15

Arithmetization

In this chapter we begin to bring together our work on logic from the past few chapters
with our work on computability from earlier chapters (specifically, our work on recursive
functions from Chapters 6 and 7). In section 15.1 we show how we can ‘talk about’ such
syntactic notions as those of sentence and deduction in terms of recursive functions, and
draw among others the conclusion that, once code numbers are assigned to sentences in
a reasonable way, the set of valid sentences is semirecursive. Some proofs are deferred
to sections 15.2 and 15.3. The proofs consist entirely of showing that certain effectively
computable functions are recursive. Thus what is being done in the two sections men-
tioned is to present still more evidence, beyond that accumulated in earlier chapters, in
favor of Church’s thesis that all effectively computable functions are recursive. Readers
who feel they have seen enough evidence for Church’s thesis for the moment may regard
these sections as optional.

15.1 Arithmetization of Syntax

A necessary preliminary to applying our work on computability, which pertained to
functions on natural numbers, to logic, where the objects of study are expressions of a
formal language, is to code expressions by numbers. Such a coding of expressions is
called a Godel numbering. One can then go on to code finite sequences of expressions
and still more complicated objects.

A set of symbols, or expressions, or more complicated objects may be called
recursive in a transferred or derivative sense if and only if the set of code numbers
of elements of the set in question is recursive. Similarly for functions. Officially, a
language is just a set of nonlogical symbols, so a language may be called recursive
if and only if the set of code numbers of symbols in the language is recursive. In
what follows we tacitly assume throughout that the languages we are dealing with
are recursive: in practice we are going to be almost exclusively concerned with finite
languages, which are trivially so.

There are many reasonable ways to code finite sequences, and it does not really
matter which one we choose. Almost all that matters is that, for any reasonable choice,
the following concatenation function will be recursive: s * t = the code number for
the sequence consisting of the sequence with code number s followed by the sequence
with code number ¢. This is all that is needed for the proof of the next proposition,
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188 ARITHMETIZATION

in which, as elsewhere in this section, ‘recursive’ could actually be strengthened to
‘primitive recursive’.

So that the reader may have something definite in mind, let us offer one example
of a coding scheme. It begins by assigning code numbers to symbols as in Table 15-1.

Table 15-1. Godel numbers of symbols (first scheme)

Symbol ( ~ 3 = w, A} Al A2 U A 2
) v Vi A Al A2 . R 2
, v, AY Al A3 R A 17
Codle 1 2 3 4 5 6 68 688 .. 7 78 788
19 29 50 69 689 6889 ... 79 789 7889
199 599 699 6899 68899 ... 799 7899 78899

Thus for the language of arithmetic < or A(Z) has code number 688, 0 or f(? has
code number 7/, or fo1 has code number 78, + or f02 has code number 788, and - or
f12 has code number 7889. We then extend the code numbering to all finite sequences
of symbols. The principle is that if the expression E has code number e and the
expression D has code number d, then the expression ED obtained by concatenating
them is to have the code number whose decimal numeral is obtained by concatenating
the decimal numeral for e and the decimal numeral for d. Thus (0 =0 Vv ~0 =0), the
sequence of symbols with code numbers

1,7,4,7,29,2,7,4,7,19

has code number 174 729274 719.

In general the code number for the concatenation of the expressions with code
numbers e and d can be obtained from e and d as e x d = e - 108@-10+1 1 7 \where
Ig is the logarithm function of Example 7.11. For lg(d, 10) 4+ 1 will be the least
power z such that d < 10%, or in other words, the number of digits in the decimal
numeral for d, and thus the decimal numeral for e - 10810+ will be that for e
followed by as many O s as there are digits in that for d, and the decimal numeral for
e 10210+ 1 g will be that for e followed by that for d.

15.1 Proposition. The logical operations of negation, disjunction, existential quantifi-
cation, substitution of a term for free occurrences of a variable, and so on, are recursive.

