Group Decisions for Two Candidates

Eric Pacuit*

March 2, 2015

<u>Notation</u>

- $X = \{a, b\}$ is the set of candidates and $N = \{1, \dots, n\}$ is the set of voters.
- There are three possible preference relations on X: $O(X) = \{R_1, R_2, R_3\}$, where $R_1 = \{(a, b)\}, R_2 = \{(b, a)\}$ and $R_3 = \{(a, b), (b, a)\}$.

Simplifying notation: To simplify the notation, let

1 denote the relation R_1 (in which *a* is ranked above *b*),

-1 is the relations R_2 (in which b is ranked above a) and

0 is the relation R_3 (in which a and b are tied).

• Recall that if X is a set, then X^n is the *n*-fold cross product of X with itself. For instance,

$$\{1,-1,0\}^2 = \{(1,1),(1,-1),(1,0),(-1,-1),(-1,1),(-1,0),(0,-1),(0,1),(0,0)\}$$

• A group decision method for V is a function $F: O(X)^n \to O(X)$. Given, our simplifying notation, a group decision method is a function

$$F: \{1, 0, -1\}^n \to \{1, 0, -1\}$$

• Suppose that $v \in \{1, 0, -1\}$. Then, define -v as follows:

$$-v = \begin{cases} 1 & \text{if } v = -1 \\ 0 & \text{if } v = 0 \\ -1 & \text{if } v = 1 \end{cases}$$

For a profile $\mathbf{R} = (v_1, v_2, \dots, v_n) \in \{1, 0, -1\}^n$, let $-\mathbf{R} = (-v_1, -v_2, \dots, -v_n)$.

^{*}Department of Philosophy, University of Maryland, College Park. Web: pacuit.org, Email: epacuit@umd.edu

- A permutation of the set of agents N is a 1-1 function $\pi : N \to N$. For instance, if $N = \{1, 2, 3\}$, then $\pi : N \to N$ where $\pi(1) = 3$, $\pi(3) = 1$, and $\pi(2) = 2$ is a permutation. For a profile $\mathbf{R} = (v_1, v_2, \dots, v_n)$, let $\pi(\mathbf{R}) = (v_{\pi(1)}, v_{\pi(2)}, \dots, v_{\pi(n)})$. That is, $\pi(\mathbf{R})$ is a "shuffling" of the profile. For example, if $\mathbf{R} = (1, 0, -1)$ and π is the above permutation, then $\pi(\mathbf{R}) = (-1, 0, 1)$.
- For a profile $\mathbf{R} = (R_1, \dots, R_n)$ and $v \in \{1, 0, -1\}$, let $N_{\mathbf{R}}(v) = |\{i \mid R_i = v\}|$. For instance, if $\mathbf{R} = (1, -1, 0, 0, 1, 1, -1, -1, 1)$. Then, $N_{\mathbf{R}}(1) = 4$, $N_{\mathbf{R}}(0) = 2$, and $N_{\mathbf{R}}(-1) = 3$
- For each profile **R** and $i \in V$, let \mathbf{R}_{-i} be the profile of all rankings in **R** except for voter *i*'s ranking. For instance, if $\mathbf{R} = (1, 0, -1, 1)$, then $\mathbf{R}_{-3} = (1, 0, 1)$.
- Suppose that R = (v₁,..., v_n) and R' = (v'₁,..., v'_n). We say that R' is a monotonic improvement of R for a provided there is a voter i ∈ V such that v_i = −1 and v'_i = 1 or v'_i = 0 and for all j ≠ i, v'_j = v_j. Similarly, we say that R' is a monotonic improvement of R for b provided there is a voter i ∈ V such that v_i = 1 and v'_i = −1 or v'_i = 0 and for all j ≠ i, v'_j = v_j. For instance (1, 0, −1) is a monotonic improvement of (1, −1, −1) for a, (−1, 0, −1) is a monotonic improvement of (1, 0, −1) for b, but (0, 0, −1) is not a monotonic improvement of (1, 0, −1) for a.

