
Below are some of the coolest project 7 submissions. We have broken them up into different categories based on the type of analysis performed by the creative methods. Many thanks to all of you for the effort and creativity you have put into this project.

GRAPHS OF CORRELATION COEFFICIENTS

Corrine Farley

Analyzed the college data set by calculating correlation coefficients between various metrics and creating visualizations of the correlations using grids.

Correlation Coefficient r = 0.8179428345830893

Daniel Song

The same information as above, but with the MLB data set and ASCII graphics rather than a grid.

BATTINGAVERAGE units in 0.01 vs. SINGLES, units in 10.0

221			••••						9		-9-	-		.9-		•••			
371			*								*								
361			*								Ť								
351		*																	
341																			
331											*		*	*					
321					*			*	*	÷	*	*	*						
311				*			*	*	*	*	*	*	*		*			*	
301			*	*		*	*	*	*	*	*	*	*	*					
291	半		¥	*		*	*	*	*	*	*	*	*						
281		÷	÷		*	÷	÷	*	÷	*	*	*	*	*					
271			÷	*	*	÷	*	*	*	*	*	*	*						
261	*	*	*	*	*	*	*	*	*	*									
251	宇	*	*	*	*	*	*	*	*	*									
241		÷	*	*	*	*	*		*	*									
231	*	*	*	*	*	*	*	*											
221	孝	*	*	*	*	*													
211		*	*	*	*	*													
201	*	*	*																
191	*	*		*															
181	*																		
171	*		*																
161	*	*																	
151	*																		
141																			
131	*																		
121																			
111																			
101																			
91																			
81																			
71																			
61																			
51																			
41																			
31																			
21																			
11																			
01																			
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

Correlation between battingAverage & singles: 67.21%

ASCII HISTOGRAMS OF TRAFFIC DATA

Matthew Bizet

Simple, but very neatly formatted bar graph of traffic stops per hour of the day.

Traffic Violations by Hour of Occurrence -----0----5----10---15---20---25---30---35---40---45---50 0 | ************** 2 | ************** 3 | ********** 4 | ***** 5 | ****** 6 | **** | ********* 7 8 | *** 9 | **** 10 | ******* 11 | ******* 12 | ********* 13 | ******* 14 | ************* 15 | ************ 16 | ************** 17 | ****** 18 | *********** 19 | **************** 20 | ***************** 21 | ***********

The next two projects show more information, but are perhaps harder to interpret, showing the balance between clarity and information density.

Samina Hussain

Visualization of traffic stops in the form of a histogram, but neatly formatted and including information about both car color and gender in one plot.

```
Histogram
BEIGE: +----- (11% F, 88% M)
--- (44% F, 55% M)
BLUE: +++++++++++----- (29% F, 70% M)
BLUE DARK: ++----- (14% F, 85% M)
GOLD: +++-- (37% F, 62% M)
GREEN: ----- (0% F, 100% M)
GREEN DK: -- (0% F, 100% M)
MAROON: ++-- (33% F, 66% M)
PURPLE: - (0% F, 100% M)
RED: +++----
         ----- (15% F, 84% M)
TAN: +- (33% F, 66% M)
YELLOW: - (0% F, 100% M)
- = male, + = female, # = equal
```

