
P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16

Representability of Recursive Functions

In the preceding chapter we connected our work on recursion with our work on formulas
and proofs in one way, by showing that various functions associated with formulas and
proofs are recursive. In this chapter we connect the two topics in the opposite way, by
showing how we can ‘talk about’ recursive functions using formulas, and prove things
about them in theories formulated in the language of arithmetic. In section 16.1 we show
that for any recursive function f, we can find a formula φ f such that for any natural
numbers a and b, if f (a) = b then ∀y(φ f (a, y) ↔ y = b) will be true in the standard
interpretation of the language of arithmetic. In section 16.2 we strengthen this result,
by introducing a theory Q of minimal arithmetic, and showing that for any recursive
function f, we can find a formula ψ f such that for any natural numbers a and b, if f (a) = b
then ∀y(ψ f (a, y) ↔ y = b) will be not merely true, but provable in Q. In section 16.3
we briefly introduce a stronger theory P of Peano arithmetic, which includes axioms
of mathematical induction, and explain how these axioms enable us to prove results not
obtainable in Q. The brief, optional section 16.4 is an appendix for readers interested in
comparing our treatment of these matters here with other treatments in the literature.

16.1 Arithmetical Definability

In Chapter 9, we introduced the language L* of arithmetic and its standard interpre-
tation N*. We now abbreviate ‘true in the standard interpretation’ to correct. Our
goal in this chapter is to show that we can ‘talk about’ recursive functions in the
language of arithmetic, and we begin by making talk about ‘talking about’ precise.
We say a formula F(x) of the language of arithmetic arithmetically defines a set
S of natural numbers if and only if for all natural numbers a we have Sa if and only if
F(a) is correct. We say the set S is arithmetically definable, or arithmetical for short,
if some formula arithmetically defines it. These notions naturally extend to two-place
or many-place relations. A formula F(x, y) arithmetically defines a relation R on
natural numbers if and only if for all natural numbers a and b we have Rab if and
only if F(a, b) is correct. The notions also naturally extend to functions, a function
being counted as arithmetical if and only if its graph relation is arithmetical. Thus
a one-place function f is arithmetical if and only if there is a formula F(x, y) of
the language of arithmetic such that for all a and b we have f (a) = b if and only if
F(a, b) is correct.

199

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

200 REPRESENTABILITY OF RECURSIVE FUNCTIONS

16.1 Examples (Basic functions). To give the most trivial example, the identity function
id = id1

1is arithmetically defined by the formula y = x , and more generally, idn
i is arithmeti-

cally defined by the formula y = xi , or if we want the other x j to be mentioned, by the
formula

x1 = x1 & . . . & xn = xn & y = xi .

The zero function const0(x) = 0 is also arithmetically definable, by the formula y = 0, or
if we want x to be mentioned, by the formula x = x & y = 0. The successor, addition, and
multiplication functions are arithmetically definable by the formulas y = x ′, y = x1 + x2,
and y = x1 · x2.

16.2 Examples (Other arithmetical functions). Of course, it is no surprise that the functions
we have just been considering are arithmetically definable, since they are ‘built in’: we have
included in the language special symbols expressly for them. But their inverses, for which we
have not built in symbols, are also arithmetical. The predecessor function is arithmetically
definable by the following formula Fpred(x1, y):

(x1 = 0 & y = 0) ∨ x1 = y′.

The difference function x1
.− x2 is arithmetically defined by the following formula

Fdif(x1, x2, y):

(x1 < x2 & y = 0) ∨ (x1 = x2 + y)

and the quotient and remainder functions quo(x1, x2) and rem(x1, x2) are arithmetically
defined by the following formulas Fquo(x1, x2, y) and Frem(x1, x2, y):

(x2 = 0 & y = 0) ∨ ∃u < x2x1 = y · x2 + u

(x2 = 0 & y = x1) ∨ (y < x2 & ∃u ≤≤ x1 x1 = u · x2 + y).

