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Announcements

I Course website
https://myelms.umd.edu/courses/1133211

I Problem set 1
I Online quiz 2
I Reading: Gaus, Ch 2; Reiss, Ch 3; Briggs SEP article.
I Weekly writing: Due Wednesday, 11.59pm.
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Decision Problems

In many circumstances the decision maker doesn’t get to choose outcomes
directly, but rather chooses an instrument that affects what outcome actually
occurs.

Choice under
I certainty: highly confident about the relationship between actions and

outcomes
I risk: clear sense of possibilities and their likelihoods
I uncertainty: the relationship between actions and outcomes is so

imprecise that it is not possible to assign likelihoods
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Decision Problems

A

B

w1 w2 · · · wn−1 wn

max({u(A(wi))−max({u(Ai(wi)) | Ai ∈ Act})
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Decision Problems

A

B

w1 w2 · · · wn−1 wn

An act is a function A : W → O
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Making an omelet

States: {the sixth egg is good, the sixth egg is rotten}

Consequences: { six-egg omelet, no omelet and five good eggs destroyed,
six-egg omelet and a cup to wash....}

Acts: { break egg into bowl, break egg into a cup, throw egg away}
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Strict Dominance

=⇒

MaxRegretExpUtil

A

B

w1 w2 · · · wn−1 wn

> > > > >

∀ w ∈W, u(A(w)) > u(B(w))
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Weak Dominance

=⇒

MaxRegretExpUtil

A

B

w1 w2 · · · wn−1 wn

≥ ≥ > ≥ >

∀ w ∈W, u(A(w)) ≥ u(B(w)) and ∃ w ∈W, u(A(w)) > u(B(w))
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MaxMin (Security)

=⇒

MaxRegretMin

A

B

w1 w2 · · · wn−1 wn

min({u(A(w)) | w ∈W})
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MaxMax

=⇒

MaxRegretMax

A

B

w1 w2 · · · wn−1 wn

max({u(A(w)) | w ∈W})
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Maximize (Subjective) Expected Utility

=⇒

MaxRegretExpUtil

A

B

w1 w2 · · · wn−1 wn

∑
w∈W PA(w) ∗ u(A(w))
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Subjective Expected Utility

Probability: Suppose that W = {w1, . . . ,wn} is a finite set of states. A
probability function on W is a function P : W → [0, 1] where

∑
w∈W P(w) = 1

(i.e., P(w1) + P(w2) + · · ·+ P(wn) = 1).

Suppose that A is an act for a set of outcomes O (i.e., A : W → O). The
expected utility of A is: ∑

w∈W

P(w) ∗ u(A(w))
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Cardinal Utility Theory

u : X→ R

Which comparisons are meaningful?

1. u(x) and u(y)? (ordinal utility)
2. u(x)− u(y) and u(a)− u(b)?
3. u(x) and 2 ∗ u(z)?
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Cardinal Utility Theory

x � y � z is represented by both (3, 2, 1) and (1000, 999, 1), so we cannot say y
whether is “closer” to x than to z.

Key idea: Ordinal preferences over lotteries allows us to infer a cardinal scale
(with some additional axioms).

John von Neumann and Oskar Morgenstern. The Theory of Games and Economic Behavior.
Princeton University Press, 1944.
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Heads Tails
L1 $1M $1M

L2 $2M $0

Which of the two lotteries would you choose?

I L1 (L1 � L2)
I L2 (L2 � L1)
I I am indifferent between the two lotteries (L1 ∼ L2)
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Lotteries

Suppose that X = {x1, . . . , xn} is a set of outcomes. A lottery over X is a tuple
[p1 : x1, . . . , pn : xn] where

∑
i pi = 1.

x1 x2
· · · xn−1 xn

p1 p2 pn−1 pn

Let L be the set of lotteries. Suppose that �⊆ L× L is a preference ordering
on L.
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Axioms of Cardinal Utility

Suppose that X is a set of outcomes and consider lotteries over X (i.e.,
probability distributions over X)

A compound lottery is αL + (1− α)L′ meaning “play lottery L with
probability α and L′ with probability 1− α”

Running example: Suppose Ann prefers pizza (p) over taco (t) over yogurt (y)
(p � t � y) and consider the different lotteries where the prizes are p, t and y.
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Continuity

Continuity: for all options a, b and c if a � b � c, there is some lottery L with
probability p of getting a and (1− p) of getting c such that the agent is
indifferent between L and b.

b

1 ∼
a c

p 1− p
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p � t � y

Suppose Ann has t.