Group decision methods

- **Dictator** Choose a voter $i \in V$. For each $\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n) \in \{1, 0, -1\}^n$, let $F_i(\mathbf{R}) = R_i$.
- **Imposed rule** There are two group decision methods, one for candidate $a(F_a)$ and one for $b(F_b)$: For each $\mathbf{R} = (R_1, R_2, \ldots, R_i, \ldots, R_n) \in \{1, 0, -1\}$, let $F_a(\mathbf{R}) = R_1$ and let $F_b(\mathbf{R}) = R_2$.
- Ignoring a voter Choose a voter $i \in V$. For each $\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n) \in \{1, 0, -1\}^n$, let

 $F_{-i}(\mathbf{R}) = \begin{cases} 1 & \text{if } N_{\mathbf{R}_{-i}}(1) > N_{\mathbf{R}_{-i}}(-1) \\ 0 & \text{if } N_{\mathbf{R}_{-i}}(1) = N_{\mathbf{R}_{-i}}(-1) \\ -1 & \text{if } N_{\mathbf{R}_{-i}}(1) < N_{\mathbf{R}_{-i}}(-1) \end{cases}$

Ballot stuffing Give a candidates two extra votes. There are two group decision methods, one for $a(F_{a+2})$ and one for $b(F_{b+2})$. For each $\mathbf{R} = (R_1, R_2, \ldots, R_i, \ldots, R_n) \in \{1, 0, -1\}^n$, let

$$F_{a+2}(\mathbf{R}) = \begin{cases} 1 & \text{if } N_{\mathbf{R}}(1) + 2 > N_{\mathbf{R}}(-1) \\ 0 & \text{if } N_{\mathbf{R}}(1) + 2 = N_{\mathbf{R}}(-1) \\ -1 & \text{if } N_{\mathbf{R}}(1) + 2 < N_{\mathbf{R}}(-1) \end{cases}$$

and

$$F_{b+2}(\mathbf{R}) = \begin{cases} 1 & \text{if } N_{\mathbf{R}}(1) > N_{\mathbf{R}}(-1) + 2\\ 0 & \text{if } N_{\mathbf{R}}(1) = N_{\mathbf{R}}(-1) + 2\\ -1 & \text{if } N_{\mathbf{R}}(1) < N_{\mathbf{R}}(-1) + 2 \end{cases}$$

Reversal Swap the *a* and *b* in each ranking, then selection the candidate(s) with the most first place votes. For each $\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n) \in \{1, 0, -1\}^n$, let

$$F_{rev}(\mathbf{R}) = \begin{cases} 1 & \text{if } N_{-\mathbf{R}}(1) > N_{-\mathbf{R}}(-1) \\ 0 & \text{if } N_{-\mathbf{R}}(1) = N_{-\mathbf{R}}(-1) \\ -1 & \text{if } N_{-\mathbf{R}}(1) < N_{-\mathbf{R}}(-1) \end{cases}$$

Majority Rule The candidate with the most first place votes wins. For each $\mathbf{R} = (R_1, R_2, \dots, R_i, \dots, R_n)$ $\{1, 0, -1\}^n$, let

$$F_{maj}(\mathbf{R}) = \begin{cases} 1 & \text{if } N_{\mathbf{R}}(1) > N_{\mathbf{R}}(-1) \\ 0 & \text{if } N_{\mathbf{R}}(1) = N_{\mathbf{R}}(-1) \\ -1 & \text{if } N_{\mathbf{R}}(1) < N_{\mathbf{R}}(-1) \end{cases}$$

Postulates

- **Decisiveness** Every input to the group decision method must be associated with a single group decision. For each profile \mathbf{R} , there is a unique R such that R is the group decision associated with \mathbf{R} .
- Anonymity All voters should be be treated equally (The shuffling of a profile does not affect the winner). For all $\mathbf{R} \in \{1, 0, -1\}^n$ and permutations $\pi : N \to N$, $F(\mathbf{v}) = F(\pi(\mathbf{v}))$
- Neutrality All candidates should be treated equally: For all $\mathbf{R} \in \{1, 0, -1\}^n$, $F(-\mathbf{R}) = -F(\mathbf{R})$
- **Monotonicity** For all \mathbf{R} , \mathbf{R}' , if \mathbf{R} is a monotonic improvement of \mathbf{R}' for a, then if $F(\mathbf{R}') = 1$ or $F(\mathbf{R}') = 0$, then $F(\mathbf{R}) = 1$. Similarly, if \mathbf{R} is a monotonic improvement of \mathbf{R}' for b, then if $F(\mathbf{R}') = -1$ or $F(\mathbf{R}') = 0$, then $F(\mathbf{R}) = -1$.

Fill in the table

	Decisiveness	Anonymity	Neutrality	Monotonicity
Dictator				
Imposed Rule				
Ignoring				
Ballot Stuffing				
Reversal				
Majority				

May's Theorem. A group decision method satisfies decisiveness, anonymity, neutrality and monotonicity if, and only if, the group decision method is majority rule.

Question: Majority rule satisfies unanimity. Why don't we need to list unanimity as postulate in May's Theorem?