PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nimpen Philosophy Game The May's Theorem Gaus
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

- Course website https://myelms.umd.edu/courses/1133211
- Reading: Gaus, Ch 2. (up to 2.3) Utility Theory;Reiss, Ch 3, pgs. 29-42; Gilboa dialogue.
- Weekly writing: Due Wednesday, 11.59pm.
- Office hours canceled this Wednesday.

The Aim of Economics

The main task of the social sciences is to explain social phenomena. It is not the only task, but it is the most important one, to which others are subordinated or on which they depend.
(Elster, pg. 9)
J. Elster. Explaining Social Behavior: More Nuts and Bolts for the Social Sciences. Cambridge University Press, 2007.

Instrumental Rationality

 was samen wemoconomics Arrow Rationality

Instrumental Rationality: Ann's action α is instrumentally rational iff Ann chooses α because she soundly believes it is the best prospect to achieve her goals, values, ends, etc.

Instrumental Rationality

 Mas semen wis Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrowsocia Choice

Instrumental Rationality: Ann's action α is instrumentally rational iff Ann chooses α because she soundly believes it is the best prospect to achieve her goals, values, ends, etc.

Instrumental Rationality

 Mas semen wisw N Arrowsocia Choice

Instrumental Rationality: Ann's action α is instrumentally rational iff Ann chooses α because she soundly believes it is the best prospect to achieve her goals, values, ends, etc.

Instrumental Rationality

Instrumental Rationality: Ann's action α is instrumentally rational iff Ann chooses α because she soundly believes it is the best prospect to achieve her goals, values, ends, etc.

At present, we have no adequate theory of the substantive rationality of goals and desires, to put to rest Humes statement, "It is not contrary to reason to prefer the destruction of the whole world to the scratching of my finger."
(Nozick, pg. 139-140)
R. Nozick. "Rational Preferences". in The Nature of Rationality, pgs. 139-151.

Homo Economicus

 Mass 耳iamene ceess ArrowSocial Choice
Rationality

Can we characterize Homo Economicus simply in terms of instrumental rationality?

Eg., Ann is eating ice cream.

Homo Economicus

 ArrowSocial Choice TheorySen $\underset{\text { Arows theorem }}{\text { Rationaly }}$

Can we characterize Homo Economicus simply in terms of instrumental rationality?

Eg., Ann is eating ice cream.

Consumption Rationality: Ann's action α is "consumptively rational" only if it is an instance of the α-type - a general desire, value, or end of hers.

Homo Economicus

 Nash Conaxecers fagabe Rationa Choice theory Paretotarsany ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$

Can we characterize Homo Economicus simply in terms of instrumental rationality?

Eg., Ann is eating ice cream.

Consumption Rationality: Ann's action α is "consumptively rational" only if it is an instance of the α-type - a general desire, value, or end of hers.

Economic Rationality: Ann's action α is economically rational only if it is (a) instrumentally rational or (b) consumptively rational.

Homo Economicus

 Arrow Socat Choice

1. More is better than less

Homo Economicus

 Nsshame whern NashRational Choice Theory ParetoHarsany Arrow Social Cholice
Rationality

1. More is better than less

- If the focus is on specific goods, then satiation and "lumpiness" are problems.
- Assume that goods are continuous, and that an extra increment always better satisfies our goal than a smaller (e.g., money)

Homo Economicus

 mass Game cheoryours Nashtonarechiowe Theory Peretetharsany Arrow Rationality2. Goals are characterized by decreasing marginal value

Homo Economicus

 Mssheme whern ArrowSocial Choice TheorySen Rationality
2. Goals are characterized by decreasing marginal value

- Hedonists: it is a deep psychological law that the more we have of something, the less extra pleasure we get from each additional unit.
- crucial to the idea of a rational multiple-goal pursuer who seeks to satisfy different goals at different times.
- indifference curves

Homo Economicus

 Nasational Choice Thery paretorarsany Arrowsocial Cholice
3. Downward sloping demand curve

Homo Economicus

 Arrow Social Cholice
Rationality
3. Downward sloping demand curve

- Opportunity costs: Homo Economicus must be able to choose between competing actions promoting different ends through a system of trade-off rates according to which the "demand" for a goal/end decreases as its cost relative to other goals/ends increases.