Consider the lottery L = 0.99 get y and 0.01 get p
Would Ann trade t for L?

Consider the lottery L′ = 0.99 get p and 0.01 get y
Would Ann trade t for L’?

Continuity says that there is must be some lottery where Ann is indifferent
between keeping t and playing the lottery.
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Better Prizes
Better Prizes: suppose L1 is a lottery over (w, x) and L2 is over (y, z) suppose
that L1 and L2 have the same probability over prizes. The lotteries each have
an equal prize in one position they have unequal prizes in the other position
then if L1 is the lottery with the better prize then L1 � L2; if neither lottery has
a better prize then L1 ≈ L2.

a c

p 1− p �
b c

p 1− p

�
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p � t � y

Lottery 1 (L1) is 0.6 chance for p and 0.4 chance for y
Lottery 2 (L2) is 0.6 chance for t and 0.4 chance for y

Since Ann prefers p to t, this axiom says that Ann prefers L1 to L2
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Better Chances
Better Chances: Suppose L1 and L2 are two lotteries which have the same
prizes, then if L1 offers a better chance of the better prize, then L1 � L2

a b

p 1− p

p > q
a � b

�
a b

q 1− q
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a b

p 1− p

p > q
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p � t � y

Lottery 1 (L1) is 0.7 chance for p and 0.3 chance for y
Lottery 2 (L2) is 0.6 chance for p and 0.4 chance for y

This axioms states that Ann must prefer L1 to L2
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Reduction of Compound Lotteries

Reduction of Compound Lotteries: If the prize of a lottery is another lottery,
then this can be reduced to a simple lottery over prizes.

This eliminates utility from the thrill of gambling and so the only ultimate
concern is the prizes.
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a

b c

p 1− p

q 1− q

∼

a b c

p (1− p)q (1− p)(1− q)
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Von Neumann-Morgenstern Theorem
Suppose that L is the set of lotteries. A function u : L → < is linear provided
for all L = [L1 : p1, . . . ,Ln : pn] ∈ L,

u(L) =
n∑

i=1

piu(Li)

Von Neumann-Morgenstern Theorem. A binary relation � on L is transitive,
complete, and satisfies Continuity, Better Prizes, Better Chances, Reduction of
Compound Lotteries iff � is representable by a linear utility function
u : L → <.

Moreover, u′ : L → < represents � iff there exists real numbers c > 0 and d
such that u′(·) = cu(·) + d. (“u is unique up to linear transformations.”)
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Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous
axioms, then the agent’s ordinal utility function can be turned into cardinal
utility function.

I Utility is unique only up to linear transformations. So, it still does not make
sense to add two different agents cardinal utility functions.

I Issue with continuity: 1EUR � 1 cent � death, but who would accept a
lottery which is p for 1EUR and (1− p) for death??

I Important issues about how to identify correct descriptions of the
outcomes and options.
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Issue with Better Prizes

Suppose you have a kitten, which you plan to give away to either Ann or
Bob. Ann and Bob both want the kitten very much. Both are deserving, and
both would care for the kitten. You are sure that giving the kitten to Ann (x) is
at least as good as giving the kitten to Bob (y) (so x � y). But you think that
would be unfair to Bob. You decide to flip a fair coin: if the coin lands heads,
you will give the kitten to Bob, and if it lands tails, you will give the kitten to
Ann. (J. Drier, “Morality and Decision Theory” in [HR])
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Give to Ann
L1

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

I x is the outcome “Ann gets the kitten”
I y is the outcome “Bob gets the kitten”

25 / 49



Give to Ann
L1

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

Same outcome

I x is the outcome “Ann gets the kitten”
I y is the outcome “Bob gets the kitten”