On the other hand, it is not obvious how to define exponentiation, and as a tem-
porary expedient we now expand the language of arithmetic by adding a symbol
↑, thus obtaining the language of exponential arithmetic. Its standard interpretation
is like that of the original language arithmetic, with the denotation of ↑↑↑ being the
usual exponentiation function. In terms of this expansion we define ↑-arithmetical
definability in the obvious way. (The expression ‘↑-arithmetical’ may be pronounced
‘exponential-arithmetical’ or ‘exp-arithmetical’ for short.)

16.3 Examples (↑-arithmetical functions). Examples of ↑-arithmetical functions include
the exponential function itself, its inverses the logarithm functions (lo and lg of Example
7.11), and, what will be more significant for our present purposes, any number of functions
pertaining to the coding of finite sequences of numbers by single numbers or pairs of
numbers. For instance, in section 1.2 we found one serviceable if not especially elegant
way of coding sequences by pairs for which the i th entry of the sequence coded by the pair
(s, t) could be recovered using the function

entry(i, s, t) = rem(quo(s, t i), t)

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.1. ARITHMETICAL DEFINABILITY 201

This function is ↑-arithmetically definable by the following formula Fent(x1, x2, x3, y):

∃z ≤≤ x3 ↑↑↑ x1(Fquo (x2, x3 ↑↑↑ x1, z) & Frem (z, x2, y)).

For this just says that there is something that is the quotient on dividing x2 by x x1
3 , and

whose remainder on dividing by x2 is y, adding that it will be less than or equal to x2

(as any quotient on dividing x2 by anything must be).

Even after helping ourselves to exponentiation, it is still not obvious how to define
super-exponentiation, but though not obvious, it is possible—in fact any recursive
function can now be defined, as we next show.

16.4 Lemma. Every recursive function f is ↑-arithmetical.

Proof: Since we have already shown the basic functions to be definable, we need
only show that if any of the three processes of composition, primitive recursion, or
minimization is applied to ↑-arithmetical functions, the result is an ↑-arithmetical
function. We begin with composition, the idea for which was already encountered in
the last example. Suppose that f and g are one-place functions and that h is obtained
from them by composition. Then clearly c = h(a) if and only if

c = g(f (a))

which may be more long-windedly put as

there is something such that it is f (a) and g(it) is c.

It follows that if f and g are ↑-arithmetically defined by φ f and φg , then h is
↑-arithmetically defined by the following formula φh(x, z):

∃y (φ f (x, y) & φg(y, z)).

[To be a little more formal about it, given any a, let b = f (a) and let c = h(a) =
g(f (a)) = g(b). Since φ f and φg define f and g, φ f (a, b) and φg(b, c) are correct, so
φ f (a, b) & φg(b, c) is correct, so ∃y(φ f (a, y) & φg(y, c)) is correct, which is to say
φh(a, c) is correct. Conversely, if φh(a, c) is correct, φ f (a, b) & φg(b, c) and hence
φ f (a, b) and φg(b, c) must be correct for some b, and since φ f defines f , this b can
only be f (a), while since φg defines g, c then can only be g(b) = g(f (a)) = h(a).]

For the composition of a two-place function f with a one-place function g the
formula would be

∃y(φ f (x1, x2, y) & φg(y, z)).

For the composition of two one-place functions f1 and f2 with a two-place function
g, the formula would be

∃y1∃y2(φ f1 (x, y1) & φ f2 (x, y2) & φg(y1, y2, z))

and so on. The construction is similar for functions of more places.
Recursion is just a little more complicated. Suppose that f and g are one-place

and three-place functions, respectively, and that the two-place function h is obtained

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

202 REPRESENTABILITY OF RECURSIVE FUNCTIONS

from them by primitive recursion. Writing i ′ for the successor of i , clearly c = h(a, b)
if and only if there exists a sequence σ with the following three properties:

entry 0 of σ is h(a, 0)
for all i < b, if entry i of σ is h(a, i), then entry i ′ of σ is h(a, i ′)
entry b of σ is c.

