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INCOMPLETENESS, MECHANISM, AND OPTIMISM

STEWART SHAPIRO

§1. Overview. Philosophers and mathematicians have drawn lots of con-
clusions from Gödel’s incompleteness theorems, and related results from
mathematical logic. Languages, minds, and machines figure prominently
in the discussion. Gödel’s theorems surely tell us something about these
important matters. But what?
A descriptive title for this paper would be “Gödel, Lucas, Penrose, Tur-
ing, Feferman, Dummett, mechanism, optimism, reflection, and indefinite
extensibility”. Adding “God and the Devil” would probably be redundant.
Despite the breath-taking, whirlwind tour, I have the modest aim of forging
connections between different parts of this literature and clearing up some
confusions, together with the less modest aim of not introducing any more
confusions.
I propose to focus on three spheres within the literature on incompleteness.
The first, and primary, one concerns arguments that Gödel’s theorem refutes
the mechanistic thesis that the human mind is, or can be accurately modeled
as, a digital computer or a Turing machine. The most famous instance is the
much reprinted J. R. Lucas [18]. To summarize, suppose that a mechanist
provides plans for amachine,M , and claims that the output ofM consists of
all and only the arithmetic truths that a human (like Lucas), or the totality
of human mathematicians, will ever or can ever know. We assume that the
output of M is consistent. Now, since Lucas understands the proof of the
incompleteness theorem, he can studyM and construct its Gödel sentence
G . Lucas knows that G will never be produced or “asserted” by M . He
also knows that G “says” that G will never be produced byM . Thus, Lucas
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knows that G is true. So the mechanist was mistaken in the claim that the
output ofM contains all the truths that (any group containing) Lucas can
know.
The eminent physicist/mathematicianRoger Penrose [21, especially Chap-
ters 4, 10] weighed in on the side of the anti-mechanist, and Gödel’s unpub-
lished writings show him to be a cautious occupant of this side of the battle
line. Thus, when measured in terms of brain-power, the anti-mechanists are
a formidable group. However, George Boolos [2, p. 295] correctly notes that
“the arguments of these writers have as yet obtained little credence”, and
there is an extensive literature attacking the Lucas-Penrose position. In a
recent article, Lucas [19] holds his ground, or tries to. About 200 pages of
Penrose [22] are devoted to responses to various criticisms of the argument
and an intriguing new version of it (see §3 below and Penrose [23]).
The second sphere considered here takes off from the observation that
Gödel’s incompleteness theorem is completely constructive. Given any !-
consistent formal deductive system S that contains a small amount of arith-
metic, one can effectively find an arithmetic (Π1) sentence GS such that
neither GS nor its negation is a theorem of S. Moreover, if every arithmetic
theorem of S is true, then GS is true. This suggests that we just add GS
as a new “axiom” to S, producing a system S1. Then we can effectively
find a sentence GS1 which is true but not provable in S1. Not wavering,
we add GS1 as a new axiom, producing S2. And on it goes. The point is
that the process is effective. A machine could carry it out as well as Lucas
or Penrose, probably better. Thus, any attempt to effectively delimit the
extension of arithmetic truth effectively leads to an arithmetic truth not so
delimited. In his Gibbs lecture [11], Gödel calls this the “incompletability or
inexhaustability of mathematics”. Dummett [6] (see also [7]) argues that this
consideration makes arithmetic truth “indefinitely extensible”. This is one
of his arguments against bivalence and classical logic. The issue here is what
indefinite extensibility tells us about arithmetic understanding—language,
minds and machines in particular. Judson Webb [33, p. vii] invokes the ef-
fectiveness of the incompleteness result to conclude that Gödel “established
for the first time . . . that, from the proposition ‘I can find a limitation in any
given machine’, it by no means follows that I am not a machine”. Clearly,
we need to sort things out.
The third sphere comes from mathematical logic and not directly from
philosophy. Consider the process of moving from a system S to its Gödel
sentence GS to the new system S1 = S ∪ {GS}. The relevant idea, traced to
Turing [30] (and pursued in Feferman [9], [10]), is to extend the process into
the transfinite. We collect together S1, S2, . . . into a single system, which
we can call S!. Then we get a Gödel sentence GS! for S!, and produce
the system S(! + 1) = S! ∪ {GS!}. And onward, through the recursive
ordinals. The results are some completeness theorems, of sorts.



INCOMPLETENESS, MECHANISM, AND OPTIMISM 275

Now, to business.

§2. Idealization. One problem is that the exact content of the mechanistic
thesis is usually left unspecified. To belabor the obvious, the relevance of
the incompleteness theorems to mechanism depends on what the mechanist
claims. The raw thesis that the human mind is, or can be modeled as, a
digital computer or Turing machine, is too vague to apply anything as sharp
and delicate as the Gödel theorem and the Turing-Feferman extensions.
My conclusion (perhaps slightly exaggerated) is that there is no plausible
mechanist thesis on offer that is sufficiently precise to be undermined by the
incompleteness theorems.
The mechanist claims that there can be a machine whose outputs are the
same as those of a human or a group of humans. What sort of machine?
What outputs? What aspect of what human? As for “output” , let us stick
to propositions that can be rendered in the language of first-order Peano
arithmetic. Penrose [23] goes so far as to restrict the output toΠ1-sentences.
The totality of arithmetic sentences that a given person asserts in his lifetime
is finite. The same goes for the totality of sentences asserted by any finite
collection of humans, such as the professional mathematicians who lived or
will live before the sun goes cold. Moreover, the totalities in question are
certainly inconsistent. It only takes onemistaken calculation, later corrected.
The mechanist might claim that there could be a machine whose output is
one of these finite sets, or the truths among one of these sets, or the logical
consequences thereof. If so, the incompleteness theorems are irrelevant.
Things get interesting only when we idealize, but things also get murky.
Presumably, the mechanist and anti-mechanist are both talking about what
an ideal human, or the community of ideal human mathematicians, can
prove or know for certain. Lucas and Penrose both refer to human abilities
“in principle”. Of course, we must idealize on the “machines” as well.
Like humans, actual digital computers have fixed limits on memory, and
they are subject to hardware malfunctions and software bugs. I do not
know if there could be a physical computer that matches a human being,
reproducing both veridical output and error. I also do not know if there
could be a physical computer whose output matches one of the finite sets in
the previous paragraph. For all I know, it might not be physically possible to
build a computer that big. Moreover, no actual computer can print all and
only the logical consequences of one of those sets, since there are infinitely
many such consequences, and we have good empirical confirmation that
any machine will crash eventually. But all of this is off the point of any
mechanistic claim that is supposed to be settled by Gödel’s theorems.
The idealizations on the machine side are familiar, similar to idealizations
made throughout mathematics. We ignore finite limits and assume that our
machines never run out of memory, space, time, and attention span. We
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also assume that they run indefinitely without crashing. Part of the idea
is to enforce the familiar distinction between hardware and software, and
then completely ignore the hardware. Another part of the idea is to ignore
practical or theoretical problems with limited memory and storage. In short,
we deal with Turing machines , with their fixed programs and unlimited
tapes. Some Wittgenstein-type worries about rule-following might come
into play at this point, but I assume that things are pretty clear so far. There
is no question of what set a given Turing machine enumerates, is there? If
there is a question, set it aside.
Now, what about the human side of things? For any finite set S, there
is a Turing machine that prints out the members of S and nothing else,
and there is a Turing machine that prints out the logical consequences of
S and nothing else (see Boyer [3]). Big deal. The principals to the present
debate (try to) make idealizing assumptions about humans analogous to
those of Turing machines. They do not speak of the theorems a subject
does produce, but the theorems that she can produce. The mechanist should
accommodate theorems whose shortest proofs are so long that no human
can establish them without falling asleep or otherwise losing concentration,
or without using up every particle in the universe. In short, the envisioned
creatures have unlimited lifetimes, unlimited attention spans and energy, and
unlimited materials at their disposal. Yet they are like humans in every other
respect—whatever that means. Here is where rule-following considerations
might become more serious. Is it clear which Turing machine Lucas (for
example) would become if he were to undergo the envisioned modifications
and idealizations—even if we restrict attention toLucas’s abilities concerning
arithmetic sentences? Kripke [15] raises doubts about these matters, on
behalf of the laterWittgenstein. SodoesKreisel [14, pp. 317–318], on his own
behalf. The mechanist and the Lucas-Penrose anti-mechanist must agree on
a way to resolve this matter, and come up with a clear and unambiguous
conception of idealized human mathematical ability. Otherwise, there is
no meaningful debate. We need the idealizations before we can assess the
relevance of the various theorems.
The principals to the debate also assume that our ideal subjects do not
make mistakes—a normative idealization. To get around the human propen-
sity tomakemistakes, we consider the correct theorems that our ideal subject
can produce. Implicitly, the standard move is to postulate something like an
arithmetic competence/performance distinction in actual humans and then
ignore problems with performance. The presupposition is that human arith-
metic activity consists of following certain “routines” and “procedures”.1

