in X, there are
distinct elements a, b, c ∈ X such that a 6R1 b. By item 2., this implies that b R2 c which is
a contradiction since R2 = I. Thus, we cannot have both R1 and R2 equal to the identity
relation I. Hence, either R1 = X2 or R2 = X2. qed

2 Choices

In this section, we will introduce some notation to describe a decision maker’s choices.
Suppose that X is a finite set and P(X) = {Y | Y 6= ∅ and Y ⊆ X} is the set of non-empty
subsets of X. Elements of P(X) are called menus. A choice function identifies the elements
form a menu (i.e., a finite set of objects) chosen by a decision maker.

Definition 2.1 (Choice Function) Suppose that X is a finite set. A choice function on
X is a function c : P(X)→ P(X) such that for all S ∈ P(X), c(S) ⊆ S. /

Remark 2.2 (Actual vs. Hypothetical Choice) The mathematical formalism does not
specify whether a choice function c represents a decision maker’s actual or hypothetical
choices. If it is the actual choices, then c is a record of the decision maker’s observed choice
behavior. If it is the hypothetical choices, then c represents what the decision maker would
chose if given the opportunity to select an element from a given menu.

Typically, it is assumed that the decision maker’s choices are guided by some underlying
(subjective) preference relation (together with the decision maker’s beliefs).

Definition 2.3 (Derived Choice Function) Let R be a relation on a finite set X. The
choice function derived from the relation R is cR : P(X) → P(X) is defined as follows: for
all S ∈ P(X),

cR(S) = {y | y ∈ S and there is no x ∈ S such that x R y}

That is, cR(S) = maxR(S). /
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The above definition works for any relation on a set X. In general, given an arbitrary relation
R on X, cR many not necessarily be a choice function. This would happen when there is
a finite subset Y such that maxR(Y ) = ∅. The following Lemma states precisely when a
function derived from a relation is a choice function.

Lemma 2.4 Suppose that X is finite. A binary relation R ⊆ X × X is acyclic iff cR is a
choice function.

Proof. Suppose that R ⊆ X ×X is acyclic. By definition, for any nonempty set S ∈ P(X),
cR(S) ⊆ S. We must show cR(S) 6= ∅. Suppose that cR(S) = ∅. Choose an element x0 ∈ S.
Since cR(S) = ∅, there is an element x1 ∈ S such that x1 R x. Again, since cR(S) = ∅ there
must be some element x2 ∈ S such that x2 R x1. Since R is acyclic, we must have x2 6= x
(otherwise, x R x1 R x is a cycle). Continue in this manner selecting elements of S. Since S
is finite, eventually all elements of S are selected. That is, we have S = {x0, x1, x2, . . . , xn}
and

xn R xn−1 R · · ·x2 R x1 R x0

Since cR(S) = ∅ there must be some element x ∈ S such that x R xn. Thus, x = xi for some
i = 0, . . . , n, which implies R has a cycle. This contradicts the assumption that cR(S) = ∅.
Hence cR(S) 6= ∅.

Suppose that cR is a choice function. This means that for all S ∈ P(X), cR(S) 6= ∅.
Suppose that R is not acyclic. Then, there is a set of distinct elements x1, x2, . . . , xn ∈ S
such that

x1 R x2 R · · ·xn−1 R xn R x1.

But this means that cR({x1, . . . , xn}) = ∅. (The above cycle means that there is no maximal
element of {x1, . . . , xn}.) This contradicts the assumption that cR is a choice function. Thus,
R is acyclic. qed

An immediate corollary is that if � is a rational preference ordering on X, then c� is a choice
function.

Definition 2.5 (Rationalizable Choice Functions) A choice function c : P(X)→ P(X)
is rationalizable if there is a rational preference relation � such that c = c�. /

Exercise 8 Give an example of a choice function that is not rationalizable.

The question we are interested in is when is a choice function rationalizable? The fol-
lowing properties of the choice function provide an answer to this question. Suppose that
c : P(X)→ P(X) is a choice function. We say c satisfies:

• Houthakker’s Axiom (WARP) provided for all x, y ∈ X, if x and y are in both A
and B and if x ∈ c(A) and y ∈ c(B) then x ∈ c(B).

