6

Recursive Functions

The intuitive notion of an effectively computable function is the notion of a function for
which there are definite, explicit rules, following which one could in principle compute its
value for any given arguments. This chapter studies an extensive class of effectively com-
putable functions, the recursively computable, or simply recursive, functions. According
to Church’s thesis, these are in fact all the effectively computable functions. Evidence
for Church’s thesis will be developed in this chapter by accumulating examples of ef-
fectively computable functions that turn out to be recursive. The subclass of primitive
recursive functions is introduced in section 6.1, and the full class of recursive functions
in section 6.2. The next chapter contains further examples. The discussion of recursive
computability in this chapter and the next is entirely independent of the discussion of
Turing and abacus computability in the preceding three chapters, but in the chapter
after next the three notions of computability will be proved equivalent to each other.

6.1 Primitive Recursive Functions

Intuitively, the notion of an effectively computable function f from natural numbers
to natural numbers is the notion of a function for which there is a finite list of
instructions that in principle make it possible to determine the value f(x,..., x,)
for any arguments xi, ..., x,. The instructions must be so definite and explicit that
they require no external sources of information and no ingenuity to execute. But the
determination of the value given the arguments need only be possible in principle,
disregarding practical considerations of time, expense, and the like: the notion of
effective computability is an idealized one.

For purposes of computation, the natural numbers that are the arguments and values
of the function must be presented in some system of numerals or other, though the
class of functions that is effectively computable will not be affected by the choice
of system of numerals. (This is because conversion from one system of numerals
to another is itself an effective process that can be carried out according to definite,
explicitrules.) Of course, in practice some systems of numerals are easier to work with
than others, but that is irrelevant to the idealized notion of effective computability.

For present purposes we adopt a variant of the primeval monadic or tally notation, in
which a positive integer n is represented by n strokes. The variation is needed because
we want to consider not just positive integers (excluding zero) but the natural numbers

63

64 RECURSIVE FUNCTIONS

(including zero). We adopt the system in which the number zero is represented by
the cipher 0, and a natural number n > 0 is represented by the cipher O followed by
a sequence of n little raised strokes or accents. Thus the numeral for one is 0, the
numeral for two is 07, and so on.

Two functions that are extremely easy to compute in this notation are the zero
function, whose value z(x) is the same, namely zero, for any argument x, and the
successor function s(x), whose value for any number x is the next larger number. In
our special notation we write:

z(0)=0 2(0)=0 2(0) =0
S(O) — 0/ S(O’) — O// S(O”) — 0///

To compute the zero function, given any any argument, we simply ignore the argument
and write down the symbol 0. To compute the successor function in our special
notation, given a number written in that notation, we just add one more accent at the
right.

Some other functions it is easy to compute (in any notation) are the identity
functions. We have earlier encountered also the identity function of one argument,
id or more fully id!, which assigns to each natural number as argument that same
number as value:

id{(x) =X.

There are two identity functions of two arguments: id% and id%. For any pair of
natural numbers as arguments, these pick out the first and second, respectively, as
values:

id%(x, y)=x id%(x, y) = y.

In general, for each positive integer n, there are n identity functions of n arguments,
which pick out the first, second, .. ., and nth of the arguments:

d (X, e Xy, X)) = X

Identity functions are also called projection functions. [In terms of analytic geometry,
id%(x, y) and id%(x, y) are the projections x and y of the point (x, y) to the X-axis
and to the Y-axis respectively.]

The foregoing functions—zero, successor, and the various identity functions—are
together called the basic functions. They can be, so to speak, computed in one step,
at least on one way of counting steps.

The stock of effectively computable functions can be enlarged by applying certain
processes for defining new functions from old. A first sort of operation, composi-
tion, is familiar and straightforward. If f is a function of m arguments and each of
g1,--., &nm 18 a function of n arguments, then the function obtained by composition
from f, g1,..., gn is the function & where we have

h(xy, ..., xn) = flg1(x1, s Xn)s o ooy 8n(X1, ..., X)) |(Cn)

6.1. PRIMITIVE RECURSIVE FUNCTIONS 65

One might indicate this in shorthand:

h= Cl’l[f, 81y gm]-

Composition is also called substitution.
Clearly, if the functions g; are all effectively computable and the function f is
effectively computable, then so is the function 4. The number of steps needed to

compute h(xy, ..., x,) will be the sum of the number of steps needed to compute
y1 = g1(x1, ..., x,), the number needed to compute y, = g»(xy, ..., X,), and so on,
plus at the end the number of steps needed to compute f(yq, ..., Ym).

