PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nition ine Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

 Arrow Rationality

- Course website https://myelms.umd.edu/courses/1133211
- Online quiz 3
- Reading: Gaus, Ch 4; Reiss, Ch 4

Taking Stock

 wans rame therneconomics Nash Rational Choice 'Theory ParetoHarsany Arrow Sociaionality- Preferences (transitivity, completeness)
- Ordinal vs. cardinal utilities
- Subjected expected utility
- Payoff is not the same as utility (von Neumann-Morgenstern utilities)
- Rational choice models should be applied with care (attitudes towards risk, attitudes toward ambiguity, act-state dependence, ...)

From Decisions to Games, I

Commenting on the difference between Robin Crusoe's maximization problem and the maximization problem faced by participants in a social economy, von Neumann and Morgenstern write:
"Every participant can determine the variables which describe his own actions but not those of the others. Nevertheless those "alien" variables cannot, from his point of view, be described by statistical assumptions.

From Decisions to Games, I

Commenting on the difference between Robin Crusoe's maximization problem and the maximization problem faced by participants in a social economy, von Neumann and Morgenstern write:
"Every participant can determine the variables which describe his own actions but not those of the others. Nevertheless those "alien" variables cannot, from his point of view, be described by statistical assumptions. This is because the others are guided, just as he himself, by rational principles-whatever that may mean-and no modus procedendi can be correct which does not attempt to understand those principles and the interactions of the conflicting interests of all participants."
(vNM, pg. 11)

Game Situations

 Nens shemenem Economics Nastlemal choce Thicory peretertusany $\underset{\text { Rrrows theorem }}{\text { Ratity }}$1. a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

Bob
 $L \quad R$
 10

1. a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

Bob
 $L \quad R$
 10
 01

1. a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

Bob
 $L \quad R$
 ${ }^{\xi} \begin{array}{llll}U & 11 & 0 & 0 \\ D & 0 & 0 & 11\end{array}$

1. a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