The right arithmetic “software” is implemented in humans, or would be

1To avoid begging the question in favor of mechanism, we allow inherently informal
“routines” and “procedures” (if such there be). Aswe shall see, Lucas and Penrose sometimes
put the issue in these terms.
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implemented in ideal humans free from memory and other relevant limita-
tions. Errors that actual humans make are attributed to lack of attention
or memory failure. I do not know if this presupposition is tenable. When
dealing with natural organisms, can we sharply distinguish a breakdown or
limitation in memory recall, for example, from an error in the “software”?
Is there a clear distinction between human “hardware” and human arith-
metic “software”—or what would be human software if memory limitations
(etc.) were waived? The principals to the present debates presuppose that
there is, and we will go along for a while in order to evaluate the debate.
The normativity idealization is that human arithmetic “software” is free of
arithmetic bugs, and so our idealized humans do not assert arithmetic false-
hoods. At this point, the assumption is that the idealized humans produce
the analogues of theorems, sentences in the language of arithmetic that are
proved and thus known with mathematical certainty. Penrose is concerned
only with what he calls “unassailable” truths.
We can put the presuppositions succinctly, and sharply delineate themech-
anist dispute. Both parties assume that there is a set K consisting of all and
only the analogues of arithmetic theorems, sentences in the language of
first-order arithmetic that can be known with unassailable, mathematical
certainty. Let us callK the set of knowable or provable arithmetic sentences.2
For convenience, we acquiesce in the sloppy custom of identifying sentences
with their Gödel numbers, and so we think of K ambiguously as a set of sen-
tences and a set of numbers. The principals to the debate assume that K has
sharp borders, and so we can inquire about its properties as a set. In partic-
ular, we can inquire about its arithmetic and computational properties. The
mechanist asserts that all human arithmetic procedures are effective algo-
rithms. With Church’s thesis, our mechanist thus holds that there is a Turing
machine that enumerates K. In other words, he claims that K is recursively
enumerable. Against this, Lucas and Penrose argue that some of the rou-
tines and procedures that humans can employ—and that idealized humans
do employ—cannot be simulated on a Turing machine. There are inherently
non − computational human arithmetic procedures. Lucas [19, p. 105] puts
the issue in these terms: “Having once got the hang of the Gödelian argu-
ment, the mind can adapt it appropriately to meet each and every variant
claim that the mind is essentially some form of Turing machine.” Lucas
argues that the incompleteness theorem suggests a certain procedure that a
human can “get the hang of” and wield against the mechanist.

2I have found that many philosophers dismiss the whole Lucas-Penrose controversy, often
by rolling their eyes. Penrose [23] suggests that some of them just accept, as a matter of
faith, that any cognitive process must be computable. However, others may not accept the
presuppositions of the issue—the idealizations in particular. This paper is a defense of (some
of) the eye-rolling.
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§3. Mining some gold: Gödel’s Gibbs lecture. Let T be the set of truths
of first-order arithmetic. By assumption, K ⊆ T. In his Gibbs lecture
[11], Gödel refers to T as “objective” mathematics and K as “subjective”
mathematics. Suppose that the language is bivalent and K = T. Let Φ be
an arithmetic proposition. By bivalence, either Φ ∈ T or (¬Φ) ∈ T. In
the former case, Φ ∈ K and so Φ is knowable in principle. In the latter
case, (¬Φ) ∈ T and (¬Φ) ∈ K, and so it is knowable in principle that Φ is
false. So if the language is bivalent and K = T, then for every sentence Φ in
the language of arithmetic, our ideal human mathematicians are capable of
determining whetherΦ is true or false. Every arithmetic sentence is humanly
decidable.
Tarski’s theorem is that T is not definable in the language of arithmetic.
Afortiori , T is not recursively enumerable. There is no effective, formal
deductive system that has, as theorems, all and only the arithmetic truths.
Thus, if K = T and every arithmetic truth is ideally humanly provable, then
K is not recursively enumerable and the mechanist is wrong. End of story.
Mechanism thus entails that K ̸= T. Let Φ ∈ T and Φ /∈ K. Then Φ is an
unknowable truth. In Gödel’s terms, the sentenceΦ is absolutely undecidable,
as is ¬Φ. Even our idealized subjects do not decide the truth value of Φ
and thus in a strong sense humans cannot know that Φ is true. So, if the
mechanist is correct, then there are absolutely undecidable sentences.
Gödel points out that if K is recursively enumerable, then there is an
absolutely undecidable sentence of the form

∀x1 . . . ∀xn ∃y1 . . . ∃ym (Px1 . . . xny1 . . . ym = 0),

where P is a polynomial of degree 4 or less. As always, his conclusion is
careful:

. . . the following disjunctive conclusion is inevitable: Either math-
ematics is incompletable in [the] sense that its evident axioms can
never be comprised in a finite rule, that is to say, the human mind
(even within the realm of pure mathematics) infinitely surpasses the
powers of any finite machine, or else there exist absolutely unsolvable
diophantine problems of the type specified . . . It is this mathemat-
ically established fact which seems to me of great philosophical
interest. (p. 310)

In correspondence, Gödel suggested that humans may have the ability to
decide every arithmetic truth, in which case there are no absolutely undecid-
able arithmetic propositions (and so mechanism is false):

. . . human reason is [not] utterly irrational by asking questions
it cannot answer, while asserting emphatically that only reason
can answer them . . . [T]hose parts of mathematics which have
been systematically and completely developed . . . show an amaz-
ing degree of beauty and perfection. In those fields, by entirely
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unsuspected laws and procedures . . . means are provided not only
for solving all relevant problems, but also solving them in a most
beautiful and perfectly feasible manner. This fact seems to justify
what may be called “rationalistic optimism”. (see Wang [32, pp.
324–326])

In a personal anecdote, Penrose [23, §4.2] expressed similar sentiments:
I had vaguely heard of Gödel’s theorem prior [to the first year of
graduate school], and hadbeen a little unsettled bymy impressions
of it . . . I had been disturbed by the possibility that there might
be true mathematical propositions that were in principle inacces-
sible to human reason. Upon learning the true form of Gödel’s
theorem . . . I was enormously gratified to hear that it asserted no
such thing; for it established, instead, that the powers of human
reason could not be limited to any accepted preassigned system of
formalized rules.

On the other hand, perhaps the existence of absolutely undecidable propo-
sitions is not that implausible. Boolos [2] wonders why “should there not
be mathematical truths that cannot be given any proof that human minds
can comprehend?” Once again, if K is recursively enumerable, then some
arithmetic propositions are undecidable “by human reason” even in princi-
ple. The mechanist does a modus ponens, while Gödel and Penrose invoke
modus tollens. We return to this “rationalistic optimism” in the next section.
What else follows if our mechanist is right and K is recursively enumer-
able? Let e be the Gödel number of a Turing machine that enumerates K,
so that K = We . Assume that the analogues of the Hilbert-Bernays deriv-
ability conditions hold. Roughly, (1) For any sentence Φ in the language of
arithmetic, if Φ ∈We then the arithmetic sentence stating that Φ ∈We is in
We ; (2) For any sentencesΦ,Ψ in the language of arithmetic, the arithmetic
sentence stating that

if (Φ→ Ψ) ∈We then if Φ ∈We thenΨ ∈We
is inWe ; (3) for any sentenceΦ in the language of arithmetic, the arithmetic
sentence stating that

if Φ ∈We then the statement that Φ ∈We is inWe
is itself inWe . In the terminology of Smullyan [27, Chapter 9], the assump-
tion is that the formula x ∈We is a “provability predicate”. Conditions (1)
and (3) are analogues of the idea that if Φ is provable then it is provable
that Φ is provable. Condition (2) is analogue of the idea that the provable
sentences are closed under modus ponens.3

3The derivability conditions are needed here since the foregoing discussion turns on the
second incompleteness theorem (in order to follow some of the quoted material). In some
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Let Cone be the usual arithmetic statement that We is consistent. By
hypothesis, Cone is true. Gödel’s second incompleteness theorem entails
that Cone is not inK. Thus, under the mechanistic assumption, Cone is true
but unknowable, and thus is absolutely undecidable in Gödel’s sense. No
human, no matter how idealized, could know thatWe is consistent. That is,
if K = We and the derivability conditions hold, then no one can know of e
that We is consistent. It follows that no human, no matter how idealized,
can know that every sentence inWe is true, since he would then know that
We is consistent. In other words, no human could know thatWe ⊆ T. The
inclusion K ⊆ T follows from the platitude that only truths are knowable.
Thus, no one who knows the platitude can know that K = We . In other
words, even if the mechanist is right, there is no Turing machine T such
that we could know (de re) that T enumerates all and only the knowable
arithmetic sentences.
Mathematical knowability, and not just mathematical truth, is indefinitely
extensible in Dummett’s sense. If we know that a given Turing machine
generates only knowable arithmetic truths, then we can effectively find a
knowable sentence not so generated. Let me quote Gödel [11, p. 309] at
length:

