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Modal Logic and Provability

Modal logic extends ‘classical’ logic by adding new logical operators ! and ♦ for
‘necessity’ and ‘possibility’. Section 27.1 is an exposition of the rudiments of (sentential)
modal logic. Section 27.2 indicates how a particular system of modal logic GL is related
to the kinds of questions about provability in P we considered in Chapters 17 and 18.
This connection motivates the closer examination of GL then undertaken in section 27.3.

27.1 Modal Logic

Introductory textbooks in logic devote considerable attention to a part of logic we
have not given separate consideration: sentential logic. In this part of logic, the
only nonlogical symbols are an enumerable infinity of sentence letters, and the only
logical operators are negation, conjunction, and disjunction: ∼, &, ∨. Alternatively,
the operators may be taken to be the constant false (⊥) and the conditional (→). The
syntax of sentential logic is very simple: sentence letters are sentences, the constant ⊥
is a sentence, and if A and B are sentences, so is (A → B).

The semantics is also simple: an interpretation is simply an assignment ω of truth
values, true (represented by 1) or false (represented by 0), to the sentence letters. The
valuation is extended to formulas by letting ω(⊥) = 0, and letting ω(A → B) = 1 if
and only if, if ω(A) = 1, then ω(B) = 1. In other words, ω(A → B) = 1 if ω(A) = 0
or ω(B) = 1 or both, and ω(A → B) = 0 if ω(A) = 1 and ω(B) = 0. ∼A may be
considered an abbreviation for (A → ⊥), which works out to be true if and only if
A is false. (A & B) may similarly be taken to be an abbreviation for ∼(A → ∼B),
which works out to be true if and only if A and B are both true, and (A ∨ B) may be
taken to be an abbreviation for (∼A → B).

Validity and implication are defined in terms of interpretations: a sentence D is im-
plied by a set of sentences " if it is true in every interpretation in which all sentences
in " are true, and D is valid if it is true in all interpretations. It is decidable whether a
given sentence D is valid, since whether D comes out true on an interpretation ω de-
pends only on the values ω assigns to the finitely many sentence letters that occur in D.
If there are only k of these, this means that only a finite number of interpretations,
namely 2k of them, need to be checked to see if they make D true. Similar remarks
apply to implication.
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What is done in introductory textbooks that we have not done here is to work
out many particular examples of valid and invalid sentences, and implications and
nonimplications among sentences. We are simply going to presume a certain facility
with recognizing sentential validity and implication.

Modal sentential logic adds to the apparatus of ordinary or ‘classical’ sentential
logic one more logical operator, the box !, read ‘necessarily’ or ‘it must be the case
that’. One more clause is added to the definition of sentence: if A is a sentence, so
is !A. The diamond ♦, read ‘possibly’ or ‘it may be the case that’, is treated as an
abbreviation: ♦A abbreviates ∼!∼A.

A modal sentence is said to be a tautology if it can be obtained from a valid
sentence of nonmodal sentential logic by substituting modal sentences for sentence
letters. Thus, since p ∨ ∼p is valid for any sentence letter p, A ∨ ∼A is a tautology
for any modal sentence A. Analogously, tautological consequence for modal logic is
definable in terms of implication for nonmodal sentential logic. Thus since q is implied
by p and p → q for any sentence letters p and q , B is a tautologous consequence of
A and A → B for any modal sentences A and B. The inference from A and A → B
to B is traditionally called modus ponens.

There is no single accepted view as to what modal sentences are to be considered
modally valid, beyond tautologies. Rather, there are a variety of systems of modal
logic, each with its own notion of a sentence being demonstrable.

The minimal system of modal sentential logic, K, may be described as follows.
The axioms of K include all tautologies, and all sentences of the form

!(A → B) → (!A → !B).

The rules of K allow one to pass from earlier sentences to any sentence that is a
tautologous consequence of them, and to pass

from A to !A.

The latter rule is called the rule of necessitation. A demonstration in K is a sequence
of sentences, each of which either is an axiom or follows from earlier ones by a
rule. A sentence is then demonstrable in K, or a theorem of K, if it is the last sen-
tence of some demonstration. Given a finite set " = {C1, . . . , Cn}, we write ∧C for
the conjunction of all its members, and say " is inconsistent if ∼∧C is a theorem.
We say a sentence D is deducible from " if ∧C → D is a theorem. The usual rela-
tionships hold.