25 / 49



Give to Ann
L1

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

Same outcome

I x is the outcome “Ann gets the kitten”
I y is the outcome “Bob gets the kitten”

25 / 49



Give to Ann
L1

�

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

x � y

I x is the outcome “Ann gets the kitten”
I y is the outcome “Bob gets the kitten”
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Give to Ann
L1

�

x x

0.5 0.5

Fair lottery
L2

y x

0.5 0.5

I x is the outcome “Ann gets the kitten, in a fair way”
I y is the outcome “Bob gets the kitten”
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Give to Ann
L1

�

x x

0.5 0.5

Fair lottery
L2

y z

0.5 0.5

Different outcomes

I x is the outcome “Ann gets the kitten”
I z is the outcome “Ann gets the outcome, fairly
I y is the outcome “Bob gets the kitten, fairly”
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Give to Ann
L1

�k
�f

x x

0.5 0.5

Fair lottery
L2

y z

0.5 0.5

Different outcomes

If all the agent cares about is who gets the kitten, then L1 � L2

If all the agent cares about is being fair, then L1 � L2
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Comments on Expected Utility

Options 1/2 1/2
L1 1M 1M

L2 3M 0M

EVM(L1) = 1/2 · 1 + 1/2 · 1 = 1
EVM(L1) = 1/2 · 3 + 1/2 · 0 = 1.5

What numbers should we use in place of monetary value? (moral) value?
personal utility?
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x [p : x, (1− p) : y]
L

y

u(x)

pu(x) + (1− p)u(y)

u(y)

u(EU(L))

u(EU(L))

Risk neutral Risk seeking Risk averse
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Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost
certainly be better off in the long run. By performing a random experiment
sufficiently many times, the probability that the average outcome differs from
the expected outcome can be rendered arbitrarily small.

Gambler’s Ruin: Suppose Ann and Bob start with $1000 each and flip a fair
coin. Ann gives Bob $1 if H and Bob gives Ann $1 if T. If they flip the coin a
sufficiently large number of times, each player is guaranteed to face a sequence
of flips that bankrupts them. The player that faces such a sequence first, will
never have an opportunity to feel the effects of the Law of Large Numbers.
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Allais Paradox

Options Red (1) White (89) Blue (10)

S1 A 1M 1M 1M
B 0 1M 5M

A � B iff C � B
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Allais Paradox

We should not conclude either

(a) The axioms of cardinal utility fail to adequately capture our
understanding of rational choice, or
(b) those who choose A in S1 and D is S2 are irrational.

Rather, people’s utility functions (their rankings over outcomes) are often far
more complicated than the monetary bets would indicate....
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Ellsberg Paradox

30 60
Lotteries Blue Yellow Green

L1 1M 0 0
L2 0 1M 0

L3 1M 0 1M
L4 0 1M 1M

L1 � L2 iff L3 � L4
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D. Kahneman and A. Tversky. Prospect Theory: An Analysis of Decision under Risk. Economet-
rica, Vol. 47, No. 2., pgs. . 263 - 292, 1979.

N. Barberis. Thirty Years of Prospect Theory in Economics: A Review and Assessment. Journal of
Economic Perspectives, 27:1, pgs. 171 - 196, 2013.
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Prospect Theory

Consider a gamble

(x−m; p−m; x−m+1; p−m+1; . . . ; x0; p0; . . . ; xn−1, pn−1; xn, pn)

where xi < xj for i < j and x0 = 0

Expected Utility

n∑
i=−m

piU(W + xi)

where W is current wealth and U(·) is an increasing and concave utility
function.
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Prospect Theory

Consider a gamble

(x−m; p−m; x−m+1; p−m+1; . . . ; x0; p0; . . . ; xn−1, pn−1; xn, pn)

where xi < xj for i < j and x0 = 0

Cumulative Prospect Theory
n∑

i=−m

πiv(xi)

where v(·) is the “value function” is an increasing function with v(0) = 0 and
πi are “decision weights”.

