PHIL408Z Individual and Group Decision Making

Eric Pacuit
University of Maryland, College Park
pacuit.org

Practicalities

- Course website
https://myelms.umd.edu/courses/1133211
- Weekly readings will be posted
- Slides will be posted
- Announcements (canceled classes, etc.)
- Links to assignments (online quizzes, discussions, problem sets)
- Web: pacuit.org
- Email: epacuit@umd.edu
- Office: Skinner 1103A
- Office Hours: Wednesdays, 2.00-3.30 (or by appointment)

Practicalities: Hybrid course

- In-class component: meet twice a week (10.00-10.50) for lectures, discussions, and working sessions (on the problem sets)
- Online component: video lectures, online discussion
- Homework: Readings, problem sets, online quizzes

Practicalities: Grading

1. Attendance \& Participation (10\%): You must ask at least $\mathbf{1}$ question about the readings and respond to at least 2 questions for each module.

Practicalities: Grading

1. Attendance \& Participation (10%): You must ask at least $\mathbf{1}$ question about the readings and respond to at least 2 questions for each module.
2. Online quizzes (30%): Available at pacuit . org/quiz (login required: register). 10-12 short quizzes ($5-10$ questions) over the course of the semester. You will have 1 chance to submit each quiz

Practicalities: Grading

1. Attendance \& Participation (10%): You must ask at least $\mathbf{1}$ question about the readings and respond to at least 2 questions for each module.
2. Online quizzes (30%): Available at pacuit . org/quiz (login required: register). 10-12 short quizzes ($5-10$ questions) over the course of the semester. You will have 1 chance to submit each quiz
3. Problem sets (30\%): 2-4 questions, answers must be typed and submitted via ELMS.

Practicalities: Grading

1. Attendance \& Participation (10%): You must ask at least $\mathbf{1}$ question about the readings and respond to at least 2 questions for each module.
2. Online quizzes (30%): Available at pacuit . org/quiz (login required: register). 10-12 short quizzes ($5-10$ questions) over the course of the semester. You will have 1 chance to submit each quiz
3. Problem sets (30\%): 2-4 questions, answers must be typed and submitted via ELMS.
4. Final exam (30\%): The final exam will be given in-class during exam week.

Practicalities: Modules

1. Preference and Choice ($1 / 26-2 / 4$)
2. Voting (2/9-2/25)
3. Social Choice Theory (3/2-4/1)
4. Aggregating Judgements (4/6-4/27)
5. Fair Division (4/9-5/11)

Methodological Issues

Methodological Issues

Interdisciplinary

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics),

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory),

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science,

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Formal Philosophy

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Formal Philosophy:

- make use of ideas and results from other areas,

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Formal Philosophy:

- make use of ideas and results from other areas,
- build formal models of reasoning, decision making and social interaction (which can be rigorously analyzed and even implemented),

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Formal Philosophy:

- make use of ideas and results from other areas,
- build formal models of reasoning, decision making and social interaction (which can be rigorously analyzed and even implemented),
- axiomatic method

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Formal Philosophy:

- make use of ideas and results from other areas,
- build formal models of reasoning, decision making and social interaction (which can be rigorously analyzed and even implemented),
- axiomatic method

Normative vs. Description Theories

Methodological Issues

Interdisciplinary: Philosophy (Epistemology, Philosophy of Action, Meta-Ethics), Economics (Rational Choice Theory, Game Theory, Social Choice Theory), Psychology and Cognitive Science, Logic

Formal Philosophy:

- make use of ideas and results from other areas,
- build formal models of reasoning, decision making and social interaction (which can be rigorously analyzed and even implemented),
- axiomatic method

Normative vs. Description Theories: How can/should we incorporate empirical data into our normative theory of rationality? (reflective equilibrium)

What is this course about?

What is this course about?

What does it mean (for an individual/group) to be rational (or reasonable) as opposed to irrational (or unreasonable)?

Two criteria for assessing "reasonableness" of a selected option:

Two criteria for assessing "reasonableness" of a selected option:

1. An option is feasible if it can be chosen, if it is possible for the decision maker.
2. The desirability of an option is the degree to which the decision maker wants it.

Feasibility vs. Desirability

Aesop's Fox: One hot summer's day a Fox was strolling through the forest and spotted a bunch of grapes hanging from a high branch.

Feasibility vs. Desirability

Aesop's Fox: One hot summer's day a Fox was strolling through the forest and spotted a bunch of grapes hanging from a high branch. "Just the thing to quench my thirst," said he.

Feasibility vs. Desirability

Aesop's Fox: One hot summer's day a Fox was strolling through the forest and spotted a bunch of grapes hanging from a high branch. "Just the thing to quench my thirst," said he. Taking a few steps back, the fox jumped and just missed the hanging grapes. Again the fox took a few paces back, jumped, and tried to reach them but still failed. Again and again he tried after the tempting morsel.

Feasibility vs. Desirability

Aesop's Fox: One hot summer's day a Fox was strolling through the forest and spotted a bunch of grapes hanging from a high branch. "Just the thing to quench my thirst," said he. Taking a few steps back, the fox jumped and just missed the hanging grapes. Again the fox took a few paces back, jumped, and tried to reach them but still failed. Again and again he tried after the tempting morsel. Finally, giving up, the fox turned up his nose and said, "They're probably sour anyway", and walked away.