Ruth Shatkay

Visualizing the same information (number of stops by car color and gender) and using an ASCII method, but with a completely different visualization. Colors are represented by different characters, and males and females are split onto different lines instead of making up one whole bar.

```
KEY: beige - '*', black - ':', blue - '^', blueDark - '.', gold - '!', gray -
'#', green - '+', greenDk - '-', marcon - 'm', na - 'n', orange - 'o', purple
- 'p', red - 'r', silver - 's', tan - 't', white - 'w', yellow - 'y'
*******
..........
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
~~~~~
- -
. . . . . . . . . . . .
111
11111
*******************
+++++
---
mm.
ការពេញ
n
Ö
p
rrr
TELEFTERTELETER
tt
*******
```

USEFUL TOOLS FOR AN END-USER

Yannick Zanfack

If a user specifies a state, the code summarizes the options for colleges in that state. If the user specifies an ACT score, the code returns a list of "good fit" colleges with similar ACT averages.

The code also identifies which states have a larger difference between in-state and out-of-state tuition. Very useful for a prospective student.

The first method is called **collegeOptionsByState()** and has the following output : You have the option between 3 Colleges in MA Boston College ==> Out of state tuition : \$45622 ; In state tuition : \$45622 Harvard University ==> Out of state tuition : \$42292 ; In state tuition : \$42292 University of Massachusetts-Lowell ==> Out of state tuition : \$26146 ; In state tuition : \$12097 The average out of state tuition in MA is : \$38020.0 The average in state tuition in MA is : \$33337.0

The second method *compareActScore ()* has the following output :

Your average ACT score is : 19.0

You meet the requirements for the following Colleges : University of Arkansas at Pine Bluff, Average ACT 17.666666666666668 Indiana State University, Average ACT 18.6666666666666668 Morgan State University, Average ACT 17.666666666666668 University of Maryland Eastern Shore, Average ACT 17.0 Texas A & M International University, Average ACT 18.6333333333333323 Texas A & M University-Kingsville, Average ACT 18.666666666666668

Tumasang Che

1

Calculates the slugging average of each individual player, followed by a team rating which averages the members of a given team. In order to inform team managers which players should be traded due to poor performance, a "transfer market" shows the information of those players who performed significantly worse than the team.

id	playerName	salary	position	atBats	hits	singles	doubles	triples	homeRuns	battingAverage
8	Luis Castillo	6250000	4	298	73	62	7	1	3	0.245
9	Marlon Anderson	1050000	11	138	29	22	6	0	1	0.21
11	Rob Mackowiak	1500000	11	53	7	5	1	0	1	0.132
35	Rob Bowen	410000	2	91	16	9 5	1	1		0.176
38	Ronny Paulino	423500	2	118	25	18	5	0	2	0.212
44	Morgan Ensberg	1750000	5	74	15	14	0	0	1	0.203
46	Andruw Jones	14726910	8	209	33	21	8	1	3	0.158
55	Corky Miller	400000	2	60	5	4	0	0	1	0.083
73	Carlos Ruiz	425000	2	320	70	52	14	0	4	0.219
78	So Taguchi	900000	7	91	20	14	5	1	0	0.22
79	Craig Counsell	2800000	5	248	56	40	14	1	1	0.226
89	Josh Bard	2237500	2	178	36	26	9	0	1	0.202
90	Ben Broussard	3850000	3	82	13	10	0	0	3	0.159
92	John McDonald	1900000	6	186	39	30	8	0	1	0.21