Homo Economicus

4. Selfishness/Wealth maximization/ Non-tuism

- The assumption is that people have goals they wish to pursue, and are devoted to pursuing their own goals in the most efficient manner. Just what those goals are is another question.
- Non-tuism: your "utility" can be calculated as, in principle, independent of my "utility". It is a simplifying assumption, not something inherent to the economic understanding of rational agents.
...direct appeal to a desire to φ-type as a way to explain φ-ing is not the preferred mode of economic explanation....
...direct appeal to a desire to φ-type as a way to explain φ-ing is not the preferred mode of economic explanation.... The preferred explanation is to show that action φ is instrumentally rational for agents with a wide variety of goals, which are not directly about the merits of engaging in the general type of active, $\varphi \ldots$...
...direct appeal to a desire to φ-type as a way to explain φ-ing is not the preferred mode of economic explanation.... The preferred explanation is to show that action φ is instrumentally rational for agents with a wide variety of goals, which are not directly about the merits of engaging in the general type of active, $\varphi \ldots$... although economically rational agents have access to other reasons besides instrumental ones, Homo Economicus, as a model of rational action, prefers, explanations in terms of instrumental rationality. " [G, pg. 18]

Rationality: Two Themes

Rationality: Two Themes

Rationality is a matter of reasons:

- The rationality of a belief P depends on the reasons for holding P
- The rationality of act α depends on the reason for doing α

Rationality: Two Themes

Rationality is a matter of reasons:

- The rationality of a belief P depends on the reasons for holding P
- The rationality of act α depends on the reason for doing α

Rationality is a matter of reliability:

- A rational belief is one that is arrived at a through a process that reliably produces beliefs that are true.
- An act is rational if it is arrived at through a process that reliably achieves specified goals.

Rationality: Two Themes

"Neither theme alone exhausts our notion of rationality. Reasons without reliability seem empty, reliability without reasons seems blind. In tandem these make a powerful unit, but how exactly are they related and why?"
(Nozick, pg. 64)
R. Nozick. The Nature of Rationality. Princeton University Press, 1993.

Rational Choice/Decision Theory

 uns sementuen Economics Nasheonsin Choice Theory ParetoHarsanyRational Arrow Sociationality

Rational decision making is associated with both the capacity to order outcomes and to choose from the top of the order.

Decision Problems

Decision Problems

Individual decision-making (against nature)

- E.g., Gambling

Decision Problems

Individual decision-making (against nature)

- E.g., Gambling

Individual decision making in interaction

- E.g., Playing chess

Decision Problems

Individual decision-making (against nature)

- E.g., Gambling

Individual decision making in interaction

- E.g., Playing chess

Collective decision making

- E.g., Carrying a piano

Decision Problems

 Nash comaccachame hicon nembics ArrowSocial Choice Theory Sen $\underset{\text { Rationality }}{\text { arows theerem }}$

Individual decision-making (against nature)

- E.g., Gambling

Individual decision making in interaction

- E.g., Playing chess

Collective decision making

- E.g., Carrying a piano
- E.g., Voting in an election

Decision Theory

 Nasheonal Choice Theory ParetoHarsanyi $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Rational decision making is associated with both the capacity to order outcomes and to choose from the top of the order.

Concepts of preference

 wash Arrowsocial Choice
Rationality
Arrows theocem

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine

Concepts of preference

 Mas semen wey Arrow Rationality

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means " I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means " I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means "I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.
4. Choice ranking: In a restaurant, when asked "do you prefer red wine or white wine", the waiter wants to know which option I choose.

Concepts of preference

1. Enjoyment comparison: I prefer red wine to white wine means that I enjoy red wine more than white wine
2. Comparative evaluation: I prefer candidate A over candidate B means " I judge A to be superior to $B^{\prime \prime}$. This can be partial (ranking with respect to some criterion) or total (with respect to every relevant consideration).
3. Favoring: Affirmative action calls for racial/gender preferences in hiring.
4. Choice ranking: In a restaurant, when asked "do you prefer red wine or white wine", the waiter wants to know which option I choose.