Proof: Let n be the code number for the tilde, and let neg be the recursive func-
tion defined by letting neg(x) =n x x. Then if x is the code number for a formula,
neg(x) will be the code number for its negation. (We do not care what the function
does with numbers that are not code numbers of formulas.) This is what is meant by
saying that the operation of negation is recursive. Similarly, if / and d and r are the
code numbers for the left parenthesis and wedge and right parenthesis, disj(x, y) =
I % x x d % y % r will be the code number for the disjunction of the formulas coded by
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x and y. If e is the code number for the backwards E, then exquant(v, x) =e x v * x
will be the code number for the existential quantification with respect to the variable
with code number v of the formula with code number x. And similarly for as many
other logical operations as one cares to consider. For instance, if officially the con-
junction (X & Y) is an abbreviation for ~(~X V ~Y), the conjunction function is then
the composition conj (x, y) =neg(disj(neg (x), neg(y))). The case of substitution is
more complicated, but as we have no immediate need for this operation, we defer the
proof.

Among sets of expressions, the most important for us will be simply the sets of
formulas and of sentences. Among more complicated objects, the only important
ones for us will be deductions, on whatever reasonable proof procedure one prefers,
whether ours from the preceding chapter, or some other from some introductory
textbook. Now intuitively, one can effectively decide whether or not a given sequence
of symbols is a formula, and if so, whether it is a sentence. Likewise, as we mentioned
when introducing our own proof procedure, one can effectively decide whether a
given object D is a deduction of a given sentence from a given finite set of sentences
Io. If T is an infinite set of sentences, then a deduction of D from I' is simply a
deduction of D from some finite subset of 'y, and therefore, so long as one can
effectively decide whether a given sentence C belongs to I', and hence can effectively
decide whether a given finite set I'¢ is a subset of I", one can also effectively decide
whether a given object is a deduction of D from I'. Church’s thesis then implies the
following.

15.2 Proposition. The sets of formulas and of sentences are recursive.

15.3 Proposition. If ' is arecursive set of sentences, then the relation ‘X is a deduction
of sentence D from I'’ is recursive.

Collectively, Propositions 15.1-15.3 (and their various attendant lemmas and
corollaries) are referred to by the imposing title at the head of this section.
Before concerning ourselves with the proofs of these propositions, let us note a
couple of implications.

15.4 Corollary. The set of sentences deducible from a given recursive set of sentences
is semirecursive.

Proof: What is meant is that the set of code numbers of sentences deducible from
a given recursive set is semirecursive. To prove this we apply Proposition 15.3. What
is meant by the statement of that proposition is that if I" is recursive, then the relation

Rsd < d is the code number of a sentence and

s is the code number of a deduction of it from I

is recursive. And then the set S of code numbers of sentences deducible from I', being
given by Sd <> s Rsd, will be semirecursive.
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15.5 Corollary (Godel completeness theorem, abstract form). The set of valid sen-
tences is semirecursive.

Proof: By the Godel completeness theorem, the set of valid sentences is the same
as the set of demonstrable sentences, that is, as the set of sentences deducible from
I' = . Since the empty set & is certainly recursive, it follows from the preceding
corollary that the set of valid sentences is semirecursive.

The preceding corollary states as much of the content of the Gédel completeness
theorem as it is possible to state without mentioning any particular proof procedure.
The next corollary is more technical, but will be useful later.

15.6 Corollary. Let I" be a recursive set of sentences in the language of arithmetic, and
D(x) a formula of that language. Then:

(a) The set of natural numbers n such that D(n) is deducible from I" is semirecursive.

(b) The set of natural numbers n such that ~D(n) is deducible from I" is semirecursive.

(c) If for every n either D(n) or ~D(n) is deducible from I, then the set of n such that
D(n) is deducible from I' is recursive.

Proof. For (a), we actually show that the set R of pairs (d, n) such that d is the
code number for a formula D(x) and D(n) is deducible from I'" is semirecursive. It
immediately follows that for any one fixed D(x), with code number d, the set of n such
that D(n) is deducible from I will be semirecursive, since it will simply be the set of n
such that Rdn. To avoid the need to consider substituting a term for the free occurrences
of a variable (the one operation mentioned in Proposition 15.1 the proof of whose
recursiveness we deferred), first note that for any n, D(n) and Ix(x =n & D(x)) are
logically equivalent, and one will be a consequence of, or equivalently, deducible
from, I' if and only if the other is. Now note that the function taking a number
n to the code number num(z) for the numeral n is (primitive) recursive, for recalling
that officially s’ is ’(s) we have

num(0) = z num(n’) = a * b x num(n) * ¢

where z is the code number for the cipher 0 and a, b, and ¢ are the code numbers for
the accent and the left and right parentheses. The function f taking the code number
d for a formula D(x) and a number n to the code number for Ax(x =n & D(x)) is
recursive in consequence of Proposition 15.1, since we have

f(d, n) = exquant(v, conj(i * b* v* k* num(n) *¢), d)

where v is the code number for the variable, i for the equals sign, k for the comma.
The set S of code numbers of sentences that are deducible from I' is semirecursive
by Corollary 15.4. The set R of pairs is then given by

R, n) < S(f(d,n)).

