Group Decisions for Two Candidates

Eric Pacuit*

March 2, 2015

Notation

- $X=\{a, b\}$ is the set of candidates and $N=\{1, \ldots, n\}$ is the set of voters.
- There are three possible preference relations on $X: O(X)=\left\{R_{1}, R_{2}, R_{3}\right\}$, where $R_{1}=\{(a, b)\}, R_{2}=\{(b, a)\}$ and $R_{3}=\{(a, b),(b, a)\}$.

Simplifying notation: To simplify the notation, let
1 denote the relation R_{1} (in which a is ranked above b),
-1 is the relations R_{2} (in which b is ranked above a) and 0 is the relation R_{3} (in which a and b are tied).

- Recall that if X is a set, then X^{n} is the n-fold cross product of X with itself. For instance,

$$
\{1,-1,0\}^{2}=\{(1,1),(1,-1),(1,0),(-1,-1),(-1,1),(-1,0),(0,-1),(0,1),(0,0)\}
$$

- A group decision method for V is a function $F: O(X)^{n} \rightarrow O(X)$. Given, our simplifying notation, a group decision method is a function

$$
F:\{1,0,-1\}^{n} \rightarrow\{1,0,-1\}
$$

- Suppose that $v \in\{1,0,-1\}$. Then, define $-v$ as follows:

$$
-v= \begin{cases}1 & \text { if } v=-1 \\ 0 & \text { if } v=0 \\ -1 & \text { if } v=1\end{cases}
$$

For a profile $\mathbf{R}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in\{1,0,-1\}^{n}$, let $-\mathbf{R}=\left(-v_{1},-v_{2}, \ldots,-v_{n}\right)$.

[^0]- A permutation of the set of agents N is a 1-1 function $\pi: N \rightarrow N$. For instance, if $N=\{1,2,3\}$, then $\pi: N \rightarrow N$ where $\pi(1)=3, \pi(3)=1$, and $\pi(2)=2$ is a permutation. For a profile $\mathbf{R}=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$, let $\pi(\mathbf{R})=\left(v_{\pi(1)}, v_{\pi(2)}, \ldots, v_{\pi(n)}\right)$. That is, $\pi(\mathbf{R})$ is a "shuffling" of the profile. For example, if $\mathbf{R}=(1,0,-1)$ and π is the above permutation, then $\pi(\mathbf{R})=(-1,0,1)$.
- For a profile $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$ and $v \in\{1,0,-1\}$, let $N_{\mathbf{R}}(v)=\left|\left\{i \mid R_{i}=v\right\}\right|$. For instance, if $\mathbf{R}=(1,-1,0,0,1,1,-1,-1,1)$. Then, $N_{\mathbf{R}}(1)=4, N_{\mathbf{R}}(0)=2$, and $N_{\mathbf{R}}(-1)=3$
- For each profile \mathbf{R} and $i \in V$, let \mathbf{R}_{-i} be the profile of all rankings in \mathbf{R} except for voter i 's ranking. For instance, if $\mathbf{R}=(1,0,-1,1)$, then $\mathbf{R}_{-3}=(1,0,1)$.
- Suppose that $\mathbf{R}=\left(v_{1}, \ldots, v_{n}\right)$ and $\mathbf{R}^{\prime}=\left(v_{1}^{\prime}, \ldots, v_{n}^{\prime}\right)$. We say that \mathbf{R}^{\prime} is a monotonic improvement of \mathbf{R} for a provided there is a voter $i \in V$ such that $v_{i}=-1$ and $v_{i}^{\prime}=1$ or $v_{i}^{\prime}=0$ and for all $j \neq i, v_{j}^{\prime}=v_{j}$. Similarly, we say that \mathbf{R}^{\prime} is a monotonic improvement of \mathbf{R} for b provided there is a voter $i \in V$ such that $v_{i}=1$ and $v_{i}^{\prime}=-1$ or $v_{i}^{\prime}=0$ and for all $j \neq i, v_{j}^{\prime}=v_{j}$. For instance $(1,0,-1)$ is a monotonic improvement of $(1,-1,-1)$ for $a,(-1,0,-1)$ is a monotonic improvement of $(1,0,-1)$ for b, but $(0,0,-1)$ is not a monotonic improvement of $(1,0,-1)$ for a.

Group decision methods

Dictator Choose a voter $i \in V$. For each $\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{i}, \ldots, R_{n}\right) \in\{1,0,-1\}^{n}$, let $F_{i}(\mathbf{R})=R_{i}$.

Imposed rule There are two group decision methods, one for candidate $a\left(F_{a}\right)$ and one for $b\left(F_{b}\right)$: For each $\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{i}, \ldots, R_{n}\right) \in\{1,0,-1\}$, let $F_{a}(\mathbf{R})=R_{1}$ and let $F_{b}(\mathbf{R})=R_{2}$.