Stronger systems can be obtained by adding additional classes of sentences as ax-
ioms, resulting in a larger class of theorems. The following are among the candidates:

!A → A(A1)

A → !♦A(A2)

!A → !!A(A3)

!(!A → A) → !A.(A4)

For any system S we write ⊢S A to mean that A is a theorem of S.
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There is a notion of interpretation or model for K. We are going to be interested
only in finite models, so we build finiteness into the definition. A model for K will
be a triple W = (W, >, ω), where W is a nonempty finite set, > a two-place relation
on it, and ω a valuation or assignment of truth values true or false (represented by
1 or 0) not to sentence letters but to pairs (w, p) consisting of an element w of W and
a sentence letter p. The notion W , w |= A of a sentence A being true in a model W
and an element w is defined by induction on complexity. The clauses are as follows:

W, w |= p for p a sentence letter iff ω(w, p) = 1
notW, w |= ⊥
W, w |= (A → B) iff notW, w |= A or W, w |= B
W, w |= !A iff W, v |= A for all v < w.

(We have written v < w for w > v.) Note that the clauses for ⊥ and → are just like
those for nonmodal sentential logic. We say a sentence A is valid in the model W if
W, w |= A for all w in W .

Stronger notions of model of can be obtained by imposing conditions that the
relation > must fulfill, resulting in a smaller class of models. The following are
among the candidates.

(W 1) Reflexivity: for all w, w > w

(W 2) Symmetry: for all w and v, if w > v, then v > w

(W 3) Transitivity: for all w, v, and u, if w > v > u, then w > u
(W 4) Irreflexivity: for all w, not w > w.

(We have written w > v > u for w > v and v > u.) For any class # of models, we say A
is valid in #, and write |=# A, if A is valid in all W in #.

Let S be a system obtained by adding axioms and # a class obtained by imposing
conditions on >. If whenever ⊢S A we have |=# A, we say S is sound for #. If when-
ever |=# A we have ⊢S A, we say S is complete for #. A soundness and completeness
theorem relating the system S to a class of models # generally tells us that the (set
of theorems of) the system S is decidable: given a sentence A, to determine whether
or not A is a theorem, one can simultaneously run through all demonstrations and
through all finite models, until one finds either a demonstration of A or a model of ∼A.
A large class of such soundness and completeness theorems are known, of which we
state the most basic as our first theorem.

27.1 Theorem (Kripke soundness and completeness theorems). Let S be obtained by
adding to K a subset of {(A1), (A2), (A3)}. Let # be obtained by imposing on <W the
corresponding subset of {(W1), (W2), (W3)}. Then S is sound and complete for #.

Since there are eight possible subsets, we have eight theorems here. We are going
to leave most of them to the reader, and give proofs for just two: the case of the
empty set, and the case of the set {(A3)} corresponding to {(W3)}: K is sound and
complete for the class of all models, and K + (A3) is sound and complete for the class
of transitive models. Before launching into the proofs we need a couple of simple
facts.
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27.2 Lemma. For any extension S of K, if ⊢S A → B, then ⊢S !A → !B.

Proof: Suppose we have a proof of A → B. Then we can then extend it as follows:

(1) A → B G
(2) !(A → B) N(1)
(3) !(A → B) → (!A → !B) A
(4) !A → !B T(2), (3)

The annotations mean: G[iven], [by] N[ecessitation from step] (1), A[xiom], and
T[autological consequence of steps] (2), (3).

27.3 Lemma. ⊢K (!A & !B) ↔ !(A & B), and similarly for more conjuncts.

Proof:

(1) (A & B) → A T
(2) !(A & B) → !A 25.2(1)
(3) !(A & B) → !B S(2)
(4) A → (B → (A & B)) T
(5) !A → !(B → (A & B)) 25.2(4)
(6) !(B → (A & B)) → (!B → !(A & B)) A
(7) (!A & !B) ↔ !(A & B) T(2), (3), (5), (6)

The first three annotations mean: T[autology], [by Lemma] 25.2 [from] (1), and
S[imilar to] (2).

Proof of Theorem 27.1: There are four assertions to be proved.
K is sound for the class of all models. Let W be any model, and write w |= A

for W , w |= A. It will be enough to show that if A is an axiom, then for all w we
have w |= A, and that if A follows by a rule from B1, . . . , Bn , and for all w we have
w |= Bi for each i , then for all w we have w |= A.

Axioms. If A is tautologous, the clauses of the definition of |= for ⊥ and →
guarantee that w |= A. As for axioms of the other kind, if w |= !(A → B) and w |=
!A, then for any v < w, v |= A → B and v |= A. Hence v |= B for any v < w, and
w |= !B. So w |= !(A → B) → (!A → !B).