In other words, R is obtained from the semirecursive set S by substituting the recursive
total function f, which implies that R is itself semirecursive.
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As for (b), we actually show that the set Q of pairs (d, n) such that d is the code
number for a formula D(x) and ~D(n) is deducible from I'" is semirecursive. Indeed,
with R as in part (a) we have

0(d, n) < R(neg(d), n).

So Q is obtained from the semirecursive R by substitution of the recursive total
function neg, which implies that Q is itself semirecursive.

Obviously there is nothing special about negation as opposed to other logical
constructions here. For instance, in the language of arithmetic, we could consider the
operation taking D(x) not to ~D(x) but to, say,

D(x)&~3y < x D(y)

and since the relevant function on code numbers would still, like neg, be recursive in
consequence of Proposition 15.1, so the set of pairs (d, n) such that

D(n) & ~3y < nD(y)

is deducible from I is also semirecursive. We are not going to stop, however, to try
to find the most general formulation of the corollary.

As for (c), if for any n both D(n) and ~D(n) are deducible from I', then every
formula is deducible from I', and the set of n such that D(n) is deducible from I
is simply the set of all natural numbers, which is certainly recursive. Otherwise, on
the assumption that for every n either D(n) or ~D(n) is deducible from I', the set
of n for which D(n) is deducible and the set of n for which ~D(n) is deducible are
complements of each other. Then (c) follows from (a) and (b) by Kleene’s theorem
(Proposition 7.16).

There is one more corollary worth setting down, but before stating it we introduce
some traditional terminology. We use ‘I" proves D’, written I' = D or -r D, inter-
changeably with ‘D is deducible from I"’. The sentences proved by I" we call the
theorems of I'. We conscript the word theory to mean a set of sentences that contains
all the sentences of its language that are provable from it. Thus the theorems of a
theory T are just the sentences in 7', and -7 B and B € T are two ways of writing
the same thing.

Note that we do not require that any subset of a theory T be singled out as ‘axioms’.
If there is arecursive set I of sentences such that T consists of all and only the senten-
ces provable from I', we say T is axiomatizable. If the set I' is finite, we say T is
finitely axiomatizable. We have already defined a set I' of sentences to be complete
if for every sentence B of its language, either B or ~B is a consequence of I', or
equivalently, is provable from I'. Note that for a theory T, T is complete if and only
if for every sentence B of its language, either B or ~B is in T. Similarly, a set I" is
consistent if not every sentence is a consequence of I', so a theory T is consistent if
not every sentence of its language is in 7. A set I' of sentences is decidable if the set
of sentences of its language that are consequences of I', or equivalently, are proved by
I', is recursive. Note that for a theory T, T is decidable if and only if T is recursive.
This terminology is used in stating our next result.



192 ARITHMETIZATION

15.7 Corollary. Let T be an axiomatizable theory. If T' is complete, then T is decidable.

Proof: Throughout, ‘sentence’ will mean ‘sentence of the language of 7°. The
assumption that 7 is an axiomatizable theory means that T is the set of sentences
provable from some recursive set of sentences I'. We write 7* for the set of code
numbers of theorems of T. By Corollary 15.4, T* is semirecursive. To show that T is
decidable we need to show that 7* is in fact recursive. By Proposition 15.2, T* will
be so if itis simply the set of all code numbers of sentences, so let us consider the case
where this is not so, that is, where not every sentence is a theorem of 7'. Since every
sentence would be a theorem of T if for any sentence D it happened that both D and
~D were theorems of T, for no sentence D can this happen. On the other hand, the
hypothesis that T is complete means that for every sentence D, at least one of D and
~D is a theorem of T'. It follows that D is not a theorem of 7 if and only if ~D is a
theorem of 7'. Hence the complement of 7* is the union of the set X of those numbers
n that are not code numbers of sentences at all, and the set Y of code numbers of
sentences whose negations are theorems of 7', or in other words, the set of n such
that neg(n) is in T*. X is recursive by Proposition 15.2. Y is semirecursive, since it is
obtainable by substituting the recursive function neg in the semirecursive set 7#%. So
the complement of 7* is semirecursive, as was T* itself. That 7* is recursive follows
by Kleene’s theorem (Proposition 7.16).