• Sen’s property α provided for all x ∈ X if x ∈ B ⊆ A and x ∈ c(A), then x ∈ c(B)
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• Sen’s property β provide for all x, y ∈ X if x, y ∈ c(A), A ⊆ B and y ∈ c(B), then
x ∈ c(B).

Exercise 9 1. Give an example of a choice function satisfying Sen’s α but not Sen’s β.

2. Give an example of a choice function satisfying Sen’s β but not Sen’s α.

3. Give and example of a choice function that does not satisfy Sen’s α and does not satisfy
Sen’s β.

4. Give and example of a choice function satisfying both Sen’s α and β.

The first result is that Sen’s α and β are together equivalent to WARP.

Lemma 2.6 A choice function c satisfies WARP iff c satisfies Sen’s properties α and β.

Proof. Suppose that c satisfies WARP. We must show c satisfies Sen’s α and β:

Sen’s α: Suppose that x ∈ X with x ∈ B ⊆ A and x ∈ c(A). Suppose that x 6∈ c(B). Then
there is some y ∈ B such that y ∈ c(B) and y 6= x. Since y ∈ B and B ⊆ A, we have
y ∈ A. Hence, x and y are in both A and B. By the WARP axiom, since x ∈ c(A)
and y ∈ c(B), we must have x ∈ c(A). This contradicts the assumption that x 6∈ c(B).
Thus, x ∈ c(B).

Sen’s β: Suppose that x, y ∈ X with x, y ∈ c(A), A ⊆ B and y ∈ c(B). Since c(A) ⊆ A,
we have x, y ∈ A; and since A ⊆ B, we have x, y ∈ B. Thus, x and y are in both A
and B. By the WARP axiom, since x ∈ c(A) and y ∈ c(B), we must have x ∈ c(B),
as desired.

Suppose that c satisfies Sen’s α and β. We must show that c satisfies WARP. Suppose
that x, y ∈ A ∩B, x ∈ c(A) and y ∈ c(B). We must show that x ∈ c(B). Since, A ∩B ⊆ B
and y ∈ c(B), by Sen’s α, y ∈ c(A ∩ B). Similarly, since A ∩ B ⊆ A and x ∈ c(A), by Sen’s
α, x ∈ c(A ∩ B). Finally, Since x, y ∈ c(A ∩ B), A ∩ B ⊆ B and y ∈ c(B), by Sen’s β, we
have x ∈ c(B). qed

The main result of this section is the revelation theorem showing that WARP is equivalent
to rationalizability.

Theorem 2.7 (Revelation Theorem) c satisfies WARP iff c is rationalizable.

Proof. Suppose that c is rationalizable. Then there is a rational preference ordering � such
that c = c�. We must show that c satisfies WARP. Suppose that x, y ∈ A ∩ B, x ∈ c(A)
and y ∈ c(B). We must show that x ∈ c(B). Since c = c�, we have x ∈ max�(A) and
y ∈ max�(B). This means that there is no z ∈ A such that z � x and there is no z ∈ B such
that z � y. Suppose that w ∈ B. We will show that w 6� x. Since w ∈ B and y ∈ max�(B),
we have w 6� y. Since � is complete, this means that y � w. Furthermore, since y ∈ A
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and x ∈ max�(A), we have y 6� x. Since � is complete, this means that x � y. Since �
is transitive and x � y and y � w, we have x � w. This implies that w 6� x. That is,
x ∈ max�(B) = c(B).

Suppose that c satisfies WARP. Then by Lemma 2.6, c satisfies Sen’s α and β. Define a
relation �c⊆ X ×X as follows: for all x, y ∈ X,

x �c y iff x ∈ c({x, y})

We must show that 1. �c is a preference relation and 2. for all S ∈ P(X), c(S) = c�c(S).
To see that 1. holds:
�c is complete: For any x, y ∈ X, since c({x, y}) is non-empty we have c({x, y}) = {x},

c({x, y}) = {y} or c({x, y}) = {x, y}. Thus, either x �c y or y �c x (or both).
�c is transitive: Suppose that x �c y and y �c z. Then, x ∈ c({x, y}) and y ∈ c({y, z}).