99	Chris Burke	955000	11	165	32	24	5	1	2	0.194
106	Eric Bruntlett	600000	6	212	46	34	9	1	2	0.217
110	Donnie Murphy	400000	5	103	19	13	3	0	з	0.184
127	Wily Mo Pena	2000000	7	195	40	32	6	0	2	0.205
159	Paul Lo Duca	5000000	2	173	42	33	9	0	0	0.243
160	Michael Barrett	3500000	2	94	19	14	3	0	2	0.202
173	Willie Bloomquist	100000	00	8	165	46	45	1	0	0 0.279
186	Robby Hammock	409500	2	42	8	7	1	0	0	0.19
191	Guillermo Quiroz	400000	2	13	4 2	5 18	5	C) 2	0.187
195	Tadahito Iguchi	3850000	4	31	0 73	2 54	1	5	1	2 0.232
196	Tony Pena	405500	6	225	38	32	4	1	1	0.169
204	Augie Ojeda	550000	4	231	56	45	9	2	0	0.242
216	Shannon Stewart	1500000	7	17	5 4:	2 35	4	2	1	0.24
218	Omar Vizquel	5000000	6	266	59	48	10	1	0	0.222
238	Humberto Quintero	405000)	2 1	68 3				0	2 0.226
239	Willy Taveras	1975000	8	479	120	102	1	5	2	1 0.251
243	Brad Ausmus	2000000	2	216	47	36	8	0	3	0.218

Jee Kang

Gives a thorough comparison on colleges in two states. Very nicely formatted output, useful for a student looking for potential schools.

Number of Colleges	Summary
MD: 6 NY: 7	Admission Rate: MD > NY Difference is not statistically significant (p>.05)
Average Admission Rate	ACT Science Score: NY > MD
MD: .5020 NY: .4780	Difference is not statistically significatnt (p>.05)
	ACT Math Score: NY > MD
Average ACT Scores	Difference is not statistically significatnt (p>.05)
MD NY ACT Science: 24.6667 24.8571	ACT English Score: NY > MD Difference is not statistically significatnt (p>.05)
ACT Math : 24.8333 24.8571 ACT English: 24.0000 24.2857	Four Year Cost:
Average Tuition	NY > MD Difference is not statistically significant (p>.05)
	In State Tuition : NY > MD
MD NY Four Year Cost: 27704.6667 30263.1429	Difference is not statistically significant (p>.05)
In State Tuition: 14543.0000 17278.5714 Out State Tuition: 24602.6667 23630.0000	Out Of State Tuition : MD > NY
Summary	Difference is not statistically significant (p>.05)

Brian Daisey

Used Pearson Correlation Coefficient to determine whether there is a significant correlation between salary and batting average, with data facetted by position. Developed hypotheses and analyzed each finding thoroughly. Interesting findings: players in similar positions have very different correlation coefficients, and even designated hitters do not seem to get paid more for having higher batting averages.

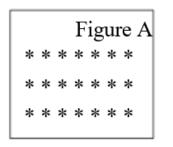
Exceptionally well-written as a research-style report.

<terminated> StatAnaly</terminated>	sis [Java Application] C:\Program File
Pearson coeffici	ents below illustrate
correlation betw	een salary and batting
average, broken	down by position.
All positions:	0.2251621948572188
Catcher:	0.19118316595338683
First Base:	0.07967020354971431
Second Base:	0.014251813564615471
Third Base:	0.4670237316183413
Shortstop:	0.35532809502265444
Left Field:	0.31169807593914667
Center Field:	-0.25980077913371186
Right Field:	0.4529565034937837
DH:	-0.0071484246351495246
PH/Utility:	-0.3070863970515508

Michelle Decaire

Great use of external data to supplement the data provided in the project. Pulled data from the 2010 US census to determine the population of each area of the county. Cross-referenced number of traffic stops per area with total population to find the rate at which people were pulled over in each area.