Rules. If A is a tautologous consequence of the Bi and w |= Bi for each i , then
again the clauses of the definition of |= for ⊥ and → guarantee that w |= A. For
the other rule, if w |= A for all w, then a fortiori for any w and any v < w, we have
v |= A. So w |= !A.

K is complete for the class of all models. Suppose A is not a theorem. We construct
a model in which A is not valid. We call a sentence a formula if it is either a subsentence
of A or the negation of one. We call a consistent set of formulas maximal if for every
formula B it contains one of every pair of formulas B, ∼B. First note that {∼A} is
consistent: otherwise ∼∼A is a theorem, and hence A is, as a tautologous conse-
quence. Further, note that every consistent set " is a subset of some maximal set:
∧" is equivalent to some nonempty disjunction each of whose conjuncts is a con-
junction of formulas that contains the members of " and contains every formula
exactly once, plain or negated. Further, note that a maximal set contains any formula
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deducible from it: otherwise it would contain the negation of that formula; but a set
that contains the negation of a formula deducible from it is inconsistent.

Let W be the set of all maximal sets. W is not empty, since {∼A} is consistent and
therefore a subset of some maximal set. W is finite: if there are only k subsentences
of A, there are at most 2k maximal sets. Define a relation > on W by letting w > v

if and only if whenever a formula !A is in w, the formula A is in v. Finally, for w

in W and sentence letter p, let ω(w, p) = 1 if p is in w, and ω(w, p) = 0 if not. Let
W = (W, >, ω). We are going to show by induction on complexity that for any w in
W and any formula B we have W , w |= B if and only if B is in w. Since there is a
w containing ∼A rather than A, it follows that A is not valid in W .

For the base step, if B is a sentence letter p, then p is in w iff ω(w, p) = 1 iff
w |= p. If B is ⊥, then ⊥ is not in w, since w is consistent, and also it is not the case
that w |= ⊥. For the induction step, if B is C → D, then C and D are subsentences
of A, and ∼B ↔ (C & ∼D) is a theorem, being tautologous. Thus B is not in w iff
(by maximality) ∼B is in w, iff C and ∼D are in w, iff (by the induction hypothesis)
w |= C and not w |= D, iff not w |= C → D. If B is !C , the induction hypothesis is
that for any v, v |= C iff C is in v. We want to show that w |= !C iff !C is in w. For
the ‘if’ direction, suppose !C is in w. Then for any v < w, C is in v and so v |= C .
It follows that w |= !C .

For the ‘only if’ direction, suppose w |= !C . Let

V = {D1, . . . , Dm, ∼C}

where the !Di for 1 ≤ i ≤ m are all the formulas in w that begin with !. Is V
consistent? If it is, then it is contained in some maximal v. Since all Di are in v, we
have v < w. Since ∼C is in v, not v |= C , which is impossible, since w |= !C . So
V is inconsistent, and it follows that

(D1 & · · · & Dm) → C

is a theorem. By Lemma 27.2,

!(D1 & · · · & Dm) → !C

is a theorem, and so by Lemma 27.3,

(!D1 & · · · & !Dm) → !C

is a theorem. Hence, since each !Di is in w, !C is in w.
K + (A3) is sound for transitive models. If w |= !A, then for any v < w it is the

case that for any u < v we have by transitivity u < w, and so u |= A. Thus v |= !A
for any v < w , and w |= !!A. Thus w |= !A → !!A.

K + (A3) is complete for transitive models. The construction used to prove K
complete for the class of all models needs to be modified. Define w > v if and only
if whenever a formula !B is in w, the formulas !B are both B in v. Then > will be
transitive. For if w > v > u, then whenever !A is in w, !A and A will be in v, and
since the former is in v, both will also by in u, so w > u.
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The only other part of the proof that needs modification is the proof that if w |= !C ,
then !C is in w. So suppose w |= !C , and let

V = {!D1, D1, . . . ,!Dm, Dm, ∼C}

where the !Di are all the formulas in w that begin with !. If V is consistent and
v is a maximal set containing it, then w > v and v |= ∼C , which is impossible. It
follows that

!D1 & D1 & · · · & !Dm & Dm → C

!(!D1 & D1 & · · · & !Dm & Dm) → !C

(!!D1 & !D1 & · · · & !!Dm & !Dm) → !C

are theorems, and hence any tautologous consequence of the last of these and the
axioms !Di → !!Di is a theorem, and this includes

(!D1 & · · · & !Dm) → !C

from which it follows that w |= !C .