We must show that x �c z; that is, x ∈ c({x, z}). By Sen’s α, if x ∈ c({x, y, z}), then
x ∈ c({x, z}). Thus, if we show that x ∈ c({x, y, z}), then we are done. There are three
cases to consider. Suppose that c({x, y, z}) = {y}. By Sen’s α, since {x, y} ⊆ {x, y, z} and
y ∈ c({x, y, z}) we must have y ∈ c({x, y}). Thus, c({x, y}) = {x, y}. By Sen’s β, this
implies that x ∈ c({x, y, z}) (this follows since {x, y} ⊆ {x, y, z}, x, y ∈ c({x, y}) and y ∈
c({x, y, z})). This contradicts the assumption that c({x, y, z}) = {y}. Thus, c({x, y, z} 6=
{y}. A similar argument shows that c({x, y, z}) 6= {z}. Suppose that c({x, y, z}) = {y, z}.
Then, y ∈ c({x, y, z}), and, as above, by Sen’s α, we have c({x, y}) = {x, y}. This implies, by
Sen’s β, that x ∈ c({x, y, z}), which contradicts that assumption that c({x, y, z}) = {y, z}.
Hence, x ∈ c({x, y, z}. By Sen’s α, since {x, z} ⊆ {x, y, z}, we have x ∈ c({x, z}). That is,
x �c z. This completes the proof that �c is transitive.

Suppose that S ∈ P(X). First of all, if S is a singleton (i.e., S = {x} for some x ∈ X),
then by definition c(S) = S = c�c(S). Thus, in what follows we assume that S has at
least two elements. We must show that c(S) = c�c(S). We first show that c(S) ⊆ c�c(S).
Suppose that x ∈ c(S). We must show that x ∈ c�c(S). Let y ∈ S. We must show that
y 6�c x. Since �c is complete, this is equivalent to showing that x �c y. Since {x, y} ⊆ S
and x ∈ c(S), by Sen’s α, we have x ∈ c({x, y}). Thus, x �c y; and so, y 6�c x, which
implies that x ∈ max�c(S) = c�c(S). Next, we show that c�c(S) ⊆ c(S). Suppose that
x ∈ c�c(S). If x 6∈ c(S). Then there is some y 6= x such that y ∈ c(S). By Sen’s α, this
implies that y ∈ c({x, y}). Furthermore, if c({x, y}) = {x, y}, then, by Sen’s β, x ∈ c(S).
This contradicts the assumption that x 6∈ c(S). Thus, c({x, y}) = {y}. By definition, this
means that y �c x but x 6�c y; i.e., y �c x. qed

We end this section by pointing out that there are alternative ways to define a preference
ordering from a choice function.

Fact 2.8 Suppose that X is a finite set and c : P(X)→ P(X) is a choice function. Consider
the following two alternative ways to define a preference ordering from the choice function c:

• For all x, y ∈ X, x �1
c y iff there is a set S ∈ P(X) such that x, y ∈ S and x ∈ c(S).
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• For all x, y ∈ X, set x �2
c y iff x = c({x, y}) and x ∼2

c y iff c({x, y}) = {x, y}. Then,
define x �2

c y iff x �2
c y or x ∼2

c y.

If c satisfies WARP, then for all x, y ∈ X, the following are equivalent:

• x �c y

• x �1
c y

• x �2
c y

The proof of this follows from the definitions and is left to the reader.

3 Utility

A utility function on X is a function u : X → <, where < is the set of real numbers.

Definition 3.1 (Representing a Preference Ordering) Suppose that �⊆ X × X is a
preference ordering. We say that � is representable by a utility function provided there
is a u : X → < such that for all x, y ∈ X, x � y iff u(x) ≥ u(y). /

Lemma 3.2 Suppose that X is a finite set. A relation R ⊆ X ×X is a rational preference
ordering iff R is representable by a utility function.

Proof. We leave it to the reader to show that if R is representable by a utility function,
then R is transitive and complete.