6.1 Example (Constant functions). For any natural number n, let the constant function
const, be defined by const,(x) = n for all x. Then for each n, const, can be obtained from
the basic functions by finitely many applications of composition. For, consty is just the zero
function z, and Cn[s, z] is the function & with h(x) = s(z(x)) = s(0) = 0’ = 1 = const;(x)
for all x, so const; = Cn[s, z]. (Actually, such notations as Cn[s, z] are genuine function
symbols, belonging to the same grammatical category as /, and we could have simply
written Cn[s, z](x) = s(z(x)) here rather than the more longwinded ‘if 4~ = Cnl[s, z], then
h(x) = z(x)".) Similarly const, = Cnl[s, const;], and generally const,,; = Cn[s, const,].

The examples of effectively computable functions we have had so far are admittedly
not very exciting. More interesting examples are obtainable using a different process
for defining new functions from old, a process that can be used to define addition
in terms of successor, multiplication in terms of addition, exponentiation in terms of
multiplication, and so on. By way of introduction, consider addition. The rules for
computing this function in our special notation can be stated very concisely in two
equations as follows:

x+0=x x+y =Gx+y).

To see how these equations enable us to compute sums consider adding 2 = 0”
and 3 = 0. The equations tell us:

040" =0"+0"y by 2nd equation with x = 0" and y = 0"
040" =0"+0Y by 2nd equation with x =0" and y =0
040 =0"+0)y by 2nd equation with x =0" and y =0

0"4+0 =0" by Istequation with x = 0".

Combining, we have the following:

O// + 0/// — (O// + O//)/
— (O// + O/)//
— (O// + O)///

— O/////

So the sum is 0”” =5. Thus we use the second equation to reduce the problem of

computing x + y to that of computing x + z for smaller and smaller z, until we arrive
at z = 0, when the first equation tells us directly how to compute x + 0.

66 RECURSIVE FUNCTIONS

Similarly, for multiplication we have the rules or equations
x-0=0 x-y=x+@-y
which enable us to reduce the computation of a product to the computation of sums,
which we know how to compute:
O// . 0/// — 0// + (O// . 0//)
— O// + (O// + (0// . O/))
— O// + (0// + (O// + (0// . O)))
— O// + (0// + (O// + O))
— O// + (O// + 0//)
after which we would carry out the computation of the sum in the last line in the way
indicated above, and obtain 0""”.
Now addition and multiplication are just the first two of a series of arithmetic
operations, all of which are effectively computable. The next item in the series is ex-
ponentiation. Just as multiplication is repeated addition, so exponentiation is repeated

multiplication. To compute x”, that is, to raise x to the power y, multiply together
y xs as follows:

X X X-onn- X (arow of y xs).

Conventionally, a product of no factors is taken to be 1, so we have the equation

=0

For higher powers we have

)Cl =X

x2 =X X

x=x-x----- X (arow of y xs)

Ol =x . x .. x-x=x-x" (arow of y + 1 xs).
So we have the equation
x’ =x-x"

Again we have two equations, and these enable us to reduce the computation of a
power to the computation of products, which we know how to do.

Evidently the next item in the series, super-exponentiation, would be defined as
follows:

P (a stack of y xs).

The alternative notation x 1 y may be used for exponentiation to avoid piling up of
superscripts. In this notation the definition would be written as follows:

xtxtxt...tx (arow of y xs).

6.1. PRIMITIVE RECURSIVE FUNCTIONS 67

Actually, we need to indicate the grouping here. It is to the right, like this:
xtx Pt ...1tx..)
and not to the left, like this:
(.((xtx)1rx)1..) 1 x.

For it makes a difference: 31 (31 3) =31 (27) =7 625 597 484 987; while (3 1 3) 1
3=2713 =19 683. Writing x 1 y for the super-exponential, the equations would be

xf0=0 xpy=x1Cny.