Besides its use in proving decidability, the preceding theorem makes it possible
to prove syntactic results by semantic arguments. Let us give three illustrations. In
both the first and the second, A and B are arbitrary sentences, q a sentence letter not
contained in either, F(q) any sentence, and F(A) and F(B) the results of substituting
A and B respectively for any and all occurrences of q in F . In the second and third,
!" A abbreviates !A & A. In the third, •A is the result of replacing ! by !" throughout
A.

27.4 Proposition. If ⊢K A ↔ B, then ⊢K F(A) ↔ F(B).

27.5 Proposition. ⊢K+(A3) !" (A ↔ B) → !" (F(A) ↔ F(B)).

27.6 Proposition. If ⊢K+(A1)+(A3) A, then ⊢K + (A3) •A.

Proof: For Proposition 27.4, it is easily seen (by induction on complexity of F)
that if W = (W, >, ω) and we let W ′ = (W, >, ω′), where ω′ is like ω except that for
all w

ω′(w, q) = 1 if and only if W, w |= A

then for all w, we have

W, w |= F(A) if and only if W ′, w |= F(q).

But if ⊢K A ↔ B, then by soundness for all w we have

W, w |= A if and only if W, w |= B

and hence

W, w |= F(B) if and only if W ′, w |= F(q)

W, w |= F(A) if and only if W, w |= F(B).

So by completeness we have ⊢K F(A) ↔ F(B).
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For Proposition 27.5, it is easily seen (by induction on complexity of A) that since
each clause in the definition of truth at w mentions only w and those v with w > v,
for any W = (W, >, ω) and any w in W , whether W , w |= A depends only on the
values of ω(v, p) for those v such that there is a sequence

w = w0 > w1 > · · · > wn = v.

If > is transitive, these are simply those v with w ≥ v (that is, w = v or w > v).
Thus for any transitive model (W, >, ω) and any w, letting Ww = {v : w ≥ v} and
Ww = (Ww, >, ω), we have

W, w |= A if and only if Ww, w |= A.

Now

W, w |= !" C if and only if for all v ≤ w we have W, v |= C.

Thus if W , w |= !" (A ↔ B), then Ww, v |= A ↔ B for all v in Ww. Then, arguing as
in the proof of Proposition 27.4, we have Ww, v |= F(A) ↔ F(B) for all such v, and
so W, w |= !" (F(A) ↔ F(B)). This shows

W, w |= !" (A ↔ B) → !" (F(A) ↔ F(B))

for all transitive W and all w, from which the conclusion of the proposition follows
by soundness and completeness.

For Proposition 27.6, for any model W = (W, >, ω), let •W = (W, ≥, ω). It is
easily seen (by induction on complexity) that for any A and any w in W

W, w |= A if and only if •W, w |= •A.

•W is always reflexive, is the same as W if W was already reflexive, and is transitive
if and only if W was transitive. It follows that A is valid in all transitive models if and
only if •A is valid in all reflexive transitive models. The conclusion of the proposition
follows by soundness and completeness.

The conclusion of Proposition 27.4 actually applies to any system containing K
in place of K, and the conclusions of Propositions 27.5 and 27.6 to any system
containing K + (A3) in place of K + (A3). We are going to be especially interested
in the system GL = K + (A3) + (A4). The soundness and completeness theorems
for GL are a little tricky to prove, and require one more preliminary lemma.

27.7 Lemma. If ⊢GL (!A & A & !B & B & !C) → C , then⊢GL (!A & !B) → !C ,
and similarly for any number of conjuncts.

Proof: The hypothesis of the lemma yields

⊢GL (!A & A & !B & B) → (!C → C).

Then, as in the proof of the completeness of K + (A3) for transitive models, we get

⊢GL (!A & !B) → !(!C → C).
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From this and the axiom !(!C → C) → !C we get as a tautologous consequence
the conclusion of the lemma.

27.8 Theorem (Segerberg soundness and completeness theorems). GL is sound and
complete for transitive, irreflexive models.

Proof: Soundness. We need only show, in addition to what has been shown in
the proof of the soundness of K + (A3) for transitive models, that if a model is also
irreflexive, then w |= !(!B → B) → !B for any w. To show this we need a notion
of rank.

First note that if > is a transitive, irreflexive relation on a nonempty set W , then
whenever w0 > w1 > · · · > wm , by transitivity we have wi > w j whenever i < j , and
hence by irreflexivity wi ̸= w j whenever i ̸= j . Thus if W has only m elements, we can
never have w0 > w1 > · · · > wm . Thus in any transitive, irreflexive model, there is for
any w a greatest natural number k for which there exists elements w = w0 > · · · > wk .
We call this k the rank rk(w) of w. If there is no v < w, then rk(w) = 0. If v < w,
then rk(v) < rk(w). And if j < rk(w), then there is an element v < w with rk(v) = j .
(If w = w0 > · · · > wrk(w), then wrk(w)− j is such a v.)