We prove the following: For all n ∈ N, any preference relation � on a set of size n is
representable by a utility function u� : X → <. The proof is by induction on the size of the
set of objects X. The base case is when |X| = 1. In this case, X = {a} for some object
a. If � is a transitive and complete ordering on X, then �= {(a, a)}. Then, u�(a) = 0
(any real number would work here) clearly represents �. The induction hypothesis is: if
|X| = n, then any preference ordering on X is representable. Suppose that |X| = n+ 1 and
� is a preference ordering on X. Then, X = X ′ ∪ {a} for some object a, where |X ′| = n.
Note that the restriction1 of � to X ′, denoted �′, is a preference ordering on X ′. By the
induction hypothesis, �′ is representable by a utility function u�′ : X ′ → <. We will show
how to extend u�′ to a utility function u� : X → < that represents �. For all b ∈ X ′, let
u�(b) = u�′(b). For the object a (the unique object in X but not in X ′), there are four cases:

1. a � b for all b ∈ X ′. Let u�(a) = max{u�′(b) | b ∈ X ′}+ 1.

2. b � a for all b ∈ X ′. Let u�(a) = min{u�′(b) | b ∈ X ′} − 1.

3. a ∼ b for some b ∈ X ′. Let u�(a) = u�′(b).

1If R is a relation on X and Y ⊆ X, then RY ⊆ Y × Y is the restriction of R to Y provided for all
a, b ∈ Y , a RY b iff a R b.
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4. There are b1, b2 ∈ X ′ such that b�a � b2. Let u�(a) =
u�′ (b1)+u�′ (b2)

2
.

Then, it is straightforward to show that u� : X → < represents � (the details are left to the
reader). qed

Exercise 10 Suppose that X = {a, b, c, d} and � is the following preference relation:

b � a ∼ c � d

Find two utility functions that represent this preference relation.

Remark 3.3 The above proof can be extended to relations on infinite sets X. However,
additional technical assumptions are needed. It is beyond the scope of this article to discuss
these technicalities here.

It is not hard to see that if a preference relation is representable by a utility function, then
it is representable by infinitely many different utility functions. To make this more precise,
say that a function f : < → < is monotone provided r ≥ r′ implies f(r) ≥ f(r′).

Lemma 3.4 Suppose that � is representable by a utility function u� and f : < → < is a
monotone function. Then, f ◦ u� also represents �.

Proof. The proof is immediate from the definitions. Suppose that a, b ∈ X. Then, a � b iff
u�(a) ≤ u�(b) (since u represents �) iff f(u�(a)) ≥ f(u�(b)) (since f is monotone). qed

The main result of this section is the von Neumann-Morgenstern Theorem. This results
characterizes when a preference relation on lotteries is representable. Suppose that X is a
finite set. A probability function on X is a function p : X → [0, 1] such that

∑
x∈X p(x) = 1.

If S ⊆ X, then p(S) =
∑

x∈S p(x).2 In the remainder of this section, elements of X are
called prizes.

Definition 3.5 (Lottery) Suppose that Y = {x1, . . . , xn} is a set of n elements from X.
A lottery on Y is denoted

[x1 : p1, x2 : p2, . . . , xn : pn]

where
∑n

i=1 pi = 1. /

Remark 3.6 We have defined lotteries for any subset of a fixed set X. Without loss of
generality, we can restrict attention to all lotteries on X. For instance, suppose that X =
{x1, . . . , xn, y1, . . . , ym} and L is a lottery on Y = {x1, . . . , xn}. That is, L = [x1 : p1, . . . , xn :
pn]. This lottery can be trivially extended to a lottery L′ over X as follows:

L′ = [x1 : p1, . . . , xn : pn, y1 : 0, . . . , ym : 0].

2There are a number of mathematical details about probability measures that we are glossing over here.
Our discussion in this section is greatly simplified since we assume that the set of objects X is finite.

11



Suppose that X is a finite set and let L be the set of lotteries on X. There are two technical
issues that need to be addressed. First of all, we can identify elements x ∈ X with lotteries
[x : 1]. Thus, we may abuse notation and say that “X is contained in L”. Second, we will
need the notion of a compound lottery.

Definition 3.7 (Compound Lottery) Suppose that L1, . . . , Ln are lotteries. Then, [L1 :
p1, . . . , Ln : pn] is compound lottery, where

∑n
i=1 pi = 1. /

We are interested in decision makers that have preferences over the set L of lotteries.
Suppose that � is a preference relation on L. The goal is to show that any preference relation
can be represented by a linear utility function:

Definition 3.8 (Linear Utility Function) A utility function u : L → < is linear pro-
vided for all L = [L1 : p1, . . . , Ln : pn] ∈ L,

u(L) =
n∑

i=1

piu(Li)

If u : L → < is a linear utility function, then for L ∈ L, u(L) is called the expected utility
of L. /

The first axiom is that compound lotteries can always be “reduced” to simple lotteries.