It is [the second incompleteness] theorem which makes the incom-
pletability of mathematics particularly evident. For, it makes it
impossible that someone should set up a certain well-defined system
of axioms and rules and consistently make the following assertion
about it: All of these axioms and rules I perceive (with mathematical
certitude) to be correct, and moreover I believe that they contain all
of mathematics. If someonemakes such a statement he contradicts
himself . . . For if he perceives the axioms under consideration to
be correct, he also perceives (with the same certainty) that they
are consistent. Hence, he has a mathematical insight not derivable
from his axioms. However, one has to be careful in order to under-
stand clearly the meaning of this state of affairs. Does it mean that
no well-defined system of correct axioms can contain all of math-
ematics proper? It does, if by mathematics proper is understood
the system of all true mathematical propositions [T]; it does not,
however, if one understands by it the system of all demonstrable
mathematical propositions [K] . . . [A]s to subjective mathematics
[K], it is not precluded that there should exist a finite rule pro-
ducing all its evident axioms. However, if such a rule exists, we
with our human understanding could certainly never know it to
be such, that is, we could never know with mathematical certainty
that all propositions it produces are correct.

cases, however, analogous points could bemadeby invoking the first incompleteness theorem,
thus bypassing the derivability conditions.
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Note the similarity to Paul Benacerraf’s [1] response toLucas [18]. If suitably
idealized versions of us humans are Turing machines, then they cannot fulfil
the Socratic charge: know thyself. If the ideal human is a Turing machine,
he cannot know which Turing machine he is.
It follows that we cannot get ourselves in position to use We to generate
new mathematical knowledge, since to do that, we would have to know that
We is sound. Löb’s theorem sharpens this. Let Φ be any sentence in the
language of first-order arithmetic. LetPRe be the usual provability predicate
for the formal system corresponding toWe and let !Φ" be theGödel number
of Φ. Consider the arithmetic sentence:

PRe(!Φ")→ Φ.
The Löb result is that this sentence is in We (and thus K) only if Φ is
itself in We . That is, there is no unknowable sentence Φ such that we can
know that if Φ is inWe thenΦ is true. In other words, there is no non-trivial
hypothetical knowledge about the contents ofWe . By hypothesis, a sentence
Φ is knowable if and only if it is inWe . For a particular sentence Φ, we can
know that

Φ is knowable if and only if it is inWe

only if Φ is knowable.4

As indicated by the care in Gödel’s reasoning, the mechanist has some
room to maneuver. The postulated set K consists of the knowable sentences
in the language of first-order arithmetic. Recall that both the mechanist and
the opponent assume that our subjects are following procedures that deliver
only sentences that can be proved and thus known with absolute mathe-
matical certainty. Suppose that K = We and the derivability conditions
hold. All that follows from the fancy Gödel (and Lucas-Penrose) arguments
is that neither our idealized subjects nor we mortal humans can know (de
re) that We is sound or even consistent with that same absolute mathemat-
ical certainty. There is nothing (so far) preventing us from concluding the
soundness ofWe on less than absolutely certain evidence. The mechanist is
free to argue for his thesis on empirical grounds or even on some sort of a
priori metaphysical grounds short of mathematical proof.
In the quoted passage from the Gibbs lecture [11, p. 309], Gödel points
out that someone contradicts himself if he puts forward “a certain well-
defined system of axioms and rules” and claims to “perceive (with math-
ematical certitude)” that the axioms and rules are correct and they con-
tain all of mathematics. The parenthetical qualification is crucial. Gödel
leaves it open that a fixed formal system can reproduce “the system of all
demonstrable mathematical propositions” (i.e., K), but no one can claim to

4This conclusion is in the neighborhood of Michael Detlefsen’s contribution to the con-
ference on languages, minds, and machines mentioned in the acknowledgments.
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knowwith mathematical certitude that the axioms and rules in question are
correct. In a footnote (11), he states that a mechanist can consistently put
forward a formal system as a candidate for K and claim “I believe I shall
be able to perceive one after the other of the theorems to be true”. Gödel
goes on to argue that the soundness of the system can “at most be known
with empirical certainty, on the basis of a sufficient number of instances or
by other inductive inferences”. He elaborates the possibility in a pair of
footnotes (12, 14):

. . . it is conceivable (although far outside the limits of present-day
science) that brain physiology would advance so far that it would
be knownwith empirical certainty (1) that the brain suffices for the
explanation of all mental phenomena and is amachine in the sense
of Turing; [and] (2) that such and such is the precise anatomical
structure and physiological functioning of the part of the brain
which performs mathematical thinking.
. . . the physical working of the thinking mechanism could very
well be completely understandable; the insight, however, that this
particular mechanism must always lead to correct (or only consis-
tent) results would surpass the powers of human reason.

By “the powers of human reason”, Gödel must mean something like “abso-
lutely certain, mathematical knowledge”.
Two decades later, Kreisel [14, p. 322] comes to a similar conclusion:5

. . . it has been clear since Gödel’s discovery of the incompleteness
of formal systems that we could not have mathematical evidence
for the adequacy of any formal system; but this does not refute
the possibility that some quite specific system F . . . encompasses
all possibilities of (correct) mathematical reasoning . . . In fact the
possibility is to be considered that we have some kind of nonmath-
ematical evidence for the adequacy of such an F .

We nowmove ahead twomore decades, to Lucas’s [19] reply to objections.
As above, let S be a formal system (or Turing machine) that is put forward
by a mechanist as a model of human arithmetic knowability (i.e., K). Let
GS be a Gödel-sentence for S and let ConS be the usual statement that S is
consistent. Lucas claims that under these circumstances, he can know that
GS is true. Putnam [24] points out that neither Lucas nor anyone else knows

5Kreisel expresses skepticism about evidence on these matters: “Closer inspection shows
that we have . . . very little experience of establishing such mathematical assertions as sound-
ness or consistency by inductive methods and thus we have little knowledge of the statistical
principles proper to evaluating hypothetical inductive evidence.” He suggests the “less well-
known . . . possibility of establishing the soundness of F by abstract, but nonmathematical
interpretation”, but he does not elaborate this very far. Kreisel concludes that if one enter-
tains the mechanistic thesis, “one has to consider unfamiliar principles of evidence, such as
those involved in the inductive or philosophical approaches just mentioned” ([14, p. 323]).
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thatGS is true. He only knows that if S is consistent thenGS is true. But the
machine (or formal system) “knows” this conditional proposition as well,
since

ConS → GS
is a theorem of S (as seen by the proof of the second incompleteness theo-
rem). Lucas can claim to know GS outright only if he can claim to know
ConS . But how does he establish this last premise?
Lucas’s response is to shift the burden of proof. It is up to the mechanist
who proposes S to show that S is consistent. If S is not consistent, then
we need not take the mechanist seriously. If the mechanist can establish the
consistency of his proposed model, then Lucas has the premise he needs to
conclude GS :

Putnam’s objection fails on account of the dialectical nature of
the Gödelian argument. The mind does not go round uttering
theorems in the hope of tripping up any machines that may be
around. Rather, there is a claim being seriously maintained by
the mechanist that the mind can be represented by some machine.
Before wasting time on the mechanist’s claim, it is reasonable to
ask . . . some questions about [the] machine to see whether [the]
seriously maintained claim has serious backing. It is reasonable to
ask . . . whether [the] machine is consistent. Unless it is consistent,
the claim will not get off the ground. If it is warranted to be
consistent, then that gives the mind the premiss it needs. The
consistency of the machine is established not by the mathematical
ability of the mind, but on the word of the mechanist. (Lucas [19,
p. 117])