```
<terminated> StatAnalysis [Java Application] C:\Program Files\Java\jre1.8.0 |
There are 11.0 traffic violations for Bethesda.
This is 0.018% of the population in Bethesda.
There are 15.0 traffic violations for Burtonsville.
This is 0.180% of the population in Burtonsville.
There are 4.0 traffic violations for Chevy Chase.
This is 0.042% of the population in Chevy Chase.
There are 3.0 traffic violations for Clarksburg.
This is 0.022% of the population in Clarksburg.
There are 2.0 traffic violations for Derwood.
This is 0.084% of the population in Derwood.
There are 62.0 traffic violations for Gaithersburg.
This is 0.103% of the population in Gaithersburg.
There are 27.0 traffic violations for Germantown.
This is 0.031% of the population in Germantown.
There are 2.0 traffic violations for Kensington.
This is 0.090% of the population in Kensington.
There are 6.0 traffic violations for Montgomery Village.
This is 0.019% of the population in Montgomery Village.
There are 3.0 traffic violations for North Potomac.
This is 0.012% of the population in North Potomac.
There are 6.0 traffic violations for Olney.
This is 0.018% of the population in Olney.
There are 2.0 traffic violations for Potomac.
This is 0.004% of the population in Potomac.
There are 34.0 traffic violations for Rockville.
This is 0.056% of the population in Rockville.
There are 89.0 traffic violations for Silver Spring.
This is 0.125% of the population in Silver Spring.
There are 4.0 traffic violations for Takoma Park.
This is 0.024% of the population in Takoma Park.
```


David Fisher

Also a great example of the use of external data. Analysis of baseball players by a variety of metrics (accurate to actual MLB data) such as "weighted on-base average" for hitters and "fielding independent pitching" for pitchers, player position, and player league (National or American). Created an optimal all-star team for each league using these metrics, then compared it to the actual all-star roster to find that 53% of the players he selected were on the actual roster. Below, green indicates exact roster position correct and yellow indicates presence on roster correct.

	AllSt	ar.java	Real 2008 All Star Roster				
	National League	American League	National League	American League			
С	McCann. B	Mauer. J	Geovany Soto	Joe Mauer			
1B	Pujols. A	Teixeira. M	Lance Berkman	Kevin Youkilis			
2B	Utley. C	Kinsler. I	Chase Utley	Dustin Pedroia			
SS	Ramirez. H	Jeter. D	Hanley Ramirez	Derek Jeter			
3B	Jones. C	Rodriguez. A	Chipper Jones	Alex Rodriguez			
OF	Holliday. M	Ramirez. M	Ryan Braun	Josh Hamilton			
OF	Ludwick. R	Quentin. C	Kosuke Fukudome	Manny Ramirez			
OF	Dunn. A	Markakis. N	Matt Holliday	Ichiro Suzuki			
OF/DH	n/a	n/a	Alfonso Soriano(injured)	David Ortiz(injured)			
Р	Lincecum. T	Lee. C	Aaron Cook	Justin Duchscherer			
Р	Sabathia. C	Halladay. R	Ryan Dempster	Roy Halladay			
Р	Haren. D	Beckett. J	Dan Haren	Scott Kazmir			
Р	Lowe. D	Santana. E	Brad Lidge	Cliff Lee			
Р	Webb. B	Mussina. M	Tim Lincecum	Joe Nathan			
Р	Billingsley. C	Danks. J	Carlos Marmol	Jonathan Papelbon			
Р	Lidge. B	Rivera. M	Ben Sheets	Mariano Rivera			
Р	Saito. T	Papelbon. J	Edinson Volquez	Francisco Rodriguez			
Р	Rhodes. A	Ramirez. R	Billy Wagner	Ervin Santana			
Р	Wood. K	Thornton. M	Brandon Webb	Joe Saunders			
Р	Fuentes. B	Nathan. J	Brian Wilson	George Sherrill			
Р	Sheets. B	Burnett A.	Kerry Wood	Joakim Soria			
Р	Dempster. R	n/a	Carlos Zambrano	n/a			
Reserve							
С	<mark>Soto. G</mark>	Suzuki. K	Russell Martin	Dioner Navarro			
С	<mark>Martin. R</mark>	Pierzynski. A	Brian McCann	Jason Varitek			
1B	<mark>Berkman. L</mark>	<mark>Youkilis. K</mark>	Adrian Gonzalez	Justin Morneau			
1B	Fielder. P	Pena. C	Albert Pujols	lan Kinsler			
2B	<mark>Uggla. D</mark>	Roberts. B	Dan Uggla	n/a			
2B	deRosa. M	<mark>Pedroia. D</mark>		n/a			
SS	Wright. D	Ramirez. A	Cristian Guzman	Michael Young			