These conditions may be restated equivalently thus:

entry 0 of σ is f (a)
for all i < b, entry i ′ of σ is g(a, i, entry i of σ)
entry b of σ is c.

These conditions may be restated more long-windedly thus:

there is something that is entry 0 of σ and is f (a)
for all i < b, there is something that is entry i of σ, and

there is something which is entry i ′ of σ, and
the latter is g(a, i, the former)

entry b of σ is c.

Moreover, instead of saying ‘there is a sequence’ we may say ‘there are two numbers
coding a sequence’. It follows that if f and g are ↑-arithmetically defined by φ f and
φg , then h is ↑-arithmetically defined by the formula φh(x, y, z) = ∃s∃tφ, where φ is
the conjunction of the following three formulas:

∃u(Fent(0, s, t, u) & φ f (x, u))

∀w < y ∃u∃v(Fent(w, s, t, u) & Fent(w′, s, t, v) & φg(x, w, u, v))

Fent(y, s, t, z).

The construction is exactly the same for functions of more places.
Minimization is a little simpler. Suppose that f is a two-place function, and that

the one-place function g is obtained from it by minimization. Clearly g(a) = b if and
only if

f (a, b) = 0 and
for all c < b, f (a, c) is defined and is not 0.

These conditions may be restated more long-windedly thus:

f (a, b) = 0 and
for all c < b, there is something that is f (a, c), and it is not 0.

It follows that if f is ↑-arithmetically defined by φ f , then g is ↑-arithmetically defined
by the following formula φg(x, y):

φ f (x, y, 0) & ∀z < y ∃u(φ f (x, z, u) & u ̸= 0).

The construction is exactly the same for functions of more places.

On reviewing the above construction, it will be seen that the presence of the
exponential symbol ↑↑↑ in the language was required only for the formula Fent. If we

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.1. ARITHMETICAL DEFINABILITY 203

could find some other way to code sequences by pairs for which the entry function
could be defined without using exponentiation, then we could forget about ↑↑↑. And in
fact, a coding is possible for which

entry(i, s, t) = rem(s, t(i + 1) + 1)

so that for Fent we may take

Frem(x2, x3 · (x1 + 1) + 1, y).

That such a coding is possible is the content of the following lemma.

16.5 Lemma (β-function lemma). For every k and every a0, a1, . . . , ak there exist
s and t such that for all i with 0 ≤ i ≤ k we have ai = rem(s, t(i + 1) + 1).

Proof: This result follows directly from the proofs of two ancient and famous
theorems of number theory, to be found in a prominent place in any textbook on that
subject. Since this is not a textbook on number theory, we are not going to develop the
whole subject from the foundations, but we do give an indication of the proof. The first
ingredient is the Chinese remainder theorem, so called from the appearance (at least
of special cases) of the theorem in the ancient Mathematical Classic of Sun Zi and
the medieval Mathematical Treatise in Nine Sections of Qin Jiushao. This theorem
states that given any numbers t0, t1, . . . , tn no two of which have a common prime
factor, and given any numbers ai < ti , there is a number s such that rem(s, ti) = ai

for all i from 0 to n. The proof is sufficiently illustrated by the case of two numbers
t and u with no common prime factor, and two numbers a < t and b < u. Every one
of the tu numbers i with 0 ≤ i < tu produces one of the tu pairs (a, b) with a < t and
b < u on taking the remainders rem (s, t) and rem (s, u). To show that, as asserted by
the theorem, every pair (a, b) is produced by some number s, it suffices to show that
no two distinct numbers 0 ≤ s < r < tu produce the same pair. If s and r do produce
the same pair, then they leave the same remainder when divided by t , and leave the
same remainder when divided by u. In that case, their difference q = r − s leaves
remainder zero when divided by either t or u. In other words, t and u both divide q .
But when numbers with no common prime factor both divide a number, so does their
product. Hence tu divides q . But this is impossible, since 0 < q < tu.