The Gödel-Kreisel analysis reveals the error in the last sentence. The hy-
pothetical mechanist’s claim is that the system S represents all and only the
arithmetic sentences that the mind can prove—the sentences that an ide-
alized Lucas (say) can know with mathematical certainty. Lucas asks the
mechanist if S is consistent. The mechanist replies “Yes, I think so. I would
not have put S forward if I did not believe it to be consistent.” This “word of
the mechanist” does not give Lucas a premise he can use (in a modus ponens
on ConS → GS) simply because this “word” does not amount to mathemat-
ical certainty. An idealized mathematician cannot invoke someone’s word
to justify a line in a derivation.
Lucas can surely demand that the mechanist convince us that S is con-
sistent. Otherwise, her serious claim about S deserves little credence. If
the mechanist manages to prove that S is consistent (ConS), with all the
rigor of mathematics, then Lucas wins the round. He just points out that
ConS is now known (by the mechanist and thus by Lucas) with mathemat-
ical certainty even though ConS is not a theorem of S. In this scenario,
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the mechanist herself goes beyond S when she establishes ConS . However,
with Gödel and Kreisel, all we can conclude is that it is too much to ask
that the mechanist establish her claim with mathematical certainty. It is still
open for the mechanist to provide compelling non-mathematical arguments
in support of the claim that S works, and thus that S is consistent.
Lucas summarizes that the “mechanist has claimed that his machine is
consistent. If so, it cannot prove its Gödelian sentence, which the mind can
none the less see to be true.” There is a crucial ambiguity in the locution
“see to be true”. If it means “prove”, then (for all we know so far) the mind
can do no such thing. If “sees to be true” means something weaker, like “has
excellent reason to believe”, then there is no reason to expectGS or ConS to
be in K and thus be knowable with mathematical certainty—unassailable as
Penrose puts it.
Penrose [22, p. 76] comes to a measured conclusion: “Human mathe-
maticians are not using a knowably sound algorithm in order to ascertain
mathematical truth.” He concedes that the existence of an algorithm that
enumerates K is a bare “logical possibility”. However, he later [22, §§3.16,
3.23] presents an ingenious new argument aimed at showing that our ide-
alized mathematician cannot consistently believe (on any grounds) that a
given algorithm enumerates the provable arithmetic (or even Π1) sentences.
If correct, the new argument refutes the very possibility that K is recursively
enumerable. To put the argument in present terms, let K′ be the set of arith-
metic sentences that idealized humans (unassailably) know to follow from
the hypothesis that K = We . That is, Φ is in K′ if and only if the idealized
human (unassailably) knows that if K = We then Φ is true.6 Our idealized
human can then reason as follows:

Assume thatK =We . Then everymember ofK′ is true and thusK′

is consistent. Under the assumption K = We , K′ is presumably
recursively enumerable and I (the idealized subject) can write a
Gödel sentence G′ for K′ (by using e). So under the assumption
K = We , if K′ is consistent, then G′ is true but not in K′. But
we just saw that under the assumption, K′ is consistent. So under
the assumption, G′ is true and not in K′. This is a contradiction.
Thus, K ̸=We .

In short, Penrose applies the Gödel-Kreisel-Lucas construction to the set
of arithmetic sentences that the idealized human can determine from the
assumption that K = We . Nifty. There is not sufficient space here to go
into this argument in detail. Notice, however, that the envisioned set K only
contains (Gödel numbers of) arithmetic sentences and the original argument
concerned the idealized subjects mathematical knowledge about the natural
numbers—what he can prove within mathematics. In the new argument, the
6A referee pointed out that if in fact K ̸= We then for every Φ, the sentence “if K = We

then Φ” is true. If the idealized human knows that K ̸=We then K′ contains every sentence.
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idealized subject bandies about assumptions concerning what he can and
cannot unassailably know. Thus, to make the new argument rigorous, we
need a term like “K” to be in the language of the ideal knower, with sentences
containing K and the like subject to logical and mathematical analysis. But
a straightforward diagonal argument shows that knowability is not definable
(see Chalmers [4] and §6 below). Moreover, in order to state the soundness
assumption (that every member of K and K′ is true), our subjects require a
comprehensive truthpredicate. Third, to construct theGödel sentence forK′,
our subject needs a Turing machine which determines how he unassailably
reasons from non-mathematical assumptions (like K =We). Why think the
ideal subject can get this from the assumption that K =We?
Penrose [23, §3] suggests that we can avoid the problems with defining
truth and knowability if we start the argument with the assumption that the
knowable Π1-sentences are enumerated by a given Turing machine. Then
we only need a notion of Π1-truth, which is definable in arithmetic. The
analogue of K′ would be the set of Π1-sentences that the subject knows to
follow from the assumption that the knowableΠ1-sentences are enumerated
by the given Turing machine. But our subject now has nomeans to construct
a Gödel sentence for the new K′ from the given Turing machine. How do
we go from a Turing machine that enumerates Π1-sentences to one that
enumerates Π1 consequences of a non-Π1 assumption? We need a Turing
machine for what Penrose calls “Gödelian reasoning”, and the restricted
hypothesis does not give us one. Also, why does the ideal subject hold that
the Π1 consequences of the non-Π1 assumption are all true (even given the
assumption)? The only reason I can think of is that the subject believes
that all of his beliefs are true. But this is general soundness which invokes
a general notion of truth. Without something like a general soundness
assumption our subject has no reason to think that the non-Π1 assumption
is consistent with what he (thinks he) unassailably knows.
Penrose [23, §3.13] agrees that once we start dealing with what can and
cannot be known or believed “it is important to put some restriction on the
type of sentence to which the belief system is applied”. The problem is that
once such a restriction is put in place, the ideal subject must go beyond the
restriction to carry out the new argument.

§4. Running up the ordinals. Does it help? No, not really. In developing
techniques for iterating the Gödel construction into the transfinite, logicians
have come up with some interesting results. For present purposes, how-
ever, neither the mechanist nor his opponent get much aid or comfort—but
perhaps some of the issues and presuppositions are further illuminated.
Feferman [9] makes an important definition:

By a reflection principle we understand a description of a proce-
dure for adding to any set of axioms A certain new axioms whose
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validity follow from the validity of the axioms A and which for-
mally express, within the language of A, evident consequences of
the assumption that all of the theorems of A are valid.

In arithmetic, Feferman’s technical notion of “valid” comes to “true”. A
reflection principle produces new axioms for a theory A, which a theorist
should accept if she already holds that every theoremofA is true. Non-trivial
reflection principles give rise to the indefinite extensibility of arithmetic truth.
The reflection principle in Turing’s original [30] is the Gödel sentence GA
or, equivalently, the formal consistency ConA. As we have seen, over and
over, if someone holds (for whatever reason) that every theorem of A is
true, then she should also hold GA or ConA. Feferman [9] considers other
reflection principles, the most powerful of which is a reflection !-rule of
sorts. Let A∗ consist of the axioms of A together with every instance of

∀x PrA(!Φ(x)")→ ∀x Φ(x),

where PrA(!Φ(x)") is a formula stating that the result of substituting the
appropriate numeral for x in Φ(x) is provable in A.
These reflection principles can only be applied to theories A whose proof-
predicate is defined in the language of A. If the theorems of A are not
arithmetic, then there may be no sentence expressing the consistency of A,
let alone Feferman’s richer reflection principle.
The program is to repeatedly iterate a reflection principle P through re-
cursive ordinals. Let A be a base theory, such as standard Peano arithmetic.
As a first approximation, let A(0) be A and, for each ordinal α, if A(α) is
defined, then letA(α+1) be the theory consisting of A(α) together with the
result of applying P to A(α). In Turing’s case, where P is the consistency
statement,A(α+1) is A(α) together with ConA(α). In Feferman’s strongest
case, A(α + 1) is A(α)∗. If # is a limit ordinal and A(α) is defined for every
α < #, then the theorems of A(#) are the union of the theorems of A(α) for
every α < #.
For the just mentioned reflection principles, ifA(α) is recursively enumer-
able, then so isA(α+1). If # is a recursive limit ordinal and if themembers of
{A(α) | α < # } are uniformly recursively enumerable, then A(#) is itself re-
cursively enumerable. Thus, theories “reflected” through recursive ordinals
might make an interesting case study for mechanism. Can we consider the
(non-recursive) theory consisting of the union of all A(α) for all recursive
ordinals α?
Not yet. The theoryA(α), as presented so far, is not well-defined since the
reflection principles are not extensional. If B is a theory, then the sentence
ConB and the theory B∗ depend not just on the theorems of B , but on how
B is given. For example, there are theories B and C that have the same
theorems, but where ConB is not equivalent to ConC (see Feferman [8]).
The intensionality comes up again at limit ordinals. To apply the reflection
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principle at stage # + 1, we need not just the theorems of A(#) but also a
description of those theorems, and this depends on a description of #. If
we have two different descriptions of #, we can end up with two different
theories A(#+ 1).
The intensionality here serves as a reminder that neither actual nor ideal
humansdealwith theories as such, but onlywith theories under a description.
Consequently, the mechanist must follow suit and deal with theories under
a description.
Feferman invokes a common notation for recursive ordinals, which we
adopt here. Ordinals are “denoted” by natural numbers. The number 1
denotes the ordinal 0. If n denotes an ordinalα, then 2n denotes its successor
α+1. If e is theGödel number of a Turingmachine that enumerates numbers
denoting an increasing sequence of ordinals, then 3 · 5e denotes the limit of
that sequence. Let O be the set of natural numbers that denote ordinals
on this notation, and if m ∈ O then let |m| be the ordinal denoted by m.
The setO is not recursively enumerable—not by a long shot (see Rogers [25,
pp. 205–210]).
Let P be a reflection principle. LetR(1) be a standard enumeration of the
theorems of A. If n ∈ O, then let R(2n) be an enumeration of the result of
applying the reflection principle to R(n) (under that description). If e is the
Gödel number of a Turing machine that enumerates numbers denoting an
increasing sequenceS of ordinals, then letR(3·5e) be a uniform enumeration
of the union of the sets R(s) for s ∈ S.
The idea is that for each n ∈ O, R(n) is the theoryA(|n|)—under that de-
scription. The notation makes the intensionality explicit, since the theorems
of R(n) depend not just on |n| but also on n. For the reflection principles
under study here, we can take R to be a total recursive function on the nat-
ural numbers. If n ∈ O and the base theory A consists only of truths, then
R(n) also contains only truths.
In these terms, Turing’s [30] planwas to overcome incompleteness by using
theories like R(n), with n ranging over O. He showed that for the simple
reflection principle ConA, if Φ is a true Π1-sentence, then there is an n ∈ O
(which can be found effectively from Φ) such that |n| = ! + 1 and Φ is
among the theorems ofR(n). This astounding result is that there is a way to
iterate the Gödel construction on theories, beginning with A, so that when
we collect together the finite iterations and take one more Gödel sentence,
Φ is decided.7 There is thus a certain completeness for Π1-sentences.
Feferman extended this result. With his stronger reflection principle A*,
he showed that for any true sentence Φ in the language of arithmetic, there
is a number n ∈ O such that Φ is among the theorems of R(n). That is,