Now suppose w |= !(!B → B) but not w |= !B. Then there is some v < w such
that not v |= B. Take such a v of lowest possible rank. Then for all u < v, by transitivity
u < w, and since rk(u) < rk(v), u |= B. This shows v |= !B, and since not v |= B,
not v |= !B → B. But that is impossible, since v < w and w |= !(!B → B). Thus
if w |= !(!B → B) then w |= !B, so for all w, w |= !(!B → B) → !B.

Completeness. We modify the proof of the completeness of K + (A3) by letting W
be not the set of all maximal w, but only of those for which not w > w. This makes
the model irreflexive.

The only other part of the proof that needs modification is the proof that if w |= !C ,
then !C is in w. So suppose w |= !C , and let

V = {!D1, D1, . . . ,!Dm, Dm, !C, ∼C}

where the !Di are all the formulas in w that begin with !. If V is consistent and v is
a maximal set containing it, then since !C is in v but C cannot be in v, we have not
v > v, and v is in W . Also w > v and v |= ∼C , which is impossible. It follows that

!D1 & D1 & · · · & !Dm & Dm & !C → C

is a theorem, and hence by the preceding lemma so is

(!D1 & · · · & !Dm) → !C

from which it follows that w |= !C .

27.2 The Logic of Provability

Let us begin by explaining why the system GL is of special interest in connection
with the matters with which we have been concerned through most of this book. Let L
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be the language of arithmetic, and φ a function assigning to sentence letters sentences
of L . We associate to any modal sentence A a sentence Aφ of L as follows:

pφ = φ(p) for p a sentence letter

⊥φ = 0 = 1
(B → C)φ = Bφ → Cφ

(!B)φ = Prv( Bφ )

where Prv is a provability predicate for P, in the sense of chapter 18. Then we have
the following relationship between GL and P:

27.9 Theorem (Arithmetical soundness theorem). If ⊢GL A, then for all φ, ⊢P Aφ .

Proof: Fix any φ. It is sufficient to show that ⊢P Aφ for each axiom of GL, and that
if B follows by rules of GL from A1, . . . , Am and ⊢P Aφ

i for 1 ≤ i ≤ m, then ⊢P Bφ .
This is immediate for a tautologous axioms, and for the rule permitting passage to tau-
tologous consequences, so we need only consider the three kinds of modal axioms, and
the one modal rule, necessitation. For necessitation, what we want to show is that if ⊢P

Bφ , then ⊢P (!B)φ , which is to say ⊢P Prv( Bφ ). But this is precisely property (P1)
in the definition of a provability predicate in Chapter 18 (Lemma 18.2). The axioms
!(B → C) → (!B → !C) and !B → !!B correspond in the same way to the
remaining properties (P2) and (P3) in that definition.

It remains to show that ⊢P Aφ where A is an axiom of the form

!(!B → B) → !B.

By Löb’s theorem it suffices to show ⊢P Prv( Aφ ) → Aφ . To this end, write S for
Bφ , so that Aφ is

Prv( Prv( S ) → S ) → Prv( S ).

By (P2)

Prv( Aφ ) → [Prv( Prv( Prv( S ) → S ) ) → Prv( Prv( S ) )]

Prv( Prv( S ) → S ) → [Prv( Prv( S ) ) → Prv( S )]

are theorems of P, and by (P3)

Prv( Prv( S ) → S ) → Prv( Prv( Prv( S ) → S ) )

is also a theorem of P. And therefore

Prv( Aφ ) → [Prv( Prv( S ) → S ) → Prv( S )]

which is to say Prv( Aφ ) → Aφ , being a tautological consequences of these three
sentences, is a theorem of P as required.

The converse of Theorem 27.9 is the Solovay completeness theorem: if for all
φ, ⊢P Aφ , then ⊢GL A. The proof of this result, which will not be needed in what
follows, is beyond the scope of a book such as this.
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Theorem 27.9 enables us to establish results about provability in P by establishing
results about GL. The remainder of this section will be devoted to the statement
of two results about GL, the De Iongh–Sambin fixed point theorem and a normal
form theorem for letterless sentences, with an indication of their consequences for P.
The proofs of these two results are deferred to the next section. Before stating the
theorems, a few preliminary definitions will be required.