The second ingredient comes from the proof in Euclid’s Elements of Geometry that
there exist infinitely many primes. Given any number n, we want to find a prime p > n.
Well, let N = n!, so that in particular N is divisible by every prime ≤n. Then N + 1,
like any number >1, has a prime factor p. (Possibly N is itself prime, in which case
we have p = N.) But we cannot have p ≤ n, since when N is divided by any number
≤n, there is a remainder of 1. A slight extension of the argument shows that any two
distinct numbers N · i + 1 and N · j + 1 with 0 < i < j ≤ n have no common prime
factor. For if a prime p divides both numbers, it divides their difference N (j − i).
This is a product of factors ≤n, and when a prime divides a product of several factors,
it must divide one of the factors; so p itself must be a number ≤n. But then p cannot
divide N · i + 1 or N · j + 1. Now given k and every a0, a1, . . . , ak , taking n larger
than all of them, and letting t be a number divisible by every prime ≤n, no two of the

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

204 REPRESENTABILITY OF RECURSIVE FUNCTIONS

numbers ti = t(i + 1) + 1 will have a common prime factor, and we will of course
have ai < ti , so there will be an s such that rem(s, ti)= ai for all i with 0 ≤ i ≤ k.

Thus we have proved part (a) of the following.

16.6 Lemma
(a) Every recursive function f is arithmetical.
(b) Every recursive set is arithmetical.

Proof: As remarked just before the statement of the lemma, we already have (a).
For (b), if R is an n-place recursive relation and f its characteristic function, then
apply (a) to get a formula φ(x1, . . . , xn, y) arithmetically defining f . Then the formula
φ(x1, . . . , xn , 1) arithmetically defines R.

Further sharpening of the result depends on distinguishing different kinds of formu-
las. By a rudimentary formula of the language of arithmetic we mean a formula built
up from atomic formulas using only negation, conjunction, disjunction, and bounded
quantifications ∀x < t and ∃x < t , where t may be any term of the language (not in-
volving x). (Conditionals and biconditionals are allowed, too, since these officially
are just abbreviations for certain constructions involving negation, conjunction, and
disjunction. So are the bounded quantifiers ∀x ≤≤ t and ∃x ≤≤ t , since these are equi-
valent to ∀x < t ′ and ∃x < t ′). By an ∃-rudimentary formula we mean a formula of
form ∃xF where F is rudimentary, and similarly for an ∀-rudimentary formula. (The
negation of an ∃-rudimentary formula is equivalent to an ∀-rudimentary formula, and
conversely.) Many major theorems of number theory are naturally expressible by
∀-rudimentary formulas.

16.7 Examples (Theorems of number theory). Lagrange’s theorem that every natural num-
ber is the sum of four squares is naturally expressible by an ∀-rudimentary sentence as
follows:

∀x ∃y1 < x ∃y2 < x ∃y3 < x ∃y4 < x x = y1 · y1 + y2 · y2 + y3 · y3 + y4 · y4.

Bertrand’s postulate, or Chebyshev’s theorem, that there is a prime between any number
greater than one and its double, is naturally expressible by an ∀-rudimentary sentence as
follows:

∀x(1 < x → ∃y < 2 · x(x < y & ∼∃u < y ∃v < y y = u · v)).