7Turing [30] did not use the present notions, but his theorem is equivalent to the one stated
here. See Feferman [10, §7] for readable sketches of Turing’s results.
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for any sentence Φ, there is a way to iterate the reflection principle (up to a
small transfinite level) and decide Φ.
Turing [30, §9] was aware that his completeness result does not provide
the wherewithal to decide the truth of any new arithmetic sentences: “This
completeness theorem . . . is of no value. Although it shows, for instance,
that it is possible to prove Fermat’s last theorem [with R(n)] (if it is true)
yet the truth of the theorem would really be assumed by taking a certain”
number as a member of O. Suppose that a mathematician wants to decide
the truth value of the Goldbach conjecture. He calculates a number n
and starts enumerating the theorems of R(n), looking for the Goldbach
conjecture among the output. So far so good, since all this is effective. The
mathematician knows that if the Goldbach conjecture is true, then n ∈ O
and so every sentence in R(n) is true. However, an examination of Turing’s
proof shows that if the Goldbach conjecture is false, then n is not inO, and,
even worse,R(n) is inconsistent. Thus, the results of the enumeration can be
believed only if theGoldbach conjecture is true. This is of no helpwhatsoever
in trying to determine the truth value of the Goldbach conjecture.
The same goes for the Feferman result. For each sentence Φ we get a
formal system F that is sound if Φ is true, and if Φ is true, F proves it.
Nothing to celebrate here. We can get that much just by adding Φ as a new
axiom to the base theory A. Feferman [9, p. 262] concludes that “questions
of completeness of sequences derived from progressions hinge . . . on more
subtle questions on how paths through O are obtained”. He elaborates:

Whenever [a mathematician] is given the information d ∈ O he
will be able to compute [R(d )] and prove theorems from [R(d )];
moreover, if he accepts the information that d ∈ O he should find
all these theorems acceptable. Unfortunately, . . . as he advances
farther and farther out into the collection of systems [R(d )], he
may not be able to gain the knowledge necessary to decide, of any
given d0, whether or not d0 ∈ O. In other words, in order to
proceed, he may have to appeal to an ‘oracle’. (p. 279)

The key to wielding these results is the ability to decide membership in O,
or to find effective notations for recursive ordinals generally.
In these terms, the Lucas-Penrose contest to write and assert Gödel sen-
tences becomes a contest to enumerate recursive ordinals. One might think
that all Lucas has to do is iterate the procedure of adding Gödel sentences
(or the Feferman reflection principle) far enough. The problem, however, is
with the crucial notion of “far enough”. At some point, we are no longer
sure we are on the right road.
No machine can iterate the procedure through all and only the recursive
ordinals. Can Lucas? In [19, p. 110], he envisions the shift from the Gödel
sentences to the construction of ordinals (although he does not explicitly
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restrict the discussion to recursive ordinals). He imagines a mechanist de-
signing machine after machine in an effort to confound the Gödelizing.
Lucas keeps winning and the mechanist keeps designing new machines:

Every now and again the mechanist loses patience, and incorpo-
rates in his machine a[n] . . . operator designed to produce in one
fell swoop all the Gödelian sentences the mentalist is trumping
him with: this is in effect to produce a new limit ordinal. But such
ordinals, although they have no predecessors, have successors just
like any other ordinal, and the mind can out-Gödel them by pro-
ducing the Gödelian sentence of the new version of the machine,
and seeing it to be true, which the machine cannot.

Douglas Hofstadter [13, p. 475] questioned Lucas’s confidence, citing the
Church-Kleene theorem “that we cannot program a machine to produce
names for all the ordinal numbers”, as Lucas put it. Of course, there is no
machine that produces names for “all the ordinals”, because the collection
of ordinals is a proper class, but this is not relevant here. The Church-
Kleene theorem is that there is no recursive enumeration of every recursive
ordinal (in a way that allows us to determine the order type of each). The
non-recursiveness of O is a corollary.
There are different anti-mechanist claims that might be made at this point.
The strong one is that a human can enumerate the members of O (or some
other effective notation for all recursive ordinals). This is a reasonably
sharp thesis, assuming we canmake sense of the idealizations (see §2 above).
Presently, we will examine just how plausible the view is. A weaker anti-
mechanist claim is that if an idealized human is given a machine M that
produces names of recursive ordinals (e.g., members ofO), she can produce
a name of an ordinal not produced by M . In the latter case, the human
can carry the reflection principles further thanM , and so this human is not
identical toM in any interesting sense. However, given the parameter ‘M ’,
the thesis is pretty vague, perhaps obscure.
Lucas argues that Hofstadter begs the question in the assumption that
“since there is no mechanical way of naming all the ordinals, the mind
cannot do it either”. Lucas says that “this is precisely the point at issue”. If
this is the point at issue, then Lucas makes the strong claim that the mind
can enumerate all of the recursive ordinals (i.e., the members of O)—if not
all of the ordinals.
Clearly, the presumed ability to enumerateO goes well beyond any Turing
machine. So if Lucas could give some reason to think humans have this
ability, he wins—hands down. So far as I can tell, however, the limitative
theorems do not give a reason to think any suitably idealized human has the
ability to enumerate O, and so the limitative theorems do not support this
strong anti-mechanist scenario.
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Moreover, the view is extremely bold. The Feferman result entails that if a
human can iterate the members ofO (or if she can decide membership inO)
then she has the wherewithal to determine the truth value of every arithmetic
sentence. All she has to do is systematically generate the outputs of R(n),
for each n ∈ O, using the Feferman reflection principle. For any arithmetic
sentence Φ, either Φ or ¬Φ will eventually turn up, and the other one never
will. Thus, if a being could enumerate O, then it could infallibly determine
the truth value of any arithmetic sentence. When it comes to arithmetic truth,
we would be not only infallible, but omniscient. A wonderful thought.
Lucas cites the authority of Gödel (see, Wang [32, pp. 324–326]) as “re-
jecting mechanism on account of our ability to think up fresh definitions
for transfinite ordinals”. Although Gödel’s concerns here were with large
cardinals and not with countable recursive ordinals, he did demur from
mechanism. Recall his conclusion that the limitative theorems show that ei-
thermind is not a machine or there are “absolutely undecidable” arithmetic
propositions (see §3 above). He demurred from the second disjunct and
leaned toward the first. Gödel held that humans are not machines and we
are arithmetically omniscient. We saw that Penrose also adopted this poten-
tial omniscience, which Gödel called “rationalistic optimism”. Lucas is free
to state that humans can enumerateO and thus join them in this rationalistic
optimism. However, as Gödel pointed out, the limitative theorems do not
support this conclusion.
To defeat the mechanist, perhaps Lucas does not need the strong claim
that some human can enumerateO. It is enough if for any given machineM
put forward by a mechanist, Lucas can “out-enumerate” that machine—if
he could enumerate more members of O thanM can. We must be careful.
It is not at all clear just what this weak anti-mechanistic claim is. Suppose
that Lucas claims that for any Turing machine M that enumerates only
members of O, there is an idealized human h such that h can enumerate
more members ofO thanM . This claim has the ∀M ∃h form, allowing that
different TuringmachinesM may get trumped by different idealized humans
h. The claim does not undermine mechanism at all. For any Turing machine
M that enumerates onlymembers ofO, there is anotherTuring machine that
enumerates the same numbers thatM does, plus a few more members of O.
This is an analogous ∀M ∃M ′ theorem.
Perhaps Lucas means that there is a single idealized human who can out-
enumerate any machine that enumerates only members of O. This ∃h ∀M
claim amounts to the strong thesis that the human can enumerate all of O.
Indeed, for any n ∈ O, there is a Turing machine that enumerates n (and
nothing else, say). So our postulated ideal human h must also be capable of
knowing that n ∈ O.
Perhaps the weak anti-mechanist claim is that there is a single idealized
humanL such that for any givenmachineM that a mechanist seriously puts
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forward as a candidate for human recursive-ordinal-generation competence,
L can generate a member ofO not generated byM . The claimmight be that
humans can use an ordinal-generating procedure that cannot be executed
by any machine. Lucas [19, p. 113] suggests something like this, when he
accuses Hofstadter of misconstruing the nature of the contest:

All the difficulties are on the side of the mechanist trying to devise
a machine that cannot be out-Gödelized. It is the mechanist who
resorts to limit ordinals, and whomay have problems devising new
notations for them. The mind only needs to go on to the next one,
which is always an easy, unproblematic step, and out-Gödelize
whatever is the mechanist’s latest offering.