Partial/Total/Overal Comparisons

came theornaw Philosotiphy wens nemene wo

Partial/Total/Overal Comparisons

1. Lauren drank water rather than wine with dinner, despite preferring to drink wine, because she promised her husband she would stay sober.
2. Lauren drank water with dinner because she preferred to do so. But for the promise she made her husband to stay sober, she would have preferred to drink wine rather than water with dinner.

Preferences

 Nash Consorcets parasoox
Rational Choice Theory ParetoHarsany Arrowsocial Cholice

Preferring or choosing x is different that "liking" x or "having a taste for x ": one can prefer x to y but dislike both options

In utility theory, preferences are always understood as comparative: "preference" is more like "bigger" than "big"

Mathematical background: Relations

 wash sheme wesme Economics Arrowsocia Choice

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.

Mathematical background: Relations

 whens.eme weine Economics Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

 Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

Mathematical background: Relations

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowS Social Choice Theory Sen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
b R a
$$

Mathematical background: Relations

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice Theory Sen Arrow Rationality

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$a R a$
$b R a$

$d R d$

Mathematical background: Relations

 Nashtonal Chioce Theory Peretetharsany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set. A relation on X is a set of ordered pairs from X : $R \subseteq X \times X$.
E.g., $X=\{a, b, c, d\}, R=\{(a, a),(b, a),(c, d),(a, c),(d, d)\}$

$$
\begin{aligned}
& a R a \\
& b R a \\
& c R d \\
& a R c \\
& d R d
\end{aligned}
$$

Mathematical background: Relations

 Nash Condorcets Parasoox
Rational Choice Theory P ParetoHarsany Arrowsocial Cholice

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$

Mathematical background: Relations

 mass Game theoryouns Nash Condorcets ParasooxRational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Reflexive relation: for all $x \in X, x R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 mars sheorem GeusNash Condorceets Paradox ECOMN
EOMOM Nash Consorcets Parasoox
Rational Choice Theory ParetoHarsany Arrow Rationality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Irreflexive relation: for all $x \in X, x$ R x (i.e., $(x, x) \notin R$)

Mathematical background: Relations

 Nash Consorcet't Paradox
Rational Choice Theory ParetoHarsany
Arrow Social Choice TheorySen Arrow
Rations theonality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Irreflexive relation: for all $x \in X, x$ 友 x (i.e., $(x, x) \notin R$)
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 wavs nemenemerneconomics Nash Consorcets ParasooxRational Choice Theory ParetoHarsany Arrowsocial Cholice

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$

Mathematical background: Relations

 Nash Condorcets Paradoox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Symmetric relation: for all $x, y \in X$, if $x R y$, then $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 uns nemene wein Nash Consorcets ParasooxRational Choice Theory ParetoHarsany Arrow Rationality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$

Mathematical background: Relations

 mass Game theoryours Nash Condorcet't ParadoxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 mass Game theoryowns Nash Consorcet't ParadoxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrowsocial Cholice

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Paradoox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theocem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcet't Paradox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 mass Game theoryoums NashRational Choice
ArrowSocial Choice ParetoHarsany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Complete relation: for all $x, y \in X$, either $x R y$ or $y R x$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Parresox
Rational Choice Theory ParetoHarsany Arrow Rationality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$

Mathematical background: Relations

 Nash Condorcet't Paradoox
Rational Choice Theory ParetoHarsany
Pat $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 ArrowSocial Choice TheorySen Rationality
Arows theorem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 mass Game theoryouns NashRational Choice
Theory ParetoHarsany Arrow
Rations theonality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Parrosox
Rational Choice Theory ParetoHarsany Arrow Sociationality

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Nash Condorcets Parrosox
Rational Choice Theory ParetoHarsany Arrow Social Choice
Rationality
Arows theocem

Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Mathematical background: Relations

 Mens.ime ween Economics ArrowSocial Choice Paretoryarsan $\underset{\text { Rrows theorem }}{\text { Rationaly }}$Suppose that X is a set and $R \subseteq X \times X$ is a relation.
Transitive relation: for all $x, y, z \in X$, if $x R y$ and $y R z$, then $x R z$
E.g., $X=\{a, b, c, d\}$

Maximal elements, Cycles

 Rationac chowe thiac Arrow Racial Chality

Suppose that $R \subseteq X \times X$ is a relation.
$x \in X$ is maximal with respect to R provided there is no $y \in X$ such that $y R x$.
For $Y \subseteq X$, let $\max _{R}(Y)=\{x \in Y \mid$ there is no $y \in Y$ such that $y R x\}$

