PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Phionme Nition ine Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

 wans weme therneconomics Arrow Social Choice

- Course website https://myelms.umd.edu/courses/1133211
- Problem set 1, due on Friday
- Online quiz 2
- Reading: Gaus, Ch 3; Reiss, Ch 4
- Weekly writing: Due Wednesday, 11.59pm. (Comment on the Elster article).

Subjective Expected Utility

 Nash Rational Choice Theory ParetoHarsany $\underset{\text { Arows theovem }}{\text { Rationality }}$

Probability: Suppose that $W=\left\{w_{1}, \ldots, w_{n}\right\}$ is a finite set of states. A probability function on W is a function $P: W \rightarrow[0,1]$ where $\sum_{w \in W} P(w)=1$ (i.e., $P\left(w_{1}\right)+P\left(w_{2}\right)+\cdots+P\left(w_{n}\right)=1$).

Suppose that A is an act for a set of outcomes O (i.e., $A: W \rightarrow O$) and $u: O \rightarrow \mathbb{R}$ is a cardinal utility function. The expected utility of A is:

$$
\sum_{w \in W} P(w) * u(A(w))
$$

Ordinal vs. Cardinal Utility

 wavs wame weice Economics National Chore Tried ArrowSocial Choice
Rationality
arrows theocem
Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$. The difference between $70^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ is not the same as the difference between $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Ordinal vs. Cardinal Utility

Ordinal scale: Qualitative comparisons of objects allowed, no information about differences or ratios.

Cardinal scales:

Interval scale: Quantitative comparisons of objects, accurately reflects differences between objects.
E.g., the difference between $75^{\circ} \mathrm{F}$ and $70^{\circ} \mathrm{F}$ is the same as the difference between $30^{\circ} \mathrm{F}$ and $25^{\circ} \mathrm{F}$ However, $70^{\circ} \mathrm{F}\left(=21.11^{\circ} \mathrm{C}\right)$ is not twice as hot as $35^{\circ} \mathrm{F}\left(=1.67^{\circ} \mathrm{C}\right)$. The difference between $70^{\circ} \mathrm{F}$ and $65^{\circ} \mathrm{F}$ is not the same as the difference between $25^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$.

Ratio scale: Quantitative comparisons of objects, accurately reflects ratios between objects. E.g., 10 lb is twice as much as 5 lb . But, 10 kg is not twice as much as 5 lb .

Suppose that X is a set of outcomes.

A (simple) lottery over X is denoted $\left[x_{1}: p_{1}, x_{2}: p_{2}, \ldots, x_{n}: p_{n}\right]$ where for $i=1, \ldots, n, x_{i} \in X$ and $p_{i} \in[0,1]$, and $\sum_{i} p_{i}=1$.

Let \mathcal{L} be the set of (simple) lotteries over X. We identify elements $x \in X$ with the lottery $[x: 1]$.

Suppose that \succeq is a relation on \mathcal{L}.

Axioms

 Mnsmen hion Economics ArrowSocial Choice TheorySen

Preference

Independence

Continuity

Compound Lotteries The decision maker is indifferent between every compound lottery and the corresponding simple lottery.
\succeq is reflexive, transitive and complete

For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1], L_{1} \succ L_{2}$ if, and only if,
$\left[L_{1}: a, L_{3}:(1-a)\right] \succ\left[L_{2}: a, L_{3}:(1-a)\right]$.
For all $L_{1}, L_{2}, L_{3} \in \mathcal{L}$ and $a \in(0,1]$, if $L_{1} \succ L_{2} \succ L_{3}$, then there exists $a \in(0,1)$ such that $\left[L_{1}: a, L_{3}:(1-a)\right] \sim L_{2}$
$u: \mathcal{L} \rightarrow \Re$ is linear provided for all $L=\left[L_{1}: p_{1}, \ldots, L_{n}: p_{n}\right] \in \mathcal{L}$,

$$
u(L)=\sum_{i=1}^{n} p_{i} u\left(L_{i}\right)
$$

von Neumann-Morgenstern Representation Theorem A binary relation \succeq on \mathcal{L} satisfies Preference, Compound Lotteries, Independence and Continuity iff \succeq is representable by a linear utility function $u: \mathcal{L} \rightarrow \Re$.
Moreover, $u^{\prime}: \mathcal{L} \rightarrow \Re$ represents \succeq iff there exists real numbers $c>0$ and d such that $u^{\prime}(\cdot)=c u(\cdot)+d$. (" u is unique up to linear transformations.")

Cardinal Utility Theory

 Nas shemen mocronomics NashRational Choice Theory ParetoHarsany Arrow Social Choice
Rationality
arrows theocem
Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

Cardinal Utility Theory

 Nash Consorcets parasoox
Rational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Racial Chality

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: 1EUR $\succ 1$ cent \succ death, but who would accept a lottery which is p for 1EUR and $(1-p)$ for death??