Suppose that the mechanist produces a number e which is the code of a
Turingmachine that enumeratesmembers ofO (with the denoted ordinals in
increasing order). ThenLucas calculates 3·5e , whichdenotes the next ordinal
greater than any enumerated by M . But there is nothing non-mechanical
going in this calculation, just as there is nothing non-mechanical involved in
writing out a Gödel sentence. Lucas is also correct that the “next” ordinal
is always an easy, unproblematic step. To go from |n| to |n| + 1, we just
calculate 2n. The calculations are grade school drills (involving very large
natural numbers).
So what exactly is this ability that Lucas claims on behalf of ideal humans?
We are back where we were before we got fancy with ordinals. For any given
machine M , Lucas cannot take the “easy, unproblematic step” (to achieve
knowledge of a newmember ofO) unless he already knows thatM produces
only members of O. How does Lucas get this prior knowledge? As before,
he shifts the burden to the mechanist. If she proves that M produces only
members of O, then she has already managed to go beyond M . However,
if the mechanist only claims some sort of non-mathematical evidence on
behalf ofM , the Gödel-Turing-Feferman results do not apply. Lucas only
knows that if e is the Gödel number of a Turing machine that enumerates
an increasing sequence of recursive ordinals, then 3 · 5e denotes an ordinal
greater than any enumerated by that machine, and Lucas knows that if n
is a member of O, then 2n denotes a greater ordinal. But these conditional
statements are theorems of the base theory A, and so are “available” to all
of the Turing machines.
How does Lucas get beyond the conditionals, to their consequents? He
claims some sort of insight, not available to any of the mechanist’s Turing
machines. He writes that in the ordinal-writing duel with the mechanist,
“every now and again some new, creative step is called for, when we consider
all the ordinal numbers hitherto named” ([19, p. 111]). Lucas is correct
that to defeat mechanism, it must be a creative step and not the application
of an algorithm—not the mere construction of a Gödel sentence or the
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calculation of a new member of O. What is this creative step, and how do
the incompleteness theorems indicate that we have it?
Lucas cites Turing as an ally in the weakened anti-mechanistic claim. In
[30, §11], Turing defines the “activity of intuition” as the “making of sponta-
neous judgments which are not the result of conscious trains of reasoning”.
Turing suggests that “in pre-Gödel times” it was hoped that formalization
could be developed “to such a point that all the intuitive judgements of
mathematics could be replaced by a finite number of . . . rules. The necessity
for intuition would then be entirely eliminated”. This is undoubtedly a refer-
ence to the Hilbert program, which was all but killed by the incompleteness
results (Detlefsen [5] notwithstanding). Turing suggests that at this point,

. . . we naturally turn to ‘non-constructive’ systems of logic [in]
which not all the steps in a proof are mechanical, some being
intuitive. An example of a non-constructive logic is afforded by
any ordinal logic. When we have an ordinal logic, we are in a
position to prove number-theoretic theorems by the intuitive steps
of recognizing formulae as ordinal formulae . . .

In present terms, Turing’s “ordinal logics” are like our systems R(n), and
the recognition of a formula as an ordinal formula is equivalent to the
recognition of a natural number as a member of O.
Lucas concludes that Turing, “like Gödel, allows that the mind’s ability to
recognize new ordinals outruns the ability of any formal algorithm to do so”.
The key word here, I think, is “recognize”. Lucas is not just attributing to
his idealized self the ability to write out Gödel sentences or to print natural
numbers, nor a mere ability to assert the conditional sentences. It is an
epistemic ability that supposedly defeats the mechanist. The “creative step”
is the presumed ability to see that every member of a given sequence of
numbers is a member of O (or denotes a recursive ordinal), or the ability to
see that every theorem of a given formal theory is true. Similarly, Penrose
speaks often of the human ability to “understand”, which any algorithmic
device lacks.
Lucas’s proposal seems to be a variant of the Gödel-Kreisel suggestion
that humans, unlike machines, can traffic in abstract concepts. Here, the
thesis is that humans are capable of epistemic states like “recognition” or
“intuition”. Unlike Lucas and Penrose, however, Gödel and Kreisel were
aware that even if they are right about the non-mechanical nature of the
human mind, there is still a burden to show that humans can out-perform
any machine.
Again, the incompleteness theorems concern formal systems, algorithms,
and Turing machines. To “apply” these theorems we need a sharp thesis.
In this case, it is no longer clear what mechanistic thesis Lucas is refuting.
What does it mean to say that an algorithm, a formal system, or a Turing
machine “sees that” a number is a member of O, beyond printing out the
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relevant formula? In the indicated footnote to [30, §11], Turingwrote that the
requirements on intuition are “very vague”. We need some precise content to
the supposed mechanistic theses before Lucas can wield the Gödel theorem
against them.
For these reasons, I question Lucas’s exegetical claim that Turing, “like
Gödel, allows that the mind’s ability to recognize new ordinals outruns the
ability of any formal algorithm to do so”. In the much reprinted “Com-
puting machinery and intelligence” [31], Turing rejected as meaningless the
question of whether machines can think. Presumably, he would also reject as
meaningless the question of whether machines are capable of “recognizing”
things or of having “understanding” or “intuition”—let alone the question
of whether our intuition outruns theirs.8 He proposed the Turing test, or the
imitation game, as a scientifically sound substitute for these philosophical
questions.
Suppose that we grant human intuition, or the ability to deal with abstract
concepts. Does this give humans an edge in the Turing test? None of the
present authors provide an argument that it does, and I do not see the rel-
evance of the limitative theorems. The Turing test is to be played with real
humans, not idealized specimens who never make mistakes. Moreover, the
limitative theorems would be useful in the Turing game only if the human
players are given the program for the machine. But in that case, the hu-
man’s presumed victory would not refute anything in the neighborhood of
mechanism.

§5. Idealizations revisited. Recall the “normative idealization” that the
subjects proceed by absolutely certain methods, and they produce all and
only the mathematically provable arithmetic sentences. Their productions
are unassailable. These idealizations allow for the application of the limita-
tive theorems since, in effect, we make the productions of our subjects much
like a deductive system.
The normative idealization is consonant with a longstanding epistemology
for mathematics. The idea is that for mathematics at least, real humans are
capable of proceeding, and should proceed, by applying infallible methods.
In practice (or performance) we invariably fall short of this, due to slips of
the pen or faulty memory, but in some sense we are capable of error-free
mathematics. We start with self-evident axioms and proceed by gap free
deduction. Call this the Euclidean model of mathematics.
In the Gibbs lecture, Gödel [11, p. 305] comes close to endorsing the
Euclidean model:

8Turing did predict that language usewould evolve to the point wherewe speak ofmachines
as “thinking” and, presumably, having intuitions. At that point, there might be a legitimate
(empirical?) question of how machine intuition stacks up against human intuition.
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[The incompleteability of mathematics] is encountered in its sim-
plest form when the axiomatic method is applied, not to some
hypothetico-deductive system such as geometry (where the math-
ematician can assert only the conditional truth of the theorems),
but to mathematics proper, that is, to the body of those math-
ematical propositions which hold in an absolute sense, without
any further hypothesis . . . [T]he task of axiomatizing mathemat-
ics proper differs from the usual conception of axiomatics insofar
as the axioms are not arbitrary, but must be correct mathematical
propositions, and moreover, evident without proof.