Simplifying lotteries Suppose that [L1 : p1, . . . , Ln, pn] is a compound lottery, where for
each i = 1, . . . , n, we have Li = [x1 : pi1, . . . , xn : pin]. Then,

[L1 : p1, . . . , Ln, pn] ∼ [x1 : (p1p
1
1 + p2p

2
1 + · · · pnpn1 ), . . . , x1 : (p1p

1
n + p2p

2
n + · · · pnpnn)]

The axiom means that decision makers do not get any utility from the “thrill of gambling”.
That is, what matters to the decision maker is how likely she is to receive prizes that she
prefers. For example, suppose that L1 = [x : 1] and L2 = [y1 : 0.2, y2 : 0.4, y3 : 0.4]. Then,
the decision maker is assumed to be indifferent between the compound lottery L3 = [L1 :
0.3, L2 : 0.7] and the simple lottery L4 = [x : 0.3, y1 : 0.14, y2 : 0.28, y3 : 0.28]. This can be
pictured as follows:

L1 L2

0.3 0.7 ∼

x y1 y2 y3

0.3 0.14 0.28 0.28

The next two axioms play a central role in the von Neumann-Morgenstern theorem.
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Independence For all L1, L2, L3 ∈ L and a ∈ (0, 1],

L1 � L2 if, and only if, [L1 : a, L3 : (1− a)] � [L2 : a, L3 : (1− a)].

Continuity For all L1, L2, L3 ∈ L and a ∈ (0, 1],

if L1 � L2 � L3, then there exists a, b ∈ (0, 1) such that
[L1 : a, L3 : (1− a)] � L2 � [L1 : b, L3 : (1− b)].

Both axioms have been criticized as rationality principles. For example, consider the
continuity axiom. Consider the prizes x = “win $1000”, y = “win $100” and z =“get hit
by a car”. Clearly, it is natural to assume that a decision make would have the preference
x � y � z. Now, Continuity implies that there is some number a ∈ (0, 1) such that
[x : a, z : (1− a)] � [y : 1]. Thus, the decision maker would strictly prefer a lottery in which
there is some non-zero chance of getting hit by a car to a lottery in which gives a guaranteed
payoff of $100. Arguably, many people would not hold such a preference no matter how
small the chance is of getting hit by a car. Here we bracket this are related philosophical
discussions about the above axioms and focus on what follows from the axioms. The first
observation is a straightforward consequence of Independence and the assumption that the
preference ordering is complete.

Observation 3.9 Suppose that � is a preference relation on L satisfying the Independence
axiom. For all lotteries L1, L2, L3 ∈ L and real numbers a ∈ [0, 1], if L1 ∼ L2, then
[L1 : a, L3 : (1− a)] ∼ [L2 : a, L3 : (1− a)].

The second observation is that decision makers prefers lotteries in which there is a better
chance of winning a more preferred prize.

Lemma 3.10 If � is a preference relation on L satisfying Simplifying lotteries and In-
dependence, then for all lotteries L1, L2 ∈ L, if L1 � L2, and 1 ≥ a > b ≥ 0, then
[L1 : a, L2 : (1− a)] � [L1 : b, L2 : (1− b)].

Proof. Suppose that b = 0. Then, 1 ≥ a > 0. Apply the Independence axiom with
L3 = L2. We have [L1 : a, L2 : (1 − a)] � [L2 : a, L2 : (1 − a)] = L2. Since b = 0, we
have L2 = [L1 : b, L2 : (1 − b)] (this follows from the simplifying lotteries axiom). Thus,
[L1 : a, L2 : (1− a)] � [L1 : b, (1− b) : L2], as desired.

Suppose that 1 ≥ a > b > 0. Then, b
a
< 1 and 1− b

a
< 1. Let L′ = [L1 : a, L2 : (1− a)].