We call a sentence A modalized in the sentence letter p if every occurrence of p
in A is part of a subsentence beginning with !. Thus if A is modalized in p, then
A is a truth-functional compound of sentences !Bi and sentence letters other than
p. (Sentences not containing p at all count vacuously as modalized in p, while
⊥ and truth-functional compounds thereof count conventionally as truth-functional
compounds of any sentences.) A sentence is a p-sentence if it contains no sentence
letter but p, and letterless if it contains no sentence letters at all.

So for example !p → !∼p is a p-sentence modalized in p, as is (vacuously and
conventionally) the letterless sentence ∼⊥, whereas q → !p is not a p-sentence but
is modalized in p, and ∼p is a p-sentence not modalized in p, and finally q → p is
neither a p-sentence nor modalized in p.

A sentence H is a fixed point of A (with respect to p) if H contains only sentence
letters contained in A, H does not contain p, and

⊢GL !" (p ↔ A) → (p ↔ H ).

For any A, !0 A = A and !n + 1 A = !!n A. A letterless sentence H is in normal
form if it is a truth-functional compound of sentences !n⊥. Sentences B and C are
equivalent in GL if ⊢GL (B ↔ C).

27.10 Theorem (Fixed point theorem). If A is modalized in p, then there exists a fixed
point H for A relative to p.

Several proofs along quite different lines are known. The one we are going to give
(Sambin’s and Reidhaar-Olson’s) has the advantage that it explicitly and effectively
associates to any A modalized in p a sentence A§, which is then proved to be a fixed
point for A.

27.11 Theorem (Normal form theorem). If B is letterless, then there exists a letterless
sentence C in normal form equivalent to B in GL.

Again the proof we give will effectively associate to any letterless B a sentence
B# that in normal form equivalent to B in GL.

27.12 Corollary. If A is a p-sentence modalized in p, then there exists a letterless
sentence H in normal form that is a fixed point for A relative to p.

The corollary follows at once from the preceding two theorems, taking as H the
sentence A§#. Some examples of the H thus associated with certain A are given in
Table 27-1.

What does all this tell us about P? Suppose we take some formula α(x) of L
‘built up from’ Prv using truth functions and applying the diagonal lemma to obtain
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Table 27-1. Fixed points in normal form

A !p ∼!p !∼p ∼!∼p ∼!!p !p →!∼p
H ∼⊥ ∼!⊥ !⊥ ⊥ ∼!!⊥ !!⊥ →!⊥

a sentence γ such that ⊢P πα ↔ α( πα ). Let us call such a sentence π a sentence of
Gödel type. Then α(x) corresponds to a p-sentence A(p), to which we may apply
Corollary 27.12 in order to obtain a fixed point H in normal form. This H will in
turn correspond to a truth-functional compound η of the sentences

0 = 1, Prv( 0 = 1 ), Prv( Prv( 0 = 1 ) ), . . .

and we get ⊢P πα ↔ η. Since moreover the association of A with H is effective, so
is the association of α with η. Since the sentences in the displayed sequence are all
false (in the standard interpretation), we can effectively determine the truth value of
η and so of πα . In other words, there is a decision procedure for sentences of Gödel
type.

27.13 Example (‘Cashing out’ theorems about GL as theorems about P). When α(x) is
Prv(x), then πα is the Henkin sentence, A(p) is !p, and H is (according to Table 27-1)
∼⊥, so η is 0 ̸= 1, and since ⊢P πα ↔ 0 ̸= 1, we get the result that the Henkin sentence
is true—and moreover that it is a theorem of P, which was Löb’s answer to Henkin’s
question. When α(x) is ∼Prv(x), then πα is the Gödel sentence, A(p) is ∼!p, and H is
(according to Table 27-1) ∼!⊥, so η is the consistency sentence ∼Prv( 0 = 1 ), and since
⊢P πα ↔ ∼Prv( 0 = 1 ), we get the result that the Gödel sentence is true, which is something
that we knew—and moreover that the Gödel sentence is provably equivalent in P to the
consistency sentence, which is a connection between the first and second incompleteness
theorems that we did not know of before.

Each column in Table 27-1 corresponds to another such example.

27.3 The Fixed Point and Normal Form Theorems

We begin with the normal form theorem.

Proof of Theorem 27.11: The proof is by induction on the complexity of B.
(Throughout we make free tacit use of Proposition 27.4, permitting substitution of
demonstrably equivalent sentences for each other.) It clearly suffices to show how
to associate a letterless sentence in normal form equivalent to !C with a letterless
sentence C in normal form.