It ‘only’ remains to prove Propositions 15.2 and 15.3. In proving them we are once
again going to be presenting evidence for Church’s thesis: we are one more time going
to be showing that certain sets and functions that must be recursive if Church’s thesis
is correct are indeed recursive. Many readers may well feel that by this point they have
seen enough evidence, and such readers may be prepared simply to take Church’s
thesis on trust in future. There is much to be said for such an attitude, especially since
giving the proofs of these propositions requires going into details about the Godel
numbering, the scheme of coding sequences, and the like, that we have so far largely
avoided; and it is very easy to get bogged down in such details and lose sight of
larger themes. (There is serious potential for a woods—trees problem, so to speak.)
Readers who share the attitude described are therefore welcome to postpone sine die
reading the proofs that fill the rest of this chapter. Section 15.2 concerns (the deferred
clause of Proposition 15.1 as well as) Proposition 15.2, while section 15.3 concerns
Proposition 15.3.

15.2*% Godel Numbers

We next want to indicate the proof of Proposition 15.2 (also indicating, less fully, the
proof of the one deferred clause of Proposition 15.1, on the operation of substituting
a term for the free occurrences of a variable in a formula). The Gddel numbering
we gave by way of illustration near the beginning of this chapter is not, in fact, an
especially convenient one to work with here, mainly because it is not so easy to show
that such functions as the one that gives the the length (that is, number of symbols)
in the expression with a given code number are primitive recursive. An alternative
way of assigning code numbers to expressions begins by assigning code numbers to
symbols as in Table 15-2.
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Table 15-2. Godel numbers of symbols (second scheme)

Symbol ( ) , ~ \Y 3 = Vi A} 1
Code 1 3 5 7 9 11 13 2.5 22.3" .51 23.3" .50

Thus for the language of arithmetic < or A(Z) has code number2? - 32 .50 = 4.9 =
36, 0 or fé) has code number 23 - 3% .59 =8,/ or fol has code number 23 - 3! . 50 =
8-3=24,+4+ or f02 has code number 23 -32.59 =8.9 =72, and similarly - has
code number 360. We then extend the code numbering to all finite sequences of sym-
bols by assigning to an expression E consisting of a sequence of symbols S1 5> - - - S,
the code number # (E) for the sequence (|S1], | Sz, . . ., |S,]) according to the scheme
for coding finite sequences of numbers by single numbers based on prime decompo-
sition. [In contrast to the earlier scheme, we need to distinguish, in the case of the
expression consisting of a single symbol S, the code number # () of S gua expression
from the code number |S| of S gua symbol. In general the code number for a single-
term sequence (n) is 2 - 3", so we get #(§) = 2 - 3151.] Thus the code number for the
sentence we have been writing 0 = 0, which is officially =(0, 0), is that for (13, 1, 36,
5,36,3), whichis26 - 313 .5.736.113. 133 . 173, This is a number of 89 digits. For-
tunately, our concern will only be with what kinds of calculations could in principle be
performed with such large numbers, not with performing such calculations in practice.

The calculation of the length lh(e) of the expression with code number e is espe-
cially simple on this scheme, since lh(e) =1o(e, 2), where lo is the logarithm function
in Example 7.11, or in other words, the exponent on the prime 2 in the prime de-
composition of e. What are not so easy to express as primitive recursive functions
on this coding scheme are such functions as the one that gives the code number for
the concatenation of the expressions with two given code numbers. But while such
functions may not have been so easy to prove primitive recursive, they have been
proved to be so in Chapter 7. We know from our work there that in addition to the
concatenation function %, several further cryprographic or code-related functions are
primitive recursive. Writing #(o ) for the code number of sequence o, and §(s) for the
sequence with code number s, we list these functions in Table 15-3.