The next item in the series, super-duper-exponentiation, is analogously defined, and
SO on.

The process for defining new functions from old at work in these cases is called
(primitive) recursion. As our official format for this process we take the following:

h(x,0) = f(x), h(x,y) = g(x,y, h(x,y)) |(Pr).

Where the boxed equations—called the recursion equations for the function h—
hold, 4 is said to be definable by (primitive) recursion from the functions f and g. In
shorthand,

h = Pr[f, gl.

Functions obtainable from the basic functions by composition and recursion are called
primitive recursive.

All such functions are effectively computable. For if f and g are effectively com-
putable functions, then / is an effectively computable function. The number of steps
needed to compute A(x, y) will be the sum of the number of steps needed to com-
pute zo = f(x) = h(x, 0), the number needed to compute z; = g(x, 0, z9) = h(x, 1),
the number needed to compute z; = g(x, 1, z1) = h(x, 2), and so on up to z, =
gx,y—1,zy—1) = h(x, y).

The definitions of sum, product, and power we gave above are approximately in
our official boxed format. [The main difference is that the boxed format allows one,
in computing A (x, y'), to apply a function taking x, y, and h(x, y) as arguments. In the
examples of sum, product, and power, we never needed to use y as an argument.] By
fussing over the definitions we gave above, we can put them exactly into the format
(Pr), thus showing addition and multiplication to be primitive recursive.

6.2 Example (The addition or sum function). We start with the definition given by the
equations we had above,

x+0=x x+y =x+y).

As a step toward reducing this to the boxed format (Pr) for recursion, we replace the ordinary
plus sign, written between the arguments, by a sign written out front:

sum(x, 0) = x sum(x, y') = sum(x, y)'.

68 RECURSIVE FUNCTIONS

To put these equations in the boxed format (Pr), we must find functions f and g for which
we have

f(x):x g(x’yv_)zs(_)

for all natural numbers x, y, and —. Such functions lie ready to hand: f =id}, g=Cn
[s, id%]. In the boxed format we have

sum(x,0) =id{(x) sum(x,s(y)) = Cn[s, id}] (x, y, sum(x, y))
and in shorthand we have
sum = Pr[idi, Cn[s, idg]].

6.3 Example (The multiplication or product function). We claim prod = Pr[z, Cn[sum,
id?, idg]]. To verify this claim we relate it to the boxed formats (Cn) and (Pr). In terms of
(Pr) the claim is that the equations

prod(x,0) = z(x) prod(x, s(y)) = g(x, y, prod(x, y))

hold for all natural numbers x and y, where [setting h = g, f = sum, g; = id3, g = id3 in
the boxed (Cn) format] we have

g(x1, x2, x3) = Cn[sum, id}, id3] (x1, x2, x3)
= sum(id?(xl, X2, X3), idg(xl, X2,)C3))
=X+ X3
for all natural numbers x;, x,, x3. Overall, then, the claim is that the equations
prod(x, 0) = z(x) prod(x, s(y)) = x + prod(x, y)
hold for all natural numbers x and y, which is true:
x-0=0 x-y=x+x-y.

Our rigid format for recursion serves for functions of two arguments such as sum
and product, but we are sometimes going to wish to use such a scheme to define
functions of a single argument, and functions of more than two arguments. Where
there are three or more arguments x1, . . ., X,, y instead of just the two x, y that appear
in (Pr), the modification is achieved by viewing each of the five occurrences of x in
the boxed format as shorthand for x1, . .., x,. Thus with n =2 the format is

h(xy, x2,0) = f(x1, x2)
h(xi, x2, s(y)) = g(x1, x2, y, h(x1, X2, ¥)).
6.4 Example (The factorial function). The factorial x! for positive x is the product

1-2-3.... x of all the positive integers up to and including x, and by convention 0! = 1.
Thus we have

ol=1
yi=yl.y.