Penrose [22, Chapter 3] also seems tobe in the neighborhoodof theEuclidean
model, with his central notion of “unassailable knowledge”. He admits that
even ideal subjects may be subject to error, but he insists that all errors
are “correctable”. Penrose sets up a plan to eliminate errors by having
the subjects check each other and he provides a detailed argument that
there are only finitely many sentences that need to be certified as genuinely
unassailable. In a sense, Penrose maintains the Euclidean model statistically.
The treatment in the previous sections presupposes the Euclidean model,
in that we assumed that there is such a thing as the set K of arithmetic
sentences that are knowable with mathematical certainty. We sawGödel and
Kreisel resolve the dilemma by invoking “empirical” or “inductive” methods
short of proof (although Kreisel reminds us that we do not have a developed
epistemology for those).
Although the traditional Euclidean model has advocates today (e.g., Ten-
nant [28], [29]), it is under serious challenge. The most popular contender
(at least in North America) comes from the Quinean thesis that our beliefs
are a seamless web answerable only to sensory input. The very idea of infal-
lible methods goes the way of analytic truth and apriori knowledge. There
is no difference in principle between a mathematical proof, an entrenched
scientific thesis, and a hypothetico-deductive inference. Everything is up for
revision. In principle, nothing is unassailable-in-principle.
So perhaps we need to rethink the normative idealization, so as to not tie
the Lucas-Penrose argument to a contentious epistemology. Lucas himself
[19, p. 120] says that to “claim to know something is not to claim infallibility,
but only to have adequate backing for what is asserted”. If this comment
applies to both the output of the mechanist’s proposed system and its Gödel
sentence, then Lucas himself rejects the Euclidean model.
If we give up the normative idealization, then we do not have the above
set K of sentences knowable with certainty. What do we focus on instead?
What is themechanistic thesis now? Lucas’s opponent puts forward a formal
system or Turing machine and claims something about the set of sentences it
produces. Lucas then calculates a Gödel sentence for the system and makes
a knowledge-claim that is supposed to refute his opponent. Whether Lucas
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is correct depends on what his imagined interlocutor claims on behalf of his
system.
Define K1 to be the set of arithmetic sentences for which we can “have ad-
equate backing”, to use Lucas’s phrase. Perhaps the interlocutor claims that
his Turing machine enumerates K1 and Lucas proposes his Gödel sentence
as a counterexample. Lucas argues that the mechanist must have adequate
backing for the statement that his machine is consistent, and this same back-
ing supports the Gödel sentence, even though the Gödel sentence is not
produced by the Turing machine in question.
Careful. The mechanist is refuted only if (Lucas knows that) the target
set enumerated by his Turing machine is consistent. Do we have adequate
backing for the claim that K1 is consistent? Surely, we can have adequate
backing for each member of a large, inconsistent set of sentences. Consider
a lottery with 10,000 tickets. For each ticket t, we have adequate backing for
the statement that t is not the winning ticket, even though the set of all such
sentences is inconsistent with the rules of the lottery. The notion of “having
adequate backing” is not monotonic.
Gödel [11, p. 309] stated that if we know that every theorem of a formal
system S is true, then we know with the same certainty that S is consistent.
The statement that S is consistent enjoys at least the level of certainty as the
single statement that every theorem of S is true. However, for each axiomΦ
of S, we can have good reason to think that Φ is true without having good
reason to think that S is consistent. So perhaps we are dealing here with a
fancy version of the lottery paradox or the preface paradox.
Surely, we do not have adequate backing for any explicit contradiction,
once we realize that it is a contradiction. Thus, the set K1 might not be
closed under deduction. We can have adequate backing for each of a large
set of sentences without having adequate backing for every consequence of
this set. Admittedly, the situation is paradoxical. Can there be sentences Φ
and Ψ such that both Φ and Φ → Ψ are in K1—we have adequate backing
for both—and yetΨ is not in K1? All that follows from this consideration is
that the notion of “having adequate backing” is vague, and we have a version
of the sorites paradox on hand. Unless the setK1 is precise, we cannot apply
the incompleteness theorem to it.
To apply the limitative theorems in the most straightforward manner, we
need an epistemological notion that is sharp and closed under deductive
consequence, and which the mechanist can plausibly attribute to idealized
subjects as the goal of mathematical activity. Even if “knowable with abso-
lute certainty” is too strict a notion, “having adequate backing” is too weak
and too vague. Is there something in between?
To make a stab at it, let us define a set Γ of sentences to be stably-
backed in a given state of information if for each member Φ of Γ, Φ enjoys
adequate backing in that state of information and Φ remains adequately
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backed no matter how many logical consequences of Γ are added to the
state of information. That is, Γ is stably-backed if no member of Γ loses its
backing as deductions are made onmembers of Γ. It follows that Γ is stably-
backed only if Γ is consistent. Define Γ to be maximally-stably-backed if Γ
is stably-backed and if there is no proper superset of Γ that is stably-backed.
That is, if Γ is maximally-stably-backed then no sentence outside of Γ can
get adequately backed without giving up some member of Γ. This notion is
a Peircean limit, of sorts.
Suppose that someone comes up with a Turingmachine and claims to have
adequate backing for the statement that the set S of sentences produced by
this machine is maximally-stably-backed. Assuming that S contains some
arithmetic, Lucas wins the round. If someone has adequate reason to think
that S is stably-backed then she has adequate backing for ConS and if S is
consistent then it does not contain ConS . So we either give up somemember
of S or give up the statement that S is maximally-stably-backed.
The analogy with K is complete. For any number e, we cannot have stable
backing for the statement thatWe is maximally-stably-backed (assuming the
derivability conditions hold forWe). That is, once we conclude thatWe is
stably-backed, we cannot hold that We is maximally-stably-backed. This
should not be surprising, since being maximally-stably-backed seems pretty
close to the traditional “proved”.
This conclusion does not threaten mechanism. How is the mechanist
committed to the existence of a maximally-stably-backed set of arithmetic
sentences? Even if there is such a set, why is the mechanist committed to
the idea that humans are capable of producing such a set and that it is stable
under Gödelian reflection? Why should the mechanist believe that if we
idealize on things like limitations on life span and memory, we end up with
procedures which enumerate a maximally-stable-backed set of arithmetic
sentences? Again, we have to be clear about what the game is before we can
decide whether Lucas can outplay any given machine.

§6. Whither (anti-)mechanism? Under the Euclidean assumption, it was
natural to saddle the mechanist with the view that K is recursively enumer-
able. According to mechanism, if we idealize on ordinary theorem-proving
activity, ignoring attention-span and simple errors, we end up with some-
thing like a Turing machine—and Lucas and Penrose are off and running.
However, once we leave the Euclidean model, even the ideal agents change
their minds from time to time and so the model of a Turing machine printing
out truth after truth is not appropriate.
Let us try a different epistemic principle. Suppose that whenever a human
asserts a contradiction, or some other arithmetic falsehood, she has the
ability in principle to realize the error and withdraw it. This assumption is a
minimal retreat from the Euclidean model (and nowhere near the Quinean
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seamless web). Call it the semi-Euclidean assumption. Lakatos’s ([16], [17])
falsificationist picture of mathematical knowledge might be semi-Euclidean.
Although Penrose is closer to the traditional, rationalist framework, he
acknowledges errors on the part of ideal human mathematicians, but adds
that the errors are correctable in principle. If we put aside his procedure for
obtaining unassailable knowledge, we have the semi-Euclidean model.
LetM be a Turing machine with two tapes: an output tape and a scratch
tape. It can write and erase on both tapes. Say thatM projects the number
n if there is a number t such that after t steps, M prints the numeral for n
on its output tape andM does not erase that numeral afterwards. Let Xe be
the set of numbers projected by the Turing machine with Gödel number e.
A set is Turing projectable if there is a Turing machine that projects it. A set
is Turing projectable if and only if it is recursively enumerable relative to the
halting problem (i.e., Σ2, see McCarthy and Shapiro [20]).
If the semi-Euclidean assumption is correct, then Turing projectability
would be a better framework than recursive enumerability for modeling
human mathematical knowability. Let M be a Turing machine. When
M prints a numeral on its output tape, pretend that it has asserted the
sentence with that Gödel number, and think of the erasure of a numeral
from the output tape as the retraction of the corresponding sentence. So
a sentence is “projected” by the machine if at some point it “asserts” the
sentence and does not retract it later. So a mechanist who accepts the
semi-Euclidean assumption might claim that there is a Turing machine that
accurately depicts the arithmetic output of a suitably idealized human, an
idealized Lucas for example. The set of sentences projected by this machine
would be an analogue of the stably-backed sentences for idealized Lucas.
On the semi-Euclidean assumption, there is no assurance that the presently
asserted (i.e., printed and so far unerased) sentences are consistent. Suppose
that our Turing machine prints a numeral, or our idealized Lucas makes
an arithmetic assertion. There is no effective procedure for determining
whether the numeral will ever be erased, or whether the idealized Lucas will
ever retract the sentence. However, the semi-Euclidean assumption is that
the idealized Lucas will eventually discover any errors among his arithmetic
assertions and will make the appropriate erasures. In a sense, our ideal
subjects are eventually infallible.9

The foregoing assumptions give us a thesis sharp enough to apply the
limitative theorems, and we find ourselves in pretty much the same situation
9Suppose that we weaken the semi-Euclidean assumption a little, and only assume that

our ideal subjects will discover and retract any inconsistencies they have made. They might
leave other errors in place indefinitely. The weakened assumption still makes our idealized
subjects eventually infallible forΠ1-sentences, since any falseΠ1-sentence is inconsistent with
an elementary theorem. We can have our agent systematically assert every true Π0-sentence
and everyΠ1-sentence. When one of theΠ1-sentences is contradicted (by one of the asserted
Π0-sentences), the agent retracts it.
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aswith the original Euclideanmodel—with a twist or two. Let e be theGödel
number of aTuringmachine. Then there is an arithmetic (Σ2) sentenceΨe(x)
that corresponds to “x ∈ Xe”, or “x is projected by the Turing machine with
Gödel number e”.
Now suppose our mechanist asserts that e is the Gödel number of a Turing
machine that represents our idealized Lucas, so that Xe is the set of Gödel
numbers of the sentences that idealized Lucas will assert and never retract.
Lucas proceeds as before. He calculates a fixed point for ¬Ψe(x). That is,
he (effectively!) produces a (Π2) sentence Φ such that