Cardinal Utility Theory

Von Neumann-Morgenstern Theorem. If an agent satisfies the previous axioms, then the agent's ordinal utility function can be turned into cardinal utility function.

- Utility is unique only up to linear transformations. So, it still does not make sense to add two different agents cardinal utility functions.
- Issue with continuity: 1EUR $\succ 1$ cent \succ death, but who would accept a lottery which is p for 1EUR and $(1-p)$ for death??
- Important issues about how to identify correct descriptions of the outcomes and options.

Objections

- The axioms are too strong. Do rational decision have to obey these axioms?
- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin. Ann gives Bob $\$ 1$ if H and Bob gives Ann $\$ 1$ if T.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin. Ann gives Bob $\$ 1$ if H and Bob gives Ann $\$ 1$ if T. If they flip the coin a sufficiently large number of times, each player is guaranteed to face a sequence of flips that bankrupts them.

Why maximize expected utility?

Law of Large Numbers: everyone who maximizes expected utility will almost certainly be better off in the long run. By performing a random experiment sufficiently many times, the probability that the average outcome differs from the expected outcome can be rendered arbitrarily small.

Gambler's Ruin: Suppose Ann and Bob start with $\$ 1000$ each and flip a fair coin. Ann gives Bob $\$ 1$ if H and Bob gives Ann $\$ 1$ if T. If they flip the coin a sufficiently large number of times, each player is guaranteed to face a sequence of flips that bankrupts them. The player that faces such a sequence first, will never have an opportunity to feel the effects of the Law of Large Numbers.

- Transitivity (money-pump argument)
- Completeness (very strong)
- Continuity (lotteries with extreme bads)
- Independence (Kitten example, Allais, Ellsberg, etc.)

Objections

- The axioms are too strong. Do rational decision have to obey these axioms?
- No action guidance. Rational decision makers do not prefer an act because its expected utility is favorable, but can only be described as if they were acting from this principle.
- Utility without chance. It seems rather odd from a linguistic point of view to say that the meaning of utility has something to do with preferences over lotteries.

	Bad weather (0.5)	Good weather (0.5)
Crop A	$\$ 10,000 ; 10$	$\$ 30,000 ; 60$
Crop B	$\$ 15,000 ; 36$	$\$ 20,000 ; 50$

Expected income: Crop A: $\$ 20,000 ;$ Crop B: $\$ 17,500$
Expected utility: Crop A: 35; Crop B: 43

The farmer is risk-averse.

To explain the farmer's choice, we can cite the preferences he has over the different outcomes and the beliefs he has about the probabilities of the weather.

To explain the farmer's choice, we can cite the preferences he has over the different outcomes and the beliefs he has about the probabilities of the weather. Most economists would say that the farmer's preferences over the lotteries are given and basic. But this is implausible, and it prevents EUT from being a genuinely explanatory theory. It is implausible because people will have more stable and basic preferences over things they ultimately care about. The farmer in this case cares about his income and the consumption associated with it, not about playing a lottery.

If preferences over prospects are given, all an economists can say is farmer chose crop B because he preferred to do so, but isn't there a more nuanced story that one can tell.

Allais Paradox

	Options	Red (1)	White (89)	Blue (10)
S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$

Allais Paradox

 wans samen weinw Economics ArrowSocial Choice
Rationality

Options Red (1) White (89) Blue (10)

S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

Allais Paradox

Allais Paradox

 Nash Condorcet's Paradox ECO Pareto Parsanyi

ArrowSocial Choice ParetoHarsany
TheorySen $\underset{\substack{\text { Rrows thecrem }}}{\substack{\text { Rity } \\ \text { An }}}$

Allais Paradox

Allais Paradox

 Nashemencemomeconomics| | Options | Red (1) | White (89) | Blue (10) |
| :---: | :---: | :---: | :---: | :---: |
| S_{1} | A | $1 M$ | $1 M$ | $1 M$ |
| | B | 0 | $1 M$ | $5 M$ |
| S_{2} | C | $1 M$ | 0 | $1 M$ |
| | D | 0 | 0 | $5 M$ |

Allais Paradox

 whst Nash Condorcets Paradox ECORational Choice Theory ParetoH Harsanyi Arrow Rationality

Options Red (1) White (89) Blue (10)

S_{1}	A	$1 M$	$1 M$	$1 M$
	B	0	$1 M$	$5 M$
S_{2}	C	$1 M$	0	$1 M$
	D	0	0	$5 M$

$$
A \succeq B \text { iff } C \succeq D
$$

Allais Paradox

We should not conclude either

Allais Paradox

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or

Allais Paradox

 uns nemene wein NasheonsorcespareRational Choice Theory ParetoHarsany Arrow Racial Chality

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or
(b) those who choose A in S_{1} and D is S_{2} are irrational.