6.1. PRIMITIVE RECURSIVE FUNCTIONS 69

To show this function is recursive we would seem to need a version of the format for
recursion with n =0. Actually, however, we can simply define a two-argument function
with a dummy argument, and then get rid of the dummy argument afterwards by composing
with an identity function. For example, in the case of the factorial function we can define

dummyfac(x, 0) = const;(x)

dummyfac(x, y’) = dummyfac(x, y) -y’

sothatdummyfac(x, y) = y!regardless of the value of x, and then define fac(y) = dummyfac
(¥, y)- More formally,

fac = Cn[Pr[constl, Cn[prod, idg, Cn[s, 1dg]]] id, id].

(We leave to the reader the verification of this fact, as well as the conversions of informal-
style definitions into formal-style definitions in subsequent examples.)

The example of the factorial function can be generalized.

6.5 Proposition. Let f be a primitive recursive function. Then the functions

,
g0k, y) = f(, 00+ f(x, D+ fx,) =D flx, i)
i=0

;
h(x, y) = f(x,0)- fQ, 1) f 0,) = fCx, D)
i=0

are primitive recursive.

Proof: We have for the g the recursion equations

8(x,0)= f(x,0)
glx, y) = glx,y) + f(x,y)
and similarly for 4.

Readers may wish, in the further examples to follow, to try to find definitions of
their own before reading ours; and for this reason we give the description of the
functions first, and our definitions of them (in informal style) afterwards.

6.6 Example. The exponential or power function.

6.7 Example (The (modified) predecessor function). Define pred (x) to be the predecessor
x — 1l of x for x > 0, and let pred(0) = 0 by convention. Then the function pred is primitive
recursive.

6.8 Example (The (modified) difference function). Define x =y to be the difference x — y
if x > y, and let x=~y = 0 by convention otherwise. Then the function = is primitive
recursive.

6.9 Example (The signum functions). Define sg(0) =0, and sg(x) = 1 if x > 0, and define
5g(0) = 1 and 5g(x) = 0 if x > 0. Then sg and Sg are primitive recursive.

70 RECURSIVE FUNCTIONS

Proofs
Example 6.6. x 10 =1,x1s(y) =x - (x 1 y), or more formally,

exp = Pr[Cnls, z], Cn[prod, id}, id}]].

Example 6.7. pred(0) = 0, pred(y’) = y.
Example 6.8. x =0 = x, x ~y' = pred(x - y).
Example 6.9. sg(y) =1=(1 -y),sg(y) =1+ y.

6.2 Minimization

We now introduce one further process for defining new functions from old, which
can take us beyond primitive recursive functions, and indeed can take us beyond
total functions to partial functions. Intuitively, we consider a partial function f to be
effectively computable if alist of definite, explicit instructions can be given, following
which one will, in the case they are applied to any x in the domain of f, arrive after
a finite number of steps at the value f(x), but following which one will, in the case
they are applied to any x not in the domain of f, go on forever without arriving at
any result. This notion applies also to two- and many-place functions.

Now the new process we want to consider is this. Given a function f of n 4 1
arguments, the operation of minimization yields a total or partial function & of n
arguments as follows:

y if f(x1,...,x,,y)=0,andforallt <y
Mn[f1(x1, ..., x,) = f(x1,...,x,,1)is defined and # 0
undefined if there is no such y.

If h = Mn[f] and f is an effectively computable total or partial function, then
h also will be such a function. For writing x for xi, ..., x,, we compute h(x) by
successively computing f(x, 0), f(x, 1), f(x,2), and so on, stopping if and when
we reach a y with f(x, y) = 0. If x is in the domain of 4, there will be such a y, and
the number of steps needed to compute /(x) will be the sum of the number of steps
needed to compute f(x, 0), the number of steps needed to compute f(x, 1), and so
on, up through the number of steps needed to compute f(x, y) = 0. If x is not in the
domain of 4, this may be for either of two reasons. On the one hand, it may be that
all of f(x,0), f(x,1), f(x,2),...are defined, but they are all nonzero. On the other
hand, it may be that for some i, all of f(x, 0), f(x, 1), ..., f(x,i — 1) are defined
and nonzero, but f(x, i) is undefined. In either case, the attempt to compute 4 (x) will
involve one in a process that goes on forever without producing a result.

In case f is a total function, we do not have to worry about the second of the two
ways in which Mn[f] may fail to be defined, and the above definition boils down to
the following simpler form.

the smallest y for which
Mn[f1(x1,...,x,) = f(x1,...,x,,y) =0 ifsucha y exists
undefined otherwise.