Our present concern, however, will be with ∃-rudimentary formulas and with
generalized ∃-rudimentary formulas, which include all formulas obtainable from
rudimentary formulas by conjunction, disjunction, bounded universal quantification,
bounded existential quantification, and unbounded existential quantification. Review-
ing the proof of Lemma 16.6, one finds that the formulas defining the basic functions
and the formula Fent are rudimentary, and that the formula defining a composition of
functions is obtained by conjunction, bounded quantification, and existential quan-
tification from rudimentary formulas and the formulas defining the original functions,
and similarly for recursion and minimization. Hence we have proved:

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.1. ARITHMETICAL DEFINABILITY 205

16.8 Lemma. Every recursive function is arithmetically definable by a generalized
∃-rudimentary formula.

The next refinement will be to get rid of the word ‘generalized’ here. Two formulas
with, say, two free variables, φ(x, y) and ψ(x, y), are called arithmetically equivalent
if for all numbers a and b, φ(a, b) is correct if and only if ψ(a, b) is correct. Clearly
arithmetically equivalent formulas define the same relation or function. The condition
that φ and ψ are arithmetically equivalent is equivalent to the condition that the
biconditional

∀x∀y(φ(x, y) ↔ ψ(x, y))

is correct. In particular, if φ and ψ are logically equivalent—in which case the bicon-
ditional is true not just in the standard interpretation, but in any interpretation—then
they are arithmetically equivalent. The following lemma bears more than a passing
resemblance to Corollary 7.15.

16.9 Lemma (Closure properties of ∃-rudimentary formulas).

(a) Any rudimentary formula is arithmetically equivalent to an ∃-rudimentary formula.
(b) The conjunction of two ∃-rudimentary formulas is arithmetically equivalent to an

∃-rudimentary formula.
(c) The disjunction of two ∃-rudimentary formulas is arithmetically equivalent to an

∃-rudimentary formula.
(d) The result of applying bounded universal quantification to an ∃-rudimentary

formula is arithmetically equivalent to an ∃-rudimentary formula.
(e) The result of applying bounded existential quantification to an ∃-rudimentary

formula is arithmetically equivalent to an ∃-rudimentary formula.
(f) The result of applying (unbounded) existential quantification to an ∃-rudimentary

formula is arithmetically equivalent to an ∃-rudimentary formula.

Proof: For (a), φ is logically equivalent to ∃w(w = w & φ) (and if φ is rudimentary,
so is w = w & φ).

For (b), ∃uφ(u) & ∃vψ(v) is arithmetically equivalent to

∃w ∃u < w ∃v < w (φ(u) & ψ(v)).

[and if φ(u) and ψ(v) are rudimentary, so is ∃u < w ∃v < w (φ(u) & ψ(v))]. The
implication in one direction is logical, and in the other direction we use the fact that
for any two natural numbers u and v, there is always a natural number w greater than
both.

For (c), ∃uφ(u) ∨ ∃vψ(v) is logically equivalent to ∃w(φ(w) ∨ ψ(w)).
For (d), ∀z < y ∃uφ(u, z) is arithmetically equivalent to

∃w ∀z < y ∃u < w φ(u, z).

The implication in one direction is logical, and in the other direction we use the fact
that for any finitely many natural numbers u0, u1, . . . , uy−1 there is a number w that
is greater than all the uz .

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

206 REPRESENTABILITY OF RECURSIVE FUNCTIONS

For (e), ∃z < y ∃u φ(u, z) is logically equivalent to ∃u ∃z < y φ(u, z).
For (f), ∃u ∃v φ(u, v) is arithmetically equivalent to ∃w ∃u < w ∃v < w φ(u, v),

much as in part (b).

Repeated application of Lemma 16.9, followed by combination with Lemma 16.8
give the following:

16.10 Proposition. Every generalized ∃-rudimentary formula is arithmetically equiv-
alent to an ∃-rudimentary formula.

16.11 Lemma. Every recursive function is arithmetically definable by an∃-rudimentary
formula.

Call a function that is arithmetically definable by a rudimentary formula a rudimen-
tary function. Can we go further and show every recursive function to be rudimentary?
Not quite. The next lemma tells us how far we can go. It bears more than a passing
resemblance to Proposition 7.17.