Ignoring a voter Choose a voter $i \in V$. For each $\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{i}, \ldots, R_{n}\right) \in\{1,0,-1\}^{n}$, let

$$
F_{-i}(\mathbf{R})= \begin{cases}1 & \text { if } N_{\mathbf{R}_{-i}}(1)>N_{\mathbf{R}_{-i}}(-1) \\ 0 & \text { if } N_{\mathbf{R}_{-i}}(1)=N_{\mathbf{R}_{-i}}(-1) \\ -1 & \text { if } N_{\mathbf{R}_{-i}}(1)<N_{\mathbf{R}_{-i}}(-1)\end{cases}
$$

Ballot stuffing Give a candidates two extra votes. There are two group decision methods, one for $a\left(F_{a+2}\right)$ and one for $b\left(F_{b+2}\right)$. For each $\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{i}, \ldots, R_{n}\right) \in$ $\{1,0,-1\}^{n}$, let

$$
F_{a+2}(\mathbf{R})= \begin{cases}1 & \text { if } N_{\mathbf{R}}(1)+2>N_{\mathbf{R}}(-1) \\ 0 & \text { if } N_{\mathbf{R}}(1)+2=N_{\mathbf{R}}(-1) \\ -1 & \text { if } N_{\mathbf{R}}(1)+2<N_{\mathbf{R}}(-1)\end{cases}
$$

and

$$
F_{b+2}(\mathbf{R})= \begin{cases}1 & \text { if } N_{\mathbf{R}}(1)>N_{\mathbf{R}}(-1)+2 \\ 0 & \text { if } N_{\mathbf{R}}(1)=N_{\mathbf{R}}(-1)+2 \\ -1 & \text { if } N_{\mathbf{R}}(1)<N_{\mathbf{R}}(-1)+2\end{cases}
$$

Reversal Swap the a and b in each ranking, then selection the candidate(s) with the most
first place votes. For each $\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{i}, \ldots, R_{n}\right) \in\{1,0,-1\}^{n}$, let

$$
F_{r e v}(\mathbf{R})= \begin{cases}1 & \text { if } N_{-\mathbf{R}}(1)>N_{-\mathbf{R}}(-1) \\ 0 & \text { if } N_{-\mathbf{R}}(1)=N_{-\mathbf{R}}(-1) \\ -1 & \text { if } N_{-\mathbf{R}}(1)<N_{-\mathbf{R}}(-1)\end{cases}
$$

Majority Rule The candidate with the most first place votes wins. For each $\mathbf{R}=\left(R_{1}, R_{2}, \ldots, R_{i}, \ldots, R_{n}\right)$ $\{1,0,-1\}^{n}$, let

$$
F_{m a j}(\mathbf{R})= \begin{cases}1 & \text { if } N_{\mathbf{R}}(1)>N_{\mathbf{R}}(-1) \\ 0 & \text { if } N_{\mathbf{R}}(1)=N_{\mathbf{R}}(-1) \\ -1 & \text { if } N_{\mathbf{R}}(1)<N_{\mathbf{R}}(-1)\end{cases}
$$

Postulates

Decisiveness Every input to the group decision method must be associated with a single group decision. For each profile \mathbf{R}, there is a unique R such that R is the group decision associated with \mathbf{R}.

Anonymity All voters should be be treated equally (The shuffling of a profile does not affect the winner). For all $\mathbf{R} \in\{1,0,-1\}^{n}$ and permutations $\pi: N \rightarrow N, F(\mathbf{v})=F(\pi(\mathbf{v}))$

Neutrality All candidates should be treated equally: For all $\mathbf{R} \in\{1,0,-1\}^{n}$, $F(-\mathbf{R})=-F(\mathbf{R})$

Monotonicity For all $\mathbf{R}, \mathbf{R}^{\prime}$, if \mathbf{R} is a monotonic improvement of \mathbf{R}^{\prime} for a, then if $F\left(\mathbf{R}^{\prime}\right)=1$ or $F\left(\mathbf{R}^{\prime}\right)=0$, then $F(\mathbf{R})=1$. Similarly, if \mathbf{R} is a monotonic improvement of \mathbf{R}^{\prime} for b, then if $F\left(\mathbf{R}^{\prime}\right)=-1$ or $F\left(\mathbf{R}^{\prime}\right)=0$, then $F(\mathbf{R})=-1$.

Fill in the table

	Decisiveness	Anonymity	Neutrality	Monotonicity
Dictator				
Imposed Rule				
Ignoring				
Ballot Stuffing				
Reversal				
Majority				

May's Theorem. A group decision method satisfies decisiveness, anonymity, neutrality and monotonicity if, and only if, the group decision method is majority rule.

Question: Majority rule satisfies unanimity. Why don't we need to list unanimity as postulate in May's Theorem?

[^0]: *Department of Philosophy, University of Maryland, College Park. Web: pacuit.org, Email: epacuit@ umd.edu