First of all, put C in conjunctive normal form, that is, rewrite C as a conjunction
D1 & · · · & Dk of disjunctions of sentences !i⊥ and ∼!i⊥. Since ! distributes over
conjunction by Lemma 27.3, it suffices to find a suitable equivalent for !D for any
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disjunction D of !i⊥ and ∼!i⊥. So let D be

!n1⊥ ∨ · · · ∨ !n p ⊥ ∨ ∼!m1⊥ ∨ · · · ∨ ∼!mq ⊥.

We may assume D has at least one plain disjunct: if not, just add the disjunct !0⊥ = ⊥,
and the result will be equivalent to the original.

Using the axiom !B → !!B and Lemma 27.2, we see ⊢GL !i B → !i+1 B for
all i , and hence

(∗) ⊢GL !i B → ! j B and ⊢GL ∼! j B → ∼!i B whenever i ≤ j.

So we may replace D by!n⊥ ∨ ∼!m⊥, where n = max(n1, . . . , n p) and m = min(m1,

. . . , mq ). If there were no negated disjuncts, this is just !n⊥, and we are done.
Otherwise, D is equivalent to !m⊥ → !n⊥. If m ≤ n, then this is a theorem, so we
may replace D by ∼⊥.

If m > n, then n + 1 ≤ m. We claim in this case ⊢GL !D ↔ !n+1⊥. In one direc-
tion we have

(1) !n⊥ → !n+1⊥ (∗)
(2) (!m⊥ → !n⊥) → (!m⊥ → !n+1⊥) T(1)
(3) !(!m⊥ → !n⊥) → !(!m⊥ → !n+1⊥) 27.2(2)
(4) !(!n + 1⊥ → !n⊥) → !n+1⊥ A
(5) !(!m⊥ → !n⊥) → !n+1⊥ T(3), (4)
(6) !n⊥ → (!m⊥ → !n⊥) T
(7) !n+1⊥ → !(!m⊥ → !n⊥) 27.2(6)
(8) !(!m⊥ → !n⊥) ↔ !n+1⊥. T(5), (7)

And (8) tells us ⊢GL !D ↔ !n+1⊥.

Turning to the proof of Theorem 27.10, we begin by describing the transform
A§.Write ⊤ for ∼⊥. Let us say that a sentence A is of grade n if for some distinct
sentence letters q1, . . . , qn (where possibly n = 0), and some sentence B(q1, . . . , qn)
not containing p but containing all the qi , and some sequence of distinct sentences
C1(p), . . . , Cn(p) all containing p, A is the result B(!C1(p), . . . , !Cn(p)) of substi-
tuting for each qi in B the sentence !Ci . If A is modalized in p, then A is of grade n
for some n.

If A is of grade 0, then A does not contain p, and is a fixed point of itself. In this
case, let A§ = A. If

A = B(!C1(p), . . . , !Cn+1(p))

is of grade n + 1, for 1 ≤ i ≤ n + 1 let

Ai = B(!C1(p), . . . , !Ci−1(p), ⊤, !Ci+1(p), . . . , !Cn+1(p)).

Then Ai is of grade n, and supposing § to be defined for sentences of grade n, let

A§ = B(!C1(A§
1), . . . , !Cn(A§

n+1)).

27.14 Examples (Calculating fixed points). We illustrate the procedure by working out A§

in two cases (incidentally showing how substitution of demonstrably equivalent sentences
for each other can result in simplifications of the form of A§).
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Let A = !∼p. Then A = B(!C1(p)), where B(q1) = q1 and C1(p) = ∼p. Now A1 = B
(⊤) = ⊤ is of grade 0, so A§

1 = A1 = ⊤, and A§ = B(!C1(A§
1)) = !∼⊤, which is equivalent

to !⊥, the H associated with this A in Table 27-1.
Let A = !(p → q) → !∼p. Then A = B(!C1(p), !C2(p)), where B(q1, q2) =

(q1 → q2), C1(p) = (p → q), C2(p) = ∼p. Now A1 = (⊤ → !∼p), which is equivalent to
!∼p, and A2 = !(p → q) → ⊤, which is equivalent to ⊤. By the preceding example,
A§

1 = !∼⊤, and A§
2 is equivalent to ⊤. So A§ is equivalent to B(!C1(!⊥), ! ∼C2(⊤)) =

!(!∼⊤ → q) → !∼⊤, or !(!⊥ → q) → !∼⊥.

To prove the fixed-point theorem, we show by induction on n that A§ is a fixed
point of A for all formulas A modalized in p of grade n. The base step n = 0, where
A§ = A, is trivial. For the induction step, let A, B, Ci be as in the definition of §,
let i range over numbers between 1 and n + 1, write H for A§ and Hi for A§

i , and
assume as induction hypothesis that Hi is a fixed point for Ai . Let W = (W, >, ω)
be a model, and write w |= D for W , w |= D. In the statements of the lemmas, w

may be any element of W .