Maximal elements, Cycles

 wans rame ther Nash Condorcets Paraotox Thery ParetoHarsany Arrowsocial CholiceSuppose that $R \subseteq X \times X$ is a relation.
$x \in X$ is maximal with respect to R provided there is no $y \in X$ such that $y R x$.
For $Y \subseteq X$, let $\max _{R}(Y)=\{x \in Y \mid$ there is no $y \in Y$ such that $y R x\}$

A cycle is a set of distinct elements x_{1}, \ldots, x_{n} such that

$$
x_{1} R x_{2} \cdots x_{n-1} R x_{n} R x_{1}
$$

R is acyclic if it does not contain any cycles.

Representing Preferences

 Naghtomana chice Thicar Arrow Social Choice
Rationality
arrows theocem

Let X be a set of options/outcomes. A decision maker's preference over X is represented by a relation $\succeq \subseteq X \times X$.

Representing Preferences

Game Hatanyis sheisem MhilOUSOphy Mays Theorem ceuss Nasheonal Choice Theory Pareto Harsanyi Arrow Sociationality

Given $x, y \in X$, there are four possibilities:

Representing Preferences

 waveneme weormeconomics Arrow Rationality

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).

Representing Preferences

 Nashemana choie Troary pereteotssany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).

Representing Preferences

 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.

Representing Preferences

 Ms.amicher Arrow Rationality

Given $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.
4. $x \nsucceq y$ and $y \nsucceq x$: The agent cannot compare x and y

Representing Preferences

 Ms.amicher Nash Arrow RationalityGiven $x, y \in X$, there are four possibilities:

1. $x \succeq y$ and $y \nsucceq x$: The decision maker ranks x above y (the decision maker strictly prefers x to y).
2. $y \succeq x$ and $x \nsucceq y$: The decision maker ranks y above x (the decision maker strictly prefers y to x).
3. $x \succeq y$ and $y \succeq x$: The agent is indifferent between x and y.
4. $x \nsucceq y$ and $y \nsucceq x$: The agent cannot compare x and y

Representing Preferences

 wavs nemenemerneconomics ArrowSocial Choice
Rationality

A relation $\succeq \subseteq X \times X$ is a (rational) preference relation (for a decision maker) provided

1. \succeq is complete (and hence reflexive)
2. \succeq is transitive

Representing Preferences

 nes same thery ArrowSocial Choice TheorySen

A relation $\succeq \subseteq X \times X$ is a (rational) preference relation (for a decision maker) provided

1. \succeq is complete (and hence reflexive)
2. \succeq is transitive

Suppose that \succeq is a preference relation. Then,

- Strict preference: $x \succ y$ iff $x \succeq y$ and $y \nsucceq x$
- Indifference: $x \sim y$ iff $x \succeq y$ and $y \succeq x$
- What is the relationship between choice and preference?
- Why should preferences be complete and transitive?
- Are people's preferences complete and transitive?

Folk Psychology

 Ms.amician Nash Rational Choice' Theory ParetoHarsany $\underset{\substack{\text { Rrows theorem }}}{\substack{\text { Rity } \\ \text { and }}}$The view that human behavior can and ought to be explained by citing beliefs and desires.

Beliefs and desires are thus reasons for action.

No every reason an individual might have to perform an action also constitute the reason that explains his or her action. Rather it is the reason the individual acted on that explains the action.

Folk Psychology

In order to infer motivations or beliefs from behavior (or other accessible forms of evidence), one must make fairly strong assumptions concerning the system of beliefs and desires people have. If individuals acted very erratically (though always on reasons!) it would be impossible to infer beliefs or desires or both both from their actions.

Choices

 Nash monacemseme ECOnOMICSArrowSocial Choice TheorySen

It is important to distinguish between mere behavior on the one hand and "action" or "choice" on the other.

\section*{Choices} Mas seme temo M Nonomics | Nash Consorcets Paradox LCO Pareto |
| :--- |
| Rational Choice Theory Parsany | Arrowsocia Choice

It is important to distinguish between mere behavior on the one hand and "action" or "choice" on the other.