34 / 49



reference dependence: people derive utility from gains and loses, measured
relative to some reference point, rather than from absolute levels of wealth.

loss aversion: people are much more sensitive to losses—even small
losses—than to gains of the same magnitude. Many people turn down a
gamble (−$100 : 1

2 , $110 : 1
2), but this is very hard to explain in classical utility

theory (Rabin, 2000)
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diminishing sensitivity: people tend to be risk averse over moderate probability
gains (they typically prefer a certain gain of $500 to a 50 precent chance of
$1,000) and risk seeking over losses (they prefer a 50 precent chance of loosing
$1000 to loosing $500 for sure)

probability weighting: people tend to overweight the tails of a probability
distribution (they tend to overweight extremely unlikely outcomes).
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Framing Matters

UMD plays Ohio State next year. Suppose that (miraculously) UMD wins the
game. There are two headlines that could run in the Diamondback:

1. “The Terps Won!”
2. “The Buckeyes Lost!”

Do the two headlines have the same meaning?

“The fact that logically equivalent statements evoke different reactions makes
it impossible for Humans to be as reliably rational as Econs.” (Kahneman, pg.
363)
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Would you accept a gamble that offers a 10% chance to win $95 and a 90%
chance to loose $5?

Would you pay $5 to participate in a lottery that offers a 10% chance to win
$100 and a 90% chance to win nothing?

SQ

Win $95 Loose $5

Accept

0.1 0.9

SQ

Win $100 Win $0

Pay $5

0.1 0.9
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“A bad outcome is much more acceptable if it is framed as the cost of a lottery
ticket that did not win than if it is imply described as losing a gamble. We
should not be surprised: losses evokes stronger negative feelings than costs. ”
adsf (Kahneman, pg. 364).
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Suppose you are given $50.

Situation 1: Choose one of the following:
1. You keep $20.
2. There is a 40% chance that you keep $50, otherwise you keep nothing.

Situation 2: Choose one of the following:
1. You loose $30.
2. There is a 40% chance that you keep $50, otherwise you keep nothing.
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Receive $50

$20

Keep $50 0

Gamble Keep $20

0.4 0.6

Receive $50

$20

Keep $50 0

Gamble Loose $30

0.4 0.6
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Logicophilia, a virulent virus, threatens 600 students at the University of
Maryland

1. You must choose between two prevention programs, resulting in:
A: 200 participants will be saved for sure.
B: 33 % chance of saving all of them, otherwise no one will be saved.

72 % of the participants choose A over B.

2. You must choose between two prevention programs, resulting in:
A’: 400 will not be saved, for sure.
B’: 33 % chance of saving all of them, otherwise no one will be saved.

78 % of the participants choose B’ over A’.

[Adapted from Tversky and Kahneman (1981)]

42 / 49



Logicophilia, a virulent virus, threatens 600 students at the University of
Maryland

1. You must choose between two prevention programs, resulting in:
A: 200 participants will be saved for sure.
B: 33 % chance of saving all of them, otherwise no one will be saved.

72 % of the participants choose A over B.
2. You must choose between two prevention programs, resulting in:

A’: 400 will not be saved, for sure.
B’: 33 % chance of saving all of them, otherwise no one will be saved.

78 % of the participants choose B’ over A’.

[Adapted from Tversky and Kahneman (1981)]

42 / 49



Logicophilia, a virulent virus, threatens 600 students at the University of
Maryland

1. You must choose between two prevention programs, resulting in:
A: 200 participants will be saved for sure.
B: 33 % chance of saving all of them, otherwise no one will be saved.

72 % of the participants choose A over B.

2. You must choose between two prevention programs, resulting in:
A’: 400 will not be saved, for sure.
B’: 33 % chance of saving all of them, otherwise no one will be saved.

78 % of the participants choose B’ over A’.

[Adapted from Tversky and Kahneman (1981)]

42 / 49



Logicophilia, a virulent virus, threatens 600 students at the University of
Maryland

1. You must choose between two prevention programs, resulting in:
A: 200 participants will be saved for sure.
B: 33 % chance of saving all of them, otherwise no one will be saved.