By the previous argument, we have L′ � L2. Since (1 − b
a
) ∈ (0, 1] and L′ � L2, using the

Independence axiom (let L3 = L′), we have[
L′ : (1− b

a
), L′ :

b

a

]
�
[
L2 : (1− b

a
), L′ :

b

a

]
Now, the left-hand side simplifies to the following lottery: [L′ : (1 − b

a
), L′ : b

a
] = L′ =

[L1 : a, L2 : (1− a)]. The right-hand side of the above equation simplifies as follows:
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[L2 : (1− b
a
), L′ : b

a
] = [L2 : (1− b

a
), [L1 : a, L2 : (1− a)] : b

a
]

= [L1 : a× b
a
, L2 : ((1− a)× b

a
+ (1− b

a
))]

= [L1 : b, L2 : ( b
a
− b+ (1− b

a
))]

= [L1 : b, L2 : (1− b)]

Thus, [L1 : a, L2 : (1− a)] � [L1 : b, L2 : (1− b)], as desired. qed

Exercise 11 Prove that if a relation � on L is representable by a linear utility function,
then � satisfies Simplifying lotteries, Independence, and Continuity.

The von Neumann-Morgentern Theorem proves the converse of the above exercise.

Theorem 3.11 (von Neumann-Morgenstern Representation Theorem) A binary re-
lation � on L satisfies Simplifying lotteries, Independence and Continuity iff � is repre-
sentable by a linear utility function u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d such that
u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)

3.1 “Counterexamples” to Expected Utility Theory

In this section, we present two purported “counterexamples” to expected utility theory. We
start with an example that illustrates that utility should not necessarily be identified with
monetary payoff. Suppose that there are three prizes: M1 =“win $1,000,000”, M0 = “win
$0” and M3 = “win $3,000,000”. Consider the following two lotteries:

• L1 = [M1 : 0.5,M1 : 0.5] = [M1 : 1], and

• L2 = [M3 : 0.5,M0 : 0.5]

Which of the above two lotteries do you prefer? We can represent the payoff matrix for
this decision as follows:

Options 1/2 1/2

L1 M1 M1

L2 M3 M0

The expected monetary payout for the two lotteries is:

EM(L1) = 1/2 · 1, 000, 000 + 1/2 · 1, 000, 000 = 1, 000, 000
EM(L2) = 1/2 · 3, 000, 000 + 1/2 · 0, 000, 000 = 1, 500, 000

Thus, if monetary payout is identified with utility (and the decision maker maximizes ex-
pected utility), then any rational decision maker should prefer L2 strictly over L1. Arguably,
we should not classify a decision maker that prefers L1 over L2 as irrational. However,
this is not a problem for expected utility theory. It is consistent with the von Neumann-
Morgenstern Theorem that a decision maker assigns an expected utility of, say, 2 to L1 since
it is a guaranteed payoff of $1,000,000 while simultaneously assigning an expected utility of
1.5 to L2 (since there is a chance of not winning any money). The next two examples are
more serious challenges to expected utility theory.
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3.1.1 Allais Paradox

Suppose that there are three prizes: M1 =“win $1,000,000”, M0 = “win $0” and M5 = “win
$5,000,000”. Consider the following 4 lotteries:

• L1 = [M1 : 0.01,M1 : 0.89,M1 : 0.10]

• L2 = [M0 : 0.01,M1 : 0.89,M5 : 0.10]

• L3 = [M1 : 0.01,M0 : 0.89,M1 : 0.10]

• L4 = [M0 : 0.01,M0 : 0.89,M5 : 0.10]

To help visualize these four lotteries, suppose that there is an urn with 100 balls. Each
of the balls are either red, white or blue. Further, suppose that there is 1 red ball, 89 white
balls and 10 blue balls. Then, lottery L3 can be executed as follows: a single ball is drawn
from the urn and the decision maker is paid $1,000,000 if it is red or blue. Similarly for the
other lotteries. These 4 lotteries are listed in the table below:

Lotteries Red (1) White (89) Blue (10)

L1 M1 M1 M1

L2 M0 M1 M5

L3 M1 M0 M1

L4 M0 M0 M5

Exercise 12 How would you rank lotteries L1 and L2? What about the lotteries L3 and
L4?