Decisions are between beliefs and desires on the one hand and actions on the other. Whateme wisem ECOMOMICS ArowSocil chice theor owain
Aroustionality
and

Should preferences be identified with choices? wave neme thern Economics Nash benate feyme ArrowSocial Choice TheorySen ${ }_{\text {Rrows }}$ Rationality

Should preferences be identified with choices?

The verb "to prefer" can either mean "to choose" or "to like better," and these two senses are frequently confused in economic literature. That fact that an individual chooses A rather than B is far from conclusive evidence that he likes A better. But whether he likes A better or not should be completely irrelevant to the theory of price.
(Little, 1949).

Preferences and Choices

 Arrowsocia Choice

Preferences are closely related to choices: preferences may cause and to help to explain choices; preferences may be invoked to justify choices, in fortuitous circumstances, we can use preference data to make predictions about choice. But to identify the two would be a mistake.

Preferences and Choices

- We have preferences over vastly more states of affairs than we can ever hope (or dread) to be in the position to choose.

Preferences and Choices

 uns shemenememo Economics Arrow Social Choice
Rationality
arrows theocrem
Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?

Preferences and Choices

Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?
-What about counter-preferential choice?

Preferences and Choices

 Mas semen wey Nash Consorcets parasooxRational Choice Theory ParetoHarsany Arrow
Rations theonality
Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?

- What about counter-preferential choice?
- Preferences must be stable over a reasonable amount of time in a way that (observed) choices aren't (needed to predict and explain choices).

Preferences and Choices

Can't we stipulate a concept of preference that is only loosely based on our ordinary concept?

- What about counter-preferential choice?
- Preferences must be stable over a reasonable amount of time in a way that (observed) choices aren't (needed to predict and explain choices).
- Beliefs and expectations over future states of affairs are needed in addition to preferences in order to explain choices. To banish preferences understood as mental rankings because they are unobservable or subjective would mean that beliefs and expectations would have to be banished as well.

 Nash conanal Choice Theory Pareto Harsanyi Arrow Sationality

Preferences will be understood as mental rankings of alternatives "all things considered".

Game tasamys rinesem Philos Hump

 Arrow Sociai Choice
Rationality

Revealed Preference Theory

 Rational Choice Theory ParetoHarsany Rationality

Standard economics focuses on revealed preference because economic data comes in this form. Economic data can-at best-reveal what the agent wants (or has chosen)in a particular situation. Such data do not enable the economist to distinguish between what the agent intended to choose and what he ended up choosing; what he chose and what he ought to have chosen.
(Gul and Pesendorfer, 2008)

Sen's α Condition

 wans ame ther

ArrowSocial Choice
Rationality

R : red wine

W : white wine
L: lemonade

Sen's α Condition

 waveneme weormeconomics ArrowSocial Choice
Rationality

R : red wine

W : white wine
L: lemonade

Sen's α Condition

 what same hemo

ArrowSocial Choice
Rationality

R : red wine
 W : white wine

Sen's α Condition

 waven rame thery ArrowSocial Choice
Rationality

R : red wine

W : white wine

Sen's α Condition

W : white wine
L : lemonade

R : red wine

W: white wine

$$
R \succ W
$$

Sen's α Condition

W : white wine
L : lemonade

$$
R \succ W
$$

$$
R \succ W
$$

If the world champion is American, then she must be a US champion too.

Observations of actual choices will only partially constrain preference attribution. That someone chooses red wine when white wine is available does not allow one to conclude that the choice of an white wine was ruled out by her preferences, only that her preferences ruled the red wine in.

Sen's β Condition

 waven rame teor Economics ArrowSocial Choice

R : red wine

W : white wine

R : red wine

W : white wine

Sen's β Condition

 ArrowSocial Choice
Rationality

R : red wine

W: white wine
L: lemonade

Sen's β Condition

R : red wine

W: white wine
L: lemonade

Sen's β Condition

R : red wine

W: white wine

L: lemonade

If some American is a world champion, then all champions of America must be world champions.

Revealed Preference Theory

 Mas semen weymeronomics Nash Consorcets paraoosRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Sacia Choice

A decision maker's choices over a set of alternatives X are rationalizable iff there is a (rational) preference relation on X such that the decision maker's choices maximize the preference relation.