Feasibility vs. Desirability

Aesop's Fox: One hot summer's day a Fox was strolling through the forest and spotted a bunch of grapes hanging from a high branch. "Just the thing to quench my thirst," said he. Taking a few steps back, the fox jumped and just missed the hanging grapes. Again the fox took a few paces back, jumped, and tried to reach them but still failed. Again and again he tried after the tempting morsel. Finally, giving up, the fox turned up his nose and said, "They're probably sour anyway", and walked away.

Groucho Marx's Club: "I don't care to belong to a club that accepts people like me as members"

Feasibility vs. Desirability

"It appears irrational to mix the two...there is a sharp distinction between desirability and feasibility. By sharp distinction we mean not only that the two can be told apart but also that they are causally independent; one does not affect the other."
I. Gilboa. Chapter 1 in Rational Choice. The MIT Press, 2010.

Are Walter's decisions rational?

Are Walter's decisions rational?

- What are his preferences?
- What does he believe?
- What is the context of the choice?

Decision Theory

Rational decision making is associated with both the capacity to order outcomes and to choose from the top of the order.

Context of a decision

Context of a decision

Individual decision-making (against nature)

- E.g., Gambling

Context of a decision

Individual decision-making (against nature)

- E.g., Gambling

Individual decision making in interaction

- E.g., Playing chess

Context of a decision

Individual decision-making (against nature)

- E.g., Gambling

Individual decision making in interaction

- E.g., Playing chess

Collective decision making

- E.g., Carrying a piano

Context of a decision

Individual decision-making (against nature)

- E.g., Gambling

Individual decision making in interaction

- E.g., Playing chess

Collective decision making

- E.g., Carrying a piano
- E.g., Voting in an election

Preference, Choice, and Utility

- Representing preferences: relations, preference axioms
- Revealed preference theory: WARP, Sen's α and β, Revelation Theorem
- Utility: Ordinal vs. cardinal utility, interval scale, ratio scale
- Expected utility theory: (probability), von Neumann-Morgenstern Theorem, Allais paradox, Ellsberg paradox, (Other issues: framing effects, state-dependent utility, etc.)
- Interpersonal comparison of utilities

Mathematical background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.

Mathematical background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
b R a
$$

Mathematical background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$a R a$
$b R a$

$d R d$

Mathematical background: Relations

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
\begin{aligned}
& a R A \\
& b R A \\
& c R A \\
& c R d \\
& a R c \\
& d R d
\end{aligned}
$$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Irreflexive relation: for all $x \in X, x$ 友 x (i.e., $(x, x) \notin R$)

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Irreflexive relation: for all $x \in X, x$ 双 x (i.e., $(x, x) \notin R$)
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Maximal elements, Cycles

Suppose that $R \subseteq X \times X$ is a relation.
$x \in X$ is maximal with respect to R provided there is no $y \in X$ such that $y R x$.
For $Y \subseteq X$, let $\max _{R}(Y)=\{x \in Y \mid$ there is no $y \in Y$ such that $y R x\}$

Maximal elements, Cycles

Suppose that $R \subseteq X \times X$ is a relation.
$x \in X$ is maximal with respect to R provided there is no $y \in X$ such that $y R x$.
For $Y \subseteq X$, let $\max _{R}(Y)=\{x \in Y \mid$ there is no $y \in Y$ such that $y R x\}$

A cycle is a set of distinct elements x_{1}, \ldots, x_{n} such that

$$
x_{1} R x_{2} \cdots x_{n-1} R x_{n} R x_{1}
$$

R is acyclic if it does not contain any cycles.

Representing Preferences

Let X be a set of options/outcomes. A decision maker's preference over X is represented by a relation $\succeq \subseteq X \times X$.

Representing Preferences

Given $x, y \in X$, there are four possibilities:

Representing Preferences

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).

Representing Preferences

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).

Representing Preferences

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.

Representing Preferences

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.
4. $x \nsucceq y$ and $y \nsucceq x$: The agent cannot compare x and y

Representing Preferences

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.
4. $x \nsucceq y$ and $y \nsucceq x$: The agent cannot compare x and y

Representing Preferences

A relation $\succeq \subseteq X \times X$ is a preference relation (for a decision maker) provided

1. \succeq is complete (and hence reflexive)
2. \succeq is transitive

Representing Preferences

A relation $\succeq \subseteq X \times X$ is a preference relation (for a decision maker) provided
1 . \succeq is complete (and hence reflexive)
2. \succeq is transitive

Suppose that \succeq is a preference relation. Then,

- Strict preference: $x \succ y$ iff $x \succeq y$ and $y \succeq x$
- Indifference: $x \sim y$ iff $x \succeq y$ and $y \succeq x$

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means "I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means "I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means "I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.
4. Choice ranking: In a restaurant, when asked "do you prefer red wine or white wine", the waiter wants to know which option I choose.

Next class:

- Quiz 1 is due before class (answers may be discussed in class) pacuit.org/quiz/spr2015/phil408z/q1
- Reading: Hausmann Chapter $1 \& 2$ (and my Section 1 of my notes Preference, Choice, Utility)