Many people report that they prefer L1 over L2 while simultaneously preferring L4 over
L3. The question is is there anything “wrong” with this preference ordering?

Observation 3.12 The preference ordering L1 � L2 and L4 � L3 is inconsistent with the
von Neumann-Morgenstern Theorem.

Proof. Suppose that � satisfies the assumption of the von Neumann-Morgenstern Theorem
and that L1 � L2 and L4 � L3. By the von Neumann-Morgenstern Theorem, there is a linear
utility function u that represents �. This means that u(L1) > u(L2) and u(L4) > u(L3).
Since u is a linear utility function we have:

u(L1) = 0.01u(M1) + 0.89u(M1) + 0.1u(M1) > u(L2) = 0.01u(M0) + 0.89u(M1) + 0.1u(M5)

Simplifying, gives us

(∗) 0.11u(M1) > 0.01u(M0) + 0.1u(M5)
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We also have:

u(L4) = 0.01u(M0) + 0.89u(M0) + 0.1u(M5) > u(L3) = 0.01u(M1) + 0.89u(M0) + 0.1u(M1)

Simplifying the above inequality, gives us

(∗∗) 0.01u(M0) + 0.1u(M5) > 0.01u(M1) + 0.1u(M1) = 0.11u(M1)

Inequalities (∗) and (∗∗) are contradictory. Thus, the preferences L1 � L2 and L3 � L4 are
inconsistent with the von Neumann-Morgenstern Theorem. qed

Observation 3.13 If � is a preference relation that satisfies the Independence axiom, then
if L1 � L2, then L3 � L4.

Proof. We first show that if L1 = [M1 : 0.01,M1 : 0.89,M1 : 0.10] � L2 = [M0 : 0.01,M1 :
0.89,M5 : 0.10], then [M1 : 1

11
,M1 : 10

11
] � [M0 : 1

11
,M5 : 10

11
]. Suppose not. Then, [M1 :

0.01,M1 : 0.89,M1 : 0.10] � [M0 : 0.01,M1 : 0.89,M5 : 0.10] and [M1 : 1
11
,M1 : 10

11
] 6� [M0 :

1
11
,M5 : 10

11
]. By completeness of �, the second conjunct implies that [M0 : 1

11
,M5 : 10

11
] �

[M1 : 1
11
,M1 : 10

11
]. There are two cases

• Case 1. [M0 : 1
11
,M5 : 10

11
] � [M1 : 1

11
,M1 : 10

11
]. By the Independence axiom (with

L3 = [M1 : 1]), we have[[
M0 :

1

11
,M5 :

10

11

]
:

11

100
, [M1 : 1] :

89

100

]
�
[[
M1 :

1

11
,M1 :

10

11

]
:

11

100
, [M1 : 1] :

89

100

]
Simplifying the above compound lotteries gives:

[M0 : 0.01,M1 : 0.89,M5 : 0.1] � [M1 : 0.01,M1 : 0.89,M1 : 0.1].

This contradicts the assumption that L1 � L2.

• Case 2. [M0 : 1
11
,M5 : 10

11
] ∼ [M1 : 1

11
,M1 : 10

11
]. By Observation 3.9,[[

M0 :
1

11
,M5 :

10

11

]
:

11

100
, [M1 : 1] :

89

100

]
∼
[[
M1 :

1

11
,M1 :

10

11

]
:

11

100
, [M1 : 1] :

89

100

]
Simplifying the above compound lottery gives:

[M0 : 0.01,M1 : 0.89,M5 : 0.1] ∼ [M1 : 0.01,M1 : 0.89,M1 : 0.1].

This contradicts the assumption that L1 � L2.

Second, we show that L1 � L2 implies that L3 � L4. Suppose that L1 � L2. Then, by
the above argument, [M1 : 1

11
,M1 : 10

11
] � [M0 : 1

11
,M5 : 10

11
]. By independence, we have[[

M1 :
1

11
,M1 :

10

11

]
:

11

100
, [M0 : 1] :

89

100

]
�
[[
M0 :

1

11
,M5 :

10

11

]
:

11

100
, [M0 : 1] :

89

100

]
Simplifying the above compound lottery gives:

L3 = [M1 : 0.01,M0 : 0.89,M1 : 10] � [M0 : 0.01,M0 : 0.89,M5 : 0.10] = L4.

qed
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Exercise 13 Prove the converse of the above observation: if L3 � L4, then L1 � L2.