Allais Paradox

 Mas seme temo M Nonomics Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrow Racial Chality

We should not conclude either
(a) The axioms of cardinal utility fail to adequately capture our understanding of rational choice, or
(b) those who choose A in S_{1} and D is S_{2} are irrational.

Rather, people's utility functions (their rankings over outcomes) are often far more complicated than the monetary bets would indicate....

Ellsberg Paradox

 Arrow Rationality

	30		60	
	Lotteries	Blue	Yellow	Green
L_{1}	$1 M$	0	0	
L_{2}	0	$1 M$	0	

Ellsberg Paradox

 wans rame ther Arrowsocial Rnalice

	30		60	
Lotteries	Blue	Yellow	Green	
L_{3}	$1 M$	0	$1 M$	
L_{4}	0	$1 M$	$1 M$	

Ellsberg Paradox

Ellsberg Paradox

 Arrowsocial Choice

	30			60	
Lotteries	Blue	Yellow	Green		
L_{1}	$1 M$	0	0		
L_{2}	0		$1 M$	0	
L_{3}	$1 M$	0	$1 M$		
L_{4}	0	$1 M$	$1 M$		

$$
L_{1} \succeq L_{2} \text { iff } L_{3} \succeq L_{4}
$$

A: [\$4,000:0.80]

B: [\$3,000:1]

A: [\$4,000:0.80]

C: [\$4,000:0.20]

B: [\$3,000:1]

D: [\$3,000:0.25]

A: [\$6,000:0.45]

B: [\$3,000:0.9]
$A:[\$ 6,000: 0.45]$

C: [\$6,000:0.001]

B: [\$3,000:0.9]
$D:[\$ 3,000: 0.002]$
D. Kahneman and A. Tversky. Prospect Theory: An Analysis of Decision under Risk. Econometrica, Vol. 47, No. 2., pgs. . 263-292, 1979.
N. Barberis. Thirty Years of Prospect Theory in Economics: A Review and Assessment. Journal of Economic Perspectives, 27:1, pgs. 171-196, 2013.

Prospect Theory

Consider a gamble

$$
\left[x_{-m}: p_{-m} ; x_{-m+1}: p_{-m+1} ; \ldots ; x_{0}: p_{0} ; \ldots ; x_{n-1}: p_{n-1} ; x_{n}: p_{n}\right]
$$

where $x_{i}<x_{j}$ for $i<j$ and $x_{0}=0$
Expected Utility

$$
\sum_{i=-m}^{n} p_{i} U\left(W+x_{i}\right)
$$

where W is current wealth and $U(\cdot)$ is an increasing and concave utility function.

Prospect Theory

 mass Game theoryours Nasch conaraces fagabo ArrowSocial Choice TheorySen $\underset{\text { Arows theorem }}{\substack{\text { Rationality }}}$Consider a gamble

$$
\left(x_{-m} ; p_{-m} ; x_{-m+1} ; p_{-m+1} ; \ldots ; x_{0} ; p_{0} ; \ldots ; x_{n-1}, p_{n-1} ; x_{n}, p_{n}\right)
$$

where $x_{i}<x_{j}$ for $i<j$ and $x_{0}=0$
Cumulative Prospect Theory

$$
\sum_{i=-m}^{n} \pi_{i} v\left(x_{i}\right)
$$

where $v(\cdot)$ is the "value function" is an increasing function with $v(0)=0$ and π_{i} are "decision weights".
reference dependence: people derive utility from gains and loses, measured relative to some reference point, rather than from absolute levels of wealth.
reference dependence: people derive utility from gains and loses, measured relative to some reference point, rather than from absolute levels of wealth.
loss aversion: people are much more sensitive to losses-even small losses-than to gains of the same magnitude. Many people turn down a gamble ($-\$ 100: \frac{1}{2}, \$ 110: \frac{1}{2}$), but this is very hard to explain in classical utility theory (Rabin, 2000)
diminishing sensitivity: people tend to be risk averse over moderate probability gains (they typically prefer a certain gain of $\$ 500$ to a 50 precent chance of $\$ 1,000$) and risk seeking over losses (they prefer a 50 precent chance of loosing $\$ 1000$ to loosing $\$ 500$ for sure)
diminishing sensitivity: people tend to be risk averse over moderate probability gains (they typically prefer a certain gain of $\$ 500$ to a 50 precent chance of $\$ 1,000$) and risk seeking over losses (they prefer a 50 precent chance of loosing $\$ 1000$ to loosing $\$ 500$ for sure)
probability weighting: people tend to overweight the tails of a probability distribution (they tend to overweight extremely unlikely outcomes).