Table 15-3. Cryptographic functions

1h (s) = the length of §(s)

ent(s, i) = the ith entry of §(s)

last(s) = the last entry of §(s)

ext(s, a) = #(§(s) with a added at the end)

pre(a, ) = #(§(s) with a added at the beginning)
sub(s, ¢, d) = #(§(s) with c replaced by d throughout)

More complicated objects, such as finite sequences or finite sets of expressions, can
also be assigned code numbers. A code number for a finite sequence of expressions
is simply a code number for a finite sequence of natural numbers, whose entries are
themselves in turn code numbers for expressions. As a code number for a finite set of
expressions, we may take the code number for the finite sequence of expressions that
list the elements of the set (without repetitions) in order of increasing code number.
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This means that a code number of a finite set of expressions will be a code number for
a finite sequence of expressions whose entries are increasing, with later entries larger
than earlier ones. A virtue of this coding is that such relations as ‘the expression with
code number i belongs to the set with code number s’ and ‘the set with code number
t is a subset of the set with code number s’ will all be simply definable in terms of
the cryptographic functions, and hence recursive. (The first amounts to ‘i is an entry
of the sequence coded by s’, and the second amounts to ‘every entry of the sequence
coded by ¢ is an entry of the sequence coded by s’.) Similarly the coding can be
extended to finite sequences or finite sets of finite sequences or finite sets, and so on.

Towards proving Proposition 15.2, the first thing to note is that one- and two-place
relations like those given by ‘a is the code number of a predicate’ and ‘a is the code
number of an n-place predicate’ are primitive recursive. For the former is equivalent
to the existence of 7 and i such that a = 2% - 3" . 57, and the latter is equivalent to the
existence of i such thata = 2% - 3" . 5. The function f givenby f(n,i)=22%-3" .5
is primitive recursive, being a composition of exponentiation, multiplication, and
the constant functions with values 22, 3, and 5. So the relation ‘a = 22 .3" . 5%
is primitive recursive, being the graph relation ‘a = f(n,i)’. The two relations of
interest are obtained from the relation ‘a = 2% - 3" - 5” by existential quantification,
and in each case the quantifiers can be taken to be bounded, since if a = 22.3n .50
then certainly n and i are less than a. So the first condition amounts to In < a
3i < a(a =2%-3".5) and the second to Ji < a(a = 2%-3" . 5%).

Similar remarks apply to ‘a codes a variable’, ‘a codes a function symbol’, and ‘a
codes a constant (that is, a zero-place function symbol)’, ‘a codes an n-place function
symbol’, and ‘a codes an atomic term (that is, a variable or constant)’. These all give
primitive recursive relations. If we are interested only in formulas and sentences of
some language L less than the full language containing all nonlogical symbols, we
must add clauses ‘and a is in L’ to our various definitions of the items just listed.
So long as L is still primitive recursive, and in particular if L is finite, the relations
just listed will still be primitive recursive. (If L is only recursive and not primitive
recursive, we have to change ‘primitive recursive’ to ‘recursive’ both here and below.)

Considering only the case without identity and function symbols, the relation given
by ‘s codes an atomic formula’ is also primitive recursive, being obtainable by simple
operations (namely, substitution, conjunction, and bounded universal quantifications)
from the relations mentioned in the preceding paragraph and the graph relations of
the primitive recursive functions of some of the cryptographic functions listed earlier.
Specifically, s codes an atomic formula if and only if there is an n less than lh(s) such
that the following holds:

lh (s) =2n+ 2, and
ent (s, 0) is the code number for an n-place predicate, and
ent (s, 1) = 1 (the code number for a left parenthesis), and
foreveryi with 1 <i < lh(s) — 1:
if i is odd then ent(s, i) = 5 (the code number for a comma), and
if i is even then ent(s, i) is the code number for an atomic term, and

last (s) = 3 (the code number for a right parenthesis).
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Now s is the code number of a formula S if and only if there is some r that is the
code number for a formation sequence for S. In general, the relation given by ‘r is the
code number of a formation sequence for a formula with code number s’ is primitive
recursive, since this relation holds if and only if the following does:

For all j < 1h(r) either:
ent (r, j) is the code number for an atomic sentence, or
for some k < j,
ent (r, j) = neg(ent (r, k)), or
for some k; < jand some k; < j,
ent (r, j) = disj(ent (r, ky), ent (r, k»)), or
for some k < j and some i < ent (r, j),
ent (r, j) = exquant (2-5', ent (r, k))

and last (r) = s.

Here neg, disj, and exquant are as in the proof of Proposition 15.1.