27.15 Lemma. Suppose w |= !" (p ↔ A) and w |= !Ci (p). Then w |= Ci (p) ↔
Ci (Hi ) and w |= !Ci (p) ↔ !Ci (Hi ).

Proof: Sincew |= !Ci (p), by axiom (A3)w |= !!Ci (p); hence for allv ≤ w, v |=
!Ci (p). It follows that w |= !" (Ci (p) ↔ ⊤). By Proposition 27.5, w |= !" (A ↔ Ai ),
whence by Lemma 27.5 again w |= !" (p ↔ Ai ), since w |= !" (p ↔ A). Since Hi

is a fixed point for Ai , w |= !" (p ↔ Hi ). The conclusion of the lemma follows on
applying Proposition 27.5 twice (once to Ci , once to !Ci ).

27.16 Lemma. w |= !" (p ↔ A) → !" (!Ci (p) → !Ci (Hi )).

Proof: Suppose w |= !" (p ↔ A). By Proposition 27.6, !" D → !" !" D is a theorem,
so w |= !" !" (p ↔ A), and if w ≥ v, then v |= !" (p ↔ A). Hence if v |= !Ci (p), then
v |= !Ci (p) ↔ !Ci (Hi ) by the preceding lemma, and so v |= !Ci (Hi ). Thus if
w ≥ v, then v |= !Ci (p) ↔ !Ci (Hi ), and so w |= !" (!Ci (p) → !Ci (Hi )).

27.17 Lemma. w |= !" (p ↔ A) → !" (!Ci (Hi ) → !Ci (p)).

Proof: Suppose w |= !" (p ↔ A), w ≥ v, and v |= ∼!Ci (p). Then there exist u
with v ≥ u and therefore w ≥ u with u |= ∼Ci (p). Take u ≤ v of least rank among
those such that u |= ∼Ci (p). Then for all t with u > t , we have t |= Ci (p). Thus
u |= !Ci (p). As in the proof of Lemma 27.16, u |= !" (p ↔ A), and so by that lemma,
u |= Ci (p) ↔ Ci (Hi ) and u |= ∼Ci (Hi ). Thus v |= ∼!Ci (Hi ) and v |= !Ci (Hi ) →
!Ci (p) and w |= !" (!Ci (Hi ) → !Ci (p)).

The last two lemmas together tell us that

!" (p ↔ A) → !" (!Ci (Hi ) ↔ !Ci (p))

is a theorem of GL. By repeated application of Proposition 27.5, we successively see
that !" (p ↔ A) → !" (A ↔ D) and therefore !" (p ↔ A) → !" (p ↔ D) is a theorem of
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GL for all the following sentences D, of which the first is A and the last H:

B(!C1(p), !C2(p), . . . , !Cn+1(p))

B(!C1(H1), !C2(p), . . . , !Cn+1(p))

B(!C1(H1), !C2(H2), . . . , !Cn+1(p))
...

B(!C1(H1), !C2(H2), . . . , !Cn+1(Hn+1)).

Thus !" (p ↔ A) → (p ↔ H ) is a theorem of GL, to complete the proof of the fixed
point theorem.

The normal form and fixed point theorems are only two of the many results about
GL and related systems that have been obtained in the branch of logical studies known
as provability logic.

Problems

27.1 Prove the cases of Theorem 27.1 that were ‘left to the reader’.
27.2 Let S5 = K + (A1) + (A2) + (A3). Introduce an alternative notion of model for

S5 in which a model is just a pair W = (W, ω) and W, w |= !A iff W, v |= A
for all v in W . Show that S5 is sound and complete for this notion of model.

27.3 Show that in S5 every formula is provably equivalent to one such that in a
subformula of form !A, there are no occurrences of ! in A.

27.4 Show that there is an infinite transitive, irreflexive model in which the sentence
!(!p → p) → !p is not valid.

27.5 Verify the entries in Table 27-1.
27.6 Suppose for A in Table 27-1 we took !(∼p → !⊥) → !(p → !⊥). What

would be the corresponding H?
27.7 To prove that the Gödel sentence is not provable in P, we have to assume

the consistency of P. To prove that the negation of the Gödel sentence is not
provable in P, we assumed in Chapter 17 the ω-consistency of P. This is a
stronger assumption than is really needed for the proof. According to Table 27-1,
what assumption is just strong enough?