SS	Reyes. J	n/a	Miguel Tejada	n/a			
SS	Hardy. J	n/a		n/a			
3B	Drew. S	Longoria. E	David Wright	Joe Crede			
3B	Ramirez. A	Gordon. A	n/a	Carlos Guillen			
3B	n/a	Scutaro. M	n/a	Evan Longoria			
OF	Burrell. P	Sizemore. G	Corey Hart	J.D. Drew			
OF	Beltran. C	Bay. J	Ryan Ludwick	Carlos Quentin			
OF	Hawpe. B	Hamilton. J	Nate McLouth	Grady Sizemore			
DH	n/a	n/a	n/a	Milton Bradley			

Andrew Cachiaras

An example of an interesting/creative visualization approach. Created a visual representation of the correlation between salary and hitting quality in order to show which players are overpaid/bad investment (Figure A, wide and short rectangle), underpaid/good investment (Figure B, tall and thin rectangle), or appropriately paid (Figure C, square). A non-technical user (e.g., baseball team manager) can very quickly understand the data from this visualization.

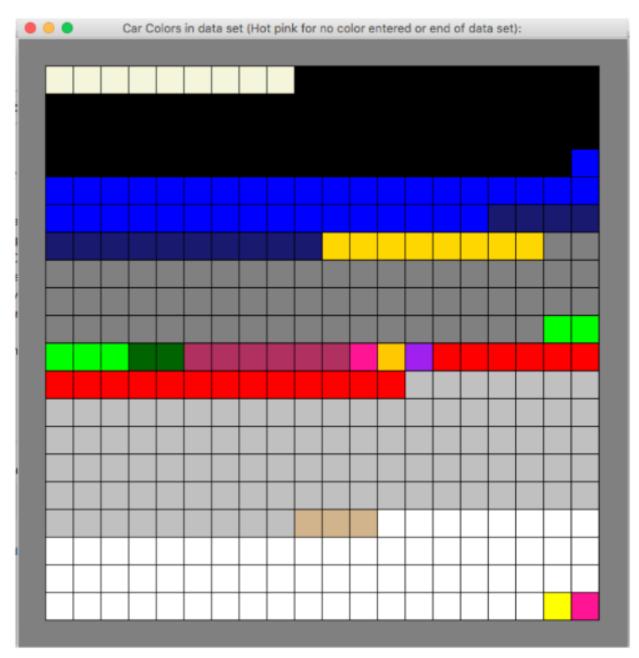


Figure (С
* * *	
* * *	
* * *	

Kevin Doherty

Counted the number of traffic stops for each car color, translated the colors to RGB equivalents, and created a grid visualization of the traffic stops in the data set. There is no effort required to interpret the information, which makes the data immediately understandable without having to look through a long CSV file.

Colors in order: Beige, Black, Blue, Blue Dark, Gold, Gray, Green, Green DK, Maroon, "N/A" - read as default value set for null colors. Orange, Purple, Red, Silver, Tan, White, Yellow.

Alina Striner

Instead of visualization she focused on "audiolization" - Mapping the number of traffic violations per hour to musical pitches in order to create an auditory representation of the data.

Pitch	Midi pitch	Number of Accidents
A3	57	0-10
B3	59	11-20
C4	60	21-30
E4	64	31-40
G4	67	41-50
B6	69	51-60

Table 1: Pitch, Midi pitch and number of accidents

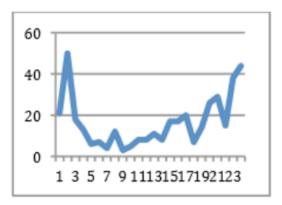


Figure 1: Visualization of occurrences per hour

Manjot Sawhney

Used data to simulate a baseball game.

First, allowed the user to place baseball players on different teams to create a league.

The teams are: Blue Jays, Orioles, and Nationals Which team do you want to add Gregg Zaun to? Jays The teams are: Blue Jays, Orioles, and Nationals Which team do you want to add Henry Blanco to? orioles The teams are: Blue Jays, Orioles, and Nationals Which team do you want to add Moises Alou to? nationals The teams are: Blue Jays, Orioles, and Nationals Which team do you want to add Corey Patterson to? nationals The teams are: Blue Jays, Orioles, and Nationals Which team do you want to add Rod Barajas to? Nationals These are the players on the Blue Jays: Gregg Zaun. These are the players on the Orioles: Henry Blanco. These are the players on the Nationals: Moises Alou, Corey Patterson, Rod Barajas.

Created a baseball simulator which pitted two players against each other in 10 rounds of hitting. Used the players' batting averages, the pitchers' strike rates, and an element of Java randomness to determine whether the player hit the ball. Created a pop-up informing the user of the winner. Functional, user-friendly, polished, and included ideas for how to make a simulation for entire teams of players and to find the best hitter in the league. It's time to play ball! In this game we have Rich Aurilia vs. Henry Blanco! ROUND 1! It's Rich Aurilia's turn to bat It's a hit! It's Henry Blanco's turn to bat It's a hit! The current score is Rich Aurilia: 1 Henry Blanco: 1 ROUND 2! It's Rich Aurilia's turn to bat It's a miss! It's Henry Blanco's turn to bat It's a hit! The current score is Rich Aurilia: 1 Henry Blanco: 2 ROUND 3! It's Rich Aurilia's turn to bat It's a miss! It's Henry Blanco's turn to bat It's a miss! The current score is Rich Aurilia: 1 Henry Blanco: 2 ROUND 4! It's Rich Aurilia's turn to bat It's a miss! It's Henry Blanco's turn to bat It's a hit! Message

i

Henry Blanco won!

OK