16.12 Lemma. Every recursive function is obtainable by composition from rudimen-
tary functions.

Proof: Let f be a recursive function of, say, one place. (The proof for many-
place functions is exactly the same.) We know f is arithmetically definable by an
∃-rudimentary formula ∃zφ(x, y, z). Let S be the relation arithmetically defined by
φ, so that we have

Sabc ↔ φ(a, b, c) is correct.

We have

f (a) = b ↔ ∃c Sabc.

We now introduce two auxiliary functions:

g(a) =

⎧
⎨

⎩

the least d such that
∃b < d ∃c < d Sabc if such a d exists

undefined otherwise

h(a, d) =

⎧
⎨

⎩

the least b < d such that
∃c < d Sabc if such a b exists

0 otherwise.

(Note that if f is total, then g is total, while h is always total.) These functions are
rudimentary, being arithmetically definable by the following formulas φg(x, w) and
φh(x, w, y):

∃y < w ∃z < w φ(x, y, z) & ∀v < w ∀y < v ∀z < v ∼φ(x, y, z)

∃z < w φ(x, y, z) & ∀u < y ∀z < w ∼φ(x, u, z)

and a little thought shows that f (x) = h(x, g(x)) = h(id (x), g(x)), so f = Cn[h, id, g]
is a composition of rudimentary functions.

P1: GEM/SPH P2: GEM/SPH QC: GEM/UKS T1: GEM

CY504-16 CB421-Boolos July 27, 2007 17:43 Char Count= 0

16.2. MINIMAL ARITHMETIC AND REPRESENTABILITY 207

If T is a consistent theory in the language of arithmetic, we say a set S is defined
in T by D(x) if for all n, if n is in S, then D(n) is a theorem of T , and if n is not in S,
then ∼D(n) is a theorem of T . S is definable in T if S is defined by some formula.
Arithmetical definability is simply the special case where T is true arithmetic, the
set of all correct sentences. The general notion of definability in a theory extends to
relations, but definability of a function turns out to be less useful than a related notion.
For the remainder of this chapter, unless otherwise noted, ‘function’ will mean ‘total
function’. Let f be a one-place function. (The definition we are about to give extends
easily to many-place functions.) We say f is representable in T if there is a formula
F(x, y) such that whenever f (a) = b, the following is a theorem of T :

∀y(F(a, y) ↔ y = b).

This is logically equivalent to the conjunction of the positive assertion

F(a, b)

and the general negative assertion

∀y(y ̸= b → ∼F(a, y)).

By contrast, definability would only require that we have the positive assertion and for
each particular c ̸= b the relevant particular instance of the general negative assertion,
namely, ∼F(a, c).

Now in the special case where T is true arithmetic, of course if each particular
numerical instance is correct, then the universal generalization is correct as well, so
representability and definability come to the same thing. But for other theories, each
particular numerical instance may be a theorem without the universal generalization
being a theorem, and representability is in general a stronger requirement than de-
finability. Note that if T is a weaker theory than T * (that is, if the set of theorems of
T is a subset of the set of theorems of T *), then the requirement that a function be
representable in T is a stronger requirement than that it be representable in T * (that
is, representability in T implies representability in T *). Thus far we have proved all
recursive functions to be representable in true arithmetic. If we are to strengthen our
results, we must consider weaker theories than that.

16.2 Minimal Arithmetic and Representability

We now introduce a finite set of axioms of minimal arithmetic Q, which, though
not strong enough to prove major theorems of number theory, at least are correct
and strong enough to prove all correct ∃-rudimentary sentences. By themselves, the
axioms of Q would not be adequate for number theory, but any set of adequate axioms
would have to include them, or at least to prove them (in which case the set might
as well include them). Our main theorems (Theorems 16.13 and 16.15) apply to any
theory T that contains Q, and since Q is weak, the theorems are correspondingly
strong.

In displaying the list of axioms we make use of a traditional convention, according
to which when displaying sentences of the language of arithmetic that begin with a