The Allais paradox has generated an extensive literature in Economics and Philosophy.
The discussions in the literature fall into three general categories:

1. The axioms of von Neumann and Morgenstern fail to adequately capture our under-
standing of rational choice.

2. Decision makers that rank L1 above L2 and L4 above L3 are irrational.

3. The model of rational choice must represent a decision maker’s attitudes towards risk.

3.1.2 Ellsberg Paradox

Suppose that there is an urn with 100 balls. Each ball is either blue, yellow or green.
Suppose that there are 30 blue balls and the remaining balls are either yellow or green,
though the precise distribution of yellow and green balls is unknown. Consider the following
four lotteries:

L1 : win $1, 000 if a blue ball is drawn

L2 : win $1, 000 if a yellow ball is drawn.

L3 : win $1, 000 if a blue or green ball is drawn.

L4 : win $1, 000 if a yellow or green ball is drawn.

Exercise 14 How would you rank lotteries L1 and L2? What about the lotteries L3 and
L4?

Many people report a preference of L1 over L2 while simultaneously preferring L4 over
L3. To simplify the discussion, the lotteries are pictured in the following table:

30 60
Lotteries Blue Yellow Green

L1 M1 M0 M0

L2 M0 M1 M0

L3 M1 M0 M1

L4 M0 M1 M1

Observation 3.14 The preference ordering L1 � L2 and L4 � L3 is inconsistent with the
von Neumann-Morgenstern Theorem.

Proof. Suppose that � satisfies the assumption of the von Neumann-Morgenstern Theorem
and that L1 � L2 and L4 � L3. By the von Neumann-Morgenstern Theorem, there is a linear
utility function u that represents �. Let Y denote the number of yellow balls in the urn and
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G denote the number of green balls in the urn (so the possible values of Y and G range from 0
to 60 under the constraint that Y +G = 60). Then, the probability of choosing a yellow ball is
Y/90 and of choosing a green ball is G/90. We will show that u(L1)−u(L2) = u(L3)−u(L4).

u(L1)− u(L2) = (60
90
u(M0) + 30

90
u(M1))− (30+G

90
u(M0) + Y

90
u(M1))

= 60
90
u(M0)− 30+G

90
u(M0) + 30

90
u(M1)− Y

90
u(M1)

= 30−G
90

u(M0) + 30−Y
90

u(M1)

u(L3)− u(L4) = ( Y
90
u(M0) + 30+G

90
u(M1))− (30

90
u(M0) + 60

90
u(M1))

= Y
90
u(M0)− 30

90
u(M0) + 30+G

90
u(M1)− 60

90
u(M1)

= Y−30
90

u(M0) + G−30
90

u(M1)

= 60−G−30
90

u(M0) + 60−Y−30
90

u(M1) (since Y = 60−G and G = 60− Y )

= 30−G
90

u(M0) + 30−Y
90

u(M1)

Thus, since u(L1)−u(L2) = u(L3)−u(L4), we must have u(L1) ≥ u(L2) iff u(L3) ≥ u(L4),
which implies that L1 � L2 iff L3 � L4. qed

As in the previous section, we can show that the rankings L1 � L2 and L4 � L3 is inconsistent
with the Independence axiom.

Exercise 15 The four lotteries in the Ellsberg case are:

L1 = [M1 : 30
90
,M0 : Y

90
,M0 : G

90
]

L2 = [M0 : 30
90
,M1 : Y

90
,M0 : G

90
]

L3 = [M1 : 30
90
,M0 : Y

90
,M1 : G

90
]

L4 = [M0 : 30
90
,M1 : Y

90
,M1 : G

90
]

Prove that if � satisfies the Independence axiom and L1 � L2, then L3 � L4. (Hint: the
proof is similar to the proof of Observation 3.9).

The Ellsberg paradox has generated a large literature on imprecise probabilities and
ambiguity aversion. The details of this literature are beyond the scope of these notes.

18


	Relations
	Two Lemmas about Relations

	Choices
	Utility
	``Counterexamples" to Expected Utility Theory
	Allais Paradox
	Ellsberg Paradox