Revealed Preference Theory

A decision maker's choices over a set of alternatives X are rationalizable iff there is a (rational) preference relation on X such that the decision maker's choices maximize the preference relation.

Revelation Theorem. A decision maker's choices satisfy Sen's α and β if and only if the decision maker's choices are rationalizable.

Choice Functions

 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

Choice Functions

 Mas seme temo M Nonomics Nastlemana choce Theary peretebussan Arrow RationalitySuppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B \quad x R y\}$.

Choice Functions

 Mas semen wey ArrowSocial Choice TheorySen

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Sen's α : If $x \in C(A)$ and $B \subset A$ and $x \in B$ then $x \in C(B)$

Choice Functions

 Mas semen wey Arrow Rationality

Suppose X is a set of options. And consider $B \subseteq X$ as a choice problem. A choice function is any function where $C(B) \subseteq B$. B is sometimes called a menu and $C(B)$ the set of "rational" or "desired" choices.

A relation R on X rationalizes a choice function C if for all B $C(B)=\{x \in B \mid$ for all $y \in B x R y\}$.

Sen's α : If $x \in C(A)$ and $B \subset A$ and $x \in B$ then $x \in C(B)$
Sen's β : If $x, y \in C(A), A \subset B$ and $y \in C(B)$ then $x \in C(B)$.

Maximizing

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745-779.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines.

Maximizing

A. Sen. Maximization and the Act of Choice. Econometrica, Vol. 65, No. 4, 1997, 745-779.
"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines. But maximizing behavior differs from nonvolitional maximization because of the fundamental relevance of the choice act, which has to be placed in a central position in analyzing maximizing behavior.

Maximizing

"The formulation of maximizing behavior in economics has often parallels the modeling of maximization in physics an related disciplines. But maximizing behavior differs from nonvolitional maximization because of the fundamental relevance of the choice act, which has to be placed in a central position in analyzing maximizing behavior. A person's preferences over comprehensive outcomes (including the choice process) have to be distinguished form the conditional preferences over culmination outcomes given the act of choice."

Maximizing

 Mas semen wey Arrow Sacia Choice

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it.

Maximizing

 Nash
Rational Choice
Theory ParetoHarsany Arrowsocia Choice

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair.

Maximizing

 uns sementuen Economics NashRational Choice
Theory ParetoHarsany Arrow Racia Choice

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer?

You arrive at a garden party and can readily identify the most comfortable chair. You would be delighted if an imperious host were to assign you that chair. However, if the matter is left to your own choice, you may refuse to rush to it. You select a "less preferred" chair. Are you still a maximizer? Quite possibly you are, since your preference ranking for choice behavior may well be defined over "comprehensive outcomes", including choice processes (in particular, who does the choosing) as well as the outcomes at culmination (the distribution of chairs). waven weme teon Economics Nash Condorcets Parasox Rational Choice' Theory ParetoHarsany ArrowSocial Choice
Rationality

Invoking someone's preferences will suffice to explain why some choices were not made (i.e. in terms of rational impermissibility) but not typically why some particular choice was made. To take up the slack, explanations must draw on factors other than preference: psychological one such as the framing of the choice problem or the saliency of particular options, or sociological ones such as the existence of norms or conventions governing choices of the relevant kind.

- What is the relationship between choice and preference?
- Why should preferences be complete and transitive?
- Are people's preferences complete and transitive?
- Transitivity: Money-pump argument
- Completeness: Incommensurable options

Preference, Choice, and Utility

\checkmark Representing preferences: relations, preference axioms
\checkmark Revealed preference theory: WARP, Sen's α and β, Revelation Theorem

- Utility: Ordinal vs. cardinal utility, interval scale, ratio scale
- Expected utility theory: (probability), von Neumann-Morgenstern Theorem, Allais paradox, Ellsberg paradox, (Other issues: framing effects, state-dependent utility, etc.)
- Interpersonal comparison of utilities
- Reading: Gaus, Ch 2. (up to 2.3) Utility Theory;Reiss, Ch 3, pgs. 29-42; Gilboa dialogue.
- Mathematical background: my notes on choice, preference and utility.
- Weekly writing: Due Wednesday, 11.59pm.