Φ ≡ ¬Ψe(!Φ")

is provable in ordinary arithmetic. SoΦ is true if and only if the given Turing
machine does not project Φ.
Suppose that Φ is in Xe . Then Ψe(!Φ") is true and so Φ is false. So if
every member of Xe is true, then Φ is not in Xe and thus ¬Ψe(!Φ") is true.
Thus, if every member of Xe is true then Φ is true (but not in Xe). Lucas
understands this argument, so if he is convinced that every sentence in Xe is
true, then he asserts Φ.
Lucas can outwit any machine which he knows to project only truths. If
an idealized human comes to know (and never retract) the statement that
Xe contains only arithmetic truths, then this human also knows (with the
same certainty) that Xe does not correspond to the sentences he will assert
without retracting. He knows at least one truth that is not in Xe .
If the mechanist is correct in the claim about the Turing machine e match-
ing idealized Lucas, thenΦ is true if and only if idealized Lucas never comes
to assert Φ without later taking it back. We have that Lucas does assert
Φ. So if the mechanist is correct and if Lucas never retracts Φ, then Φ is
false. This contradicts the semi-Euclidean assumption that idealized Lucas
will eventually discover and withdraw any mathematical errors. So if the
semi-Euclidean assumption holds of Lucas, then he will retract Φ (in which
caseΦ is true). That is, idealized Lucas will come to believe that he does not
have adequate backing for the relevant fixed point Φ.
Admittedly, this looks strange, but the resolution is similar to the Gödel-
Kreisel-Benacerraf analysis. Lucas knows that if every member of Xe is
true then Φ is true. He should retract Φ if he comes to realize that he does
not have adequate backing for the claim that every member of Xe is true.
The “evidence” for the statement that every member of Xe is true consists of
(i) the semi-Euclidean assumption about idealized Lucas and (ii) the work of
themechanist supporting the claim thatXe reproduces the relevant output of
idealized Lucas. The proper conclusion is that Lucas cannot have “adequate
backing” for both of these.
We cannot rule out the existence of a Turing machine that projects all and
only the sentences that an idealized human (like Lucas) can assert without
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retracting. The mechanist might muster some empirical evidence for this.
There may also be evidence of some sort for the claim that idealized Lucas
is semi-Euclidean. But this evidence does not amount to stable-backing
needed for mathematical propositions.
We have not given our ideal agent complete license to assert something
just because he has some reason to think it is true. The semi-Euclidean
assumption carries a substantial epistemic burden, even if it falls short of
the Euclidean ideal of constant infallibility. Under the semi-Euclidean as-
sumption, if an agent asserts an arithmetic falsehood, then he can eventually
discover that it is false. We assume eventual infallibility. The only conclusion
we have is that under all of these epistemic and empirical assumptions, if Xe
does represent an ideal human’s unretracted arithmetic assertions, then that
ideal human does not have adequate backing for the statement that every
member ofXe is true, and so he does not have adequate backing for its Gödel
sentence. This is hardly an argument against mechanism.
At this point, one might argue that even the semi-Euclidean assumption is
too rigid, and we should further weaken our description of idealized human
arithmetic knowledge-gathering—perhaps in the direction of some contem-
porary holistic epistemologies, such as Quine’s seamless web. Then how
do the incompleteness theorems take hold? To initiate a reasonable debate
over mechanism, we need a property K of arithmetic sentences (or natural
numbers) such that K(!Φ") holds if and only if an idealized agent stably
holdsΦ, and we need assurance thatK(!Φ") holds only ifΦ is true. For lack
of a better term, let us say that if K(!Φ") holds, then Φ is “knowable”, or
“knowable by the agent”. Then we would need a reasonable computational
property, analogous to recursive enumerability or projectability, to foist upon
the mechanist. The mechanist would be committed to a claim that the set
of knowable sentences has this computational property. For example, one
might argue that the knowable sentences are Σ8, or that they are no more
complex than fourteen applications of the jump operator to a recursive set.
It will not do to define a fallible notion of idealized assertability (say) and
claim that a sentence is knowable just in case it is both ideally assertable and
true. There is no reason for our mechanist to hold that the property of being
both assertable and true is computationally tractable, since the intractable
notion of arithmetic truth is built in to the definition. Since arithmetic truth
is not arithmetic, why think that assertable-arithmetic-truth is in any way
tractable? To get a debate off the ground, the parties must come up with a
reasonable notion of arithmetic assertability and independently argue that
only truths are assertable.
If the principals could agree on the relevant properties and notions, then
Lucas would probably win. The incompleteness phenomenon is very gen-
eral. Presumably, the computational notion the mechanist attributes to the
extension of K would be definable in arithmetic. As above, let Ψ(x) be any
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formula with only x free and let Φ be a fixed point for Ψ(x), so that

Φ ≡ ¬Ψ(!Φ")
is provable in ordinary arithmetic. Suppose that it is knowable by the agent
that Ψ holds only of true sentences. That is, for each sentence $, it is
knowable that

Ψ(!$")→ $.
Then Φ & ¬Ψ(!Φ") follows. Moreover, the ideal agent can do the relevant
deduction. Thus,Φ is knowable by the agent and it is knowable by the agent
that !Φ" is not in the extension of Ψ. A fortiori, it is knowable that Ψ(x)
does not capture the extension of knowability. In sum, there is no formula
in the language of arithmetic which can be known to hold of all and only the
knowable sentences (see Shapiro [26, §3]).
To repeat the now familiar conclusions, the extension of knowabilitymight
be arithmetic (for all we know so far), but there is no arithmetic formula
which can be known to describe the knowable sentences. Any formula whose
extension is known to contain only truths effectively leads to a knowable
sentence that is not in the extension of the formula. In Dummett’s sense, the
notion of arithmetic knowability is indefinitely extensible. Any arithmetic
attempt to capture the notion leads outside the notion—or else fails by
calling a false sentence knowable.10 However, this is not an argument against
mechanism. The indefinite extensibility is due to the “truth” component of
“knowability” and not to the “human” component.
In another context, Kreisel [14, p. 320] proposes that “human computa-
tions are more ‘complicated’ or, better, more abstract than the objects on
which they operate—our thoughts may be more complicated than the ob-
jects thought about.” He suggests that there is “an asymmetry between the
‘simple’ concept of natural number and the ‘complicated’ concept of proof
about natural numbers . . . ” (p. 325). Kreisel suggests that the human ability
to reason with abstract objects might take us beyond any machine. Gödel
agrees. From the present perspective, however, the further we get from the
Euclidean assumption, the more the “complication” in the notion of “proof
about natural numbers” lies in the included notion of “truth about natural
numbers”. We know how complex this last notion is, and this complexity is
irrelevant to the issues of mechanism.
To sum up this long journey, we are having trouble coming up with a rea-
sonable mechanistic thesis for Lucas and Penrose to attack. For all we know

10Penrose [22, Part II] predicts that an extended and futuristic version of quantum physics
will solve the problem of consciousness and, presumably, overcome the Gödelian inade-
quacies with computational models. If this future science yields a rigorous definition of
arithmetic knowability, as Penrose envisions, the science will have to go beyond arithmetic.
If the science yields a rigorous definition of set-theoretic knowability, then it will have to go
beyond set theory.
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so far, the mechanist is free to hold that a human is a Turing machine—
whatever that is supposed to mean—or she can claim that the arithmetic
productions of a human (idealized or otherwise) are recursively enumerable.
She can even claim that she knows an index of a Turing machine that enu-
merates all and only the arithmetic sentences that a human like herself or
idealized Lucas can justifiably assert. But she cannot consistently claim this
and claim to know that the human is infallible. Well, maybe the Euclidean
is wrong and humans are fallible, even when idealized for lifetime, memory
errors, etc. The mechanist is free to come up with some sophisticated pro-
cedure whereby humans weed out errors and inconsistencies. She is free to
come up with an arithmetic description of the output of our idealized proce-
dures for arithmetic. But she cannot consistently claim that these procedures
are exhaustive of human competence and that they are infallible—that every
false sentence (or every inconsistency) will eventually be weeded out. Given
current epistemologies, it is hard to see how the mechanist is limited by these
results.
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[1] P. Benacerraf, God, the devil, and Gödel, The Monist, vol. 51 (1967), pp. 9–32.
[2] G. Boolos, Introductory note to [11], in [12], (1995), pp. 290–304.
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