We can give a rough upper bound on the code number for a formation sequence,
since we know (from the problems at the end of Chapter 9) that if S is a formula—
that is, if S has any formation sequence at all—then § has a formation sequence in
which every line is a substring of S, and the number of lines is less than the length
of S. Thus, if there is any formation sequence at all for s, letting n = lh(s), there will
be a formation sequence for s of length no greater than n with each entry of size
no greater than s. The code number for such a formation sequence will therefore
be less than the code number for a sequence of length n all of whose entries are
s, which would be 2" - 3% .... w(n)®, where 7w(n) is the nth prime, and this is less
that 77 (n)**+1_ So there is a primitive recursive function g, namely the one given by
g(x) = m(lh(x))* Ih@)+11 such that if s is the code number for a formula at all, then
there will be an r < g(s) such that r is a code number for a formation sequence for that
formula. In other words, the relation given by ‘s is the code number for a formula’
is obtainable by bounded quantification from a relation we showed in the preceding
paragraph to be primitive recursive: Ir < g(s) (r codes a formation sequence for s).
Thus the relation ‘s is the code number for a formula’ is itself primitive recursive.

In order to define sentencehood, we need to be able to check which occurrences of
variables in a formula are bound and which free. This is also what is needed in order
to define the one operation in Lemma 15.1 whose proof we deferred, substitution of a
term for the free occurrences of a variable in a formula. It is not the substitution itself
that is the problem here, so much as recognizing which occurrences of the variable
are to be substituted for and which not. The relation ‘s codes a formula and the eth
symbol therein is a free occurrence of the dth variable’ holds if and only if

s codes a formula and ent (s, ¢) = 2 - 5¢ and
forno ¢, u,v,w < s is it the case that
s=t*xv*xwandlh () <eande < Ih(t)+1h(v) and

u codes a formula and v = exquant (2 - 54, u).
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For the first clause says that s codes a formula and the eth symbol therein is the dth
variable, while the second clause says that the eth symbol does not fall within any
subsequence v of the formula that is itself a formula beginning with a quantification
of the dth variable. This relation is primitive recursive. Since the relation ‘s codes a
sentence’ is then simply

s codes a formula and

for no d, e < s is the eth symbol therein a free occurrence of the dth variable

it is primitive recursive, too, as asserted.

So much for the proof in the case where identity and function symbols are absent.
If identity is present, but not function symbols, the definition of atomic formula will
be the disjunction of the clause above covering atomic formulas involving a nonlog-
ical predicate with a second, similar but simpler, clause covering atomic formulas
involving the logical predicate of identity. If function symbols are present, it will be
necessary to give a preliminary definitions of term formation sequence and term. The
definition for term formation sequence will have much the same gross form as the
definition above of formation sequence; the definition for term will be obtained from
it by a bounded existential quantification. We suppress the details.

15.3* More Godel Numbers

We indicate the proof of Proposition 15.3, for the proof procedure used in the preced-
ing chapter, only in gross outline. Something similar can be done for any reasonable
proof procedure, though the details will be different.

We have already indicated how sets of sentences are to be coded: s is a code for a
set of sentences if and only if s is a code for a sequence and for all i < lh(s), ent(s, i)
is a code for a sentence, and in addition for all j < i, ent (s, j) < ent(s, i). It follows
that the set of such codes is primitive recursive. A derivation, on the approach we took
in the last chapter, is a sequence of sequents I'y = Ay, ['; = A», and so on, subject
to certain conditions. Leaving aside the conditions for the moment, a sequence of
sequents is most conveniently coded by a code for (c1, d1, ¢2, da, . . .), where ¢; codes
I'; and d; codes A;. The set of such codes is again primitive recursive. The sequence
of sequents coded by the code for (cy, dy, ..., cu, d,) will be a deduction of sentence
D from set I if and only if: first, the sequence of sequents coded is a derivation; and
second, ¢, codes a sequences whose entries are all codes for sentences in I", and d,
codes the sequence of length 1 whose sole entry is the code for D. Assuming I is
recursive, the second condition here defines a recursive relation.

The first condition defines a primitive recursive set, and the whole matter boils
down to proving as much. Now the sequence of sequents coded by a code for
(c1,d1, ..., cn, dy) will be derivation if for each i < n, the presence of ¢; and d;
is justified by the presence of zero, one, or more earlier pairs, such that the sequent
I'; = A; coded by ¢; and d; follows from the sequents I'j = A; coded by these
earlier c;and d; according to one or another rule. In gross form, then, the definition
of coding a derivation will resemble the definition of coding a formation sequence,
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where the presence of any code for an expression must be justified by the presence
of zero, one, or more earlier codes for expressions from which the given expression
‘follows’ by or another ‘rule’ of formation. The rules of formation are just the rules
the zero-‘premiss’ rule allowing atomic formulas to appear, the one-‘premiss’ rule
allowing a negation to be ‘inferred’ from the expression it negates, the two- ‘premiss’
rule allowing a disjunction to be ‘inferred’ from the two expressions it disjoins—and
so on. Definitions of this gross form define primitive recursive relations, provided the
individual rules in them do.