72 % of the participants choose A over B.

2. You must choose between two prevention programs, resulting in:
A’: 400 will not be saved, for sure.
B’: 33 % chance of saving all of them, otherwise no one will be saved.

78 % of the participants choose B’ over A’.

[Adapted from Tversky and Kahneman (1981)]

42 / 49



Logicophilia, a virulent virus, threatens 600 students at the University of
Maryland

1. You must choose between two prevention programs, resulting in:
A: 200 participants will be saved for sure.
B: 33 % chance of saving all of them, otherwise no one will be saved.

72 % of the participants choose A over B.

2. You must choose between two prevention programs, resulting in:
A’: 400 will not be saved, for sure.
B’: 33 % chance of saving all of them, otherwise no one will be saved.

78 % of the participants choose B’ over A’.

[Adapted from Tversky and Kahneman (1981)]

42 / 49



Logicophilia, a virulent virus, threatens 600 students at the University of
Maryland

1. You must choose between two prevention programs, resulting in:
A: 200 participants will be saved for sure.
B: 33 % chance of saving all of them, otherwise no one will be saved.

72 % of the participants choose A over B.
2. You must choose between two prevention programs, resulting in:

A’: 400 will not be saved, for sure.
B’: 33 % chance of saving all of them, otherwise no one will be saved.

78 % of the participants choose B’ over A’.

[Adapted from Tversky and Kahneman (1981)]

42 / 49



The Experiment:
A: 0 + 200 for sure. B: (33% 600) + (66% 0).

⇒ 72 % of the participants choose A over B.

A’: 600 - 400 for sure. B’: (33% 600) + (66% 0).

⇒ 78 % of the participants choose B’ over A’.

I Standard decision theory is extensional
I Choosing A and A↔ B implies Choosing B.

Also true of many formalisms of beliefs:
I “Believing” A and `A↔ B implies “Believing” B.
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“The different choices in the two frames fit prospect theory, in which choices
between gambles and sure things are resolved differently, depending on
whether the outcomes are good or bad. Decision makers tend to prefer the
sure thing over the gamble (they are risk averse) when the outcomes are
good. They tend to reject the sure thing and accept the gamble (the are risk
seeking) when both outcomes are negative. ” (Kahneman, pg. 368)
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Schelling’s Example

Suppose your tax depends on your income and how many kids you have.

I The “child deduction” might be, say, 1000 per child:

Tax(i, k) = Base(i)− [max(k, 3) · 1000]

Q1: Should the child deduction be larger for the rich than for the poor?
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Schelling’s Example

Instead of taking the “standard” household to be childless, we could lower
the base tax for everyone (e.g., by 3000), and add a surcharge for households
with less than 3 kids (e.g., 1000/2000/3000).

We could also let the surcharge depend on income.

Tax(i, k) = LowerBase(i) + [(3− k) · Surcharge(i)]

Q2: Should the childless poor pay as large a surcharge as the childless rich?
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Schelling’s Example

Q1: Should the child exemption be larger for the rich than for the poor?

Q2: Should the childless poor pay as large a surcharge as the childless rich?

If you answered “No” to both, then you are not endorsing a coherent policy

As Kahneman puts the point...
“The difference between the tax owed by a childless family and by a family
with two children can be described as a reduction or as an increase. If you
want the poor to receive at least the same benefit as the rich for having
children, then you must want the poor to pay at least the same penalty as the
rich for being childless. ”
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...And One More

Adam and Beth drive equal distances in a year.

Adam switches from a 12-mpg to 14-mpg car.
Beth switches from a 30-mpg to 40-mpg car.

Who will save more gas?

Adam: 10,000
12 = 833 10,000

14 = 714 saving of 119 gallons

Beth: 10,000
30 = 333 10,000

40 = 250 saving of 83 gallons
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“The message about the nature of framing is stark: framing should not be
viewed as an intervention that masks or distorts an underlying preference. At
least in this instance...there is no underlying preference that is masked or
distorted by the frame. Our preferences are about framed problems, and our
moral intuitions are about descriptions, not substance.”
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