PROBLEMS 71

The total function f is called regular if for every x1, ..., x, there is a y such that
f(x1,...,x,,¥)=0.Incase f is aregular function, Mn[f] will be a total function.
In fact, if f is a total function, Mn[f] will be total if and only if f is regular.

For example, the product function is regular, since for every x, x - 0 = 0; and
Mn[prod] is simply the zero function. But the sum function is not regular, since
x +y = 0onlyin case x = y = 0; and Mn[sum] is the function that is defined only
for 0, for which it takes the value 0, and undefined for all x > 0.

The functions that can be obtained from the basic functions z, s, id} by the pro-
cesses Cn, Pr, and Mn are called the recursive (total or partial) functions. (In the
literature, ‘recursive function’ is often used to mean more specifically ‘recursive
total function’, and ‘partial recursive function’ is then used to mean ‘recursive total
or partial function’.) As we have observed along the way, recursive functions are all
effectively computable.

The hypothesis that, conversely, all effectively computable total functions are re-
cursive is known as Church’s thesis (the hypothesis that all effectively computable
partial functions are recursive being known as the extended version of Church’s the-
sis). The interest of Church’s thesis derives largely from the following fact. Later
chapters will show that some particular functions of great interest in logic and mathe-
matics are nonrecursive. In order to infer from such a theoretical result the conclusion
that such functions are not effectively computable (from which may be inferred the
practical advice that logicians and mathematicians would be wasting their time look-
ing for a set of instructions to compute the function), we need assurance that Church’s
thesis is correct.

At present Church’s thesis is, for us, simply an hypothesis. It has been made some-
what plausible to the extent that we have shown a significant number of effectively
computable functions to be recursive, but one can hardly on the basis of just these
few examples be assured of its correctness. More evidence of the correctness of the
thesis will accumulate as we consider more examples in the next two chapters.

Before turning to examples, it may be well to mention that the thesis that every ef-
fectively computable total function is primitive recursive would simply be erroneous.
Examples of recursive total functions that are not primitive recursive are described
in the next chapter.

Problems

6.1 Let f be a two-place recursive total function. Show that the following functions

are also recursive:

@) glx,y) = f(y,x)

(b) h(x) = f(x, %)

(©) k17(x) = f(17,x) and k"7 (x) = f(x, 17).

6.2 Let Jo(a, b) be the function coding pairs of positive integers by positive integers
that was called J in Example 1.2, and from now on use the name J for the
corresponding function coding pairs of natural numbers by natural numbers, so
that J(a, b) = Jo(a+ 1, b+ 1) — 1. Show that J is primitive recursive.

72 RECURSIVE FUNCTIONS

6.3 Show that the following functions are primitive recursive:
(a) the absolute difference |x — y|, definedtobex — yif y < x,and y — x
otherwise.
(b) the order characteristic, x<(x, y), defined to be 1 if x < y, and O otherwise.
(c) the maximum max(x, y), defined to be the larger of x and y.
6.4 Show that the following functions are primitive recursive:
(@) c(x,y,z)=1if yz=x, and O otherwise.
(b) d(x,y,z)=1if J(y, z) = x, and 0 otherwise.

6.5 Define K (n) and L(n) as the first and second entries of the pair coded (under the
coding J of the preceding problems) by the number n, so that J (K (n), L(n)) = n.
Show that the functions K and L are primitive recursive.

6.6 An alternative coding of pairs of numbers by numbers was considered in
Example 1.2, based on the fact that every natural number n can be written
in one and only one way as 1 less than a power of 2 times an odd number,
n = 2KM2I(n) = 1) = 1. Show that the functions k and [are primitive recursive.

6.7 Devise some reasonable way of assigning code numbers to recursive functions.

6.8 Given a reasonable way of coding recursive functions by natural numbers, let
d(x)=1 if the one-place recursive function with code number x is defined and
has value O for argument x, and d(x) =0 otherwise. Show that this function is
not recursive.

6.9 Let h(x, y) = 1 if the one-place recursive function with code number x is defined
forargument y, and 2(x, y) = O otherwise. Show that this functionis notrecursive.