So, going back to derivations, let us look at a typical one-premiss rule. (The zero-
premiss rule would be a bit simpler, a two-premiss rule a bit more complicated.)
Take

Fru{A}j=A
= {~AJUA’

(R2a)

The relation we need to show to be primitive recursive is the relation ‘e and f code
a sequent that follows from the sequent coded by ¢ and d according to (R2a)’. But
this can be defined as follows:

¢, d, e, f code sets of formulas, and da < Ih(c) 3Ib < Ih(f)
ent( f, b) =neg(ent(c, a)), and
Vi < Ih(c) i = aor3j < lh(e) ent(c, i) =ent(e, j)), and
Vi < lh(e) 3j < lh(c)ent(e, i) =ent(c, j), and
Vi <lh(d) 3j <Ih(f)ent(d,i)=ent(f, j), and
Vi < Ih(f)(i = bor3j < lh(d) ent(f, i) =ent(d, j)).

Here the last four clauses just say that the only difference between the sets coded by
¢ and e is the presence of the sentence A coded by ent(c, a) in the former, and the
only difference between the sets coded by d and f is the presence of the sentence
B coded by ent(f, b) in the latter. The second clause tells us that B =~A. This is a
primitive recursive relation, since we known neg is a primitive recursive function.

To supply a full proof, each of the rules would have to be analyzed in this way. In
general, the analyses would be very similar, the main difference being in the second
clauses, stating how the ‘exiting’ and ‘entering’ sentences are related. In the case we
just looked at, the relationship was very simple: one sentence was the negation of the
other. In the case of some other rules, we would need to know that the function taking
a formula B(x) and a closed term ¢ to the result B(#) of substituting ¢ for all the free
occurrences of x is recursive, or rather, that the corresponding function on codes is.
We suppress the details.

Problems

15.1 On the first scheme of coding considered in this chapter, show that the length
of, or number of symbols in, the expression with code number e is obtainable
by a primitive recursive function from e.
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15.2 Let I' be a set of sentences, and T the set of sentences in the language of I
that are deducible from I'. Show that 7 is a theory.

15.3 Suppose an axiomatizable theory T has only infinite models. If 7 has only one
isomorphism type of denumerable models, we know that it will be complete
by Corollary 12.17, and decidable by Corollary 15.7. But suppose T is not
complete, though it has only two isomorphism types of denumerable models.
Show that T is still decidable.

15.4 Give examples of theories that are decidable though not complete.

15.5 Suppose Ay, A, A3, ... are sentences such that no A, is provable from the
conjunction of the A,, form < n.LetT be the theory consisting of all sentences
provable from the A;. Show that T is not finitely axiomatizable, or in other
words, that there are not some other, finitely many, sentences By, By, ..., By,
such that T is the set of consequences of the B;.

15.6 For a language with, say, just two nonlogical symbols, both two-place relation
symbols, consider interpretations where the domain consists of the positive
integers from 1 to n. How many such interpretations are there?

15.7 A sentence D is finitely valid if every finite interpretation is a model of D.
Outline an argument assuming Church’s thesis for the conclusion that the
set of sentences that are not finitely valid is semirecursive. (It follows from
Trakhtenbrot’s theorem, as in the problems at the end of chapter 11, that the
set of such sentences is not recursive.)

15.8 Show that the function taking a pair consisting of a code number a of a
sentence A and a natural number n to the code number for the conjunction
A&A&--- & A of n copies of A is recursive.

15.9 The Craig reaxiomatization lemma states that any theory 7" whose set of the-
orems is semirecursive is axiomatizable. Prove this result.

15.10 Let T be an axiomatizable theory in the language of arithmetic. Let f be a
one-place total or partial function f of natural numbers, and suppose there is
a formula ¢(x, y) such that for any a and b, ¢(a, b) is a theorem of T if and
only if f(a)=>b. Show that f is a recursive total or partial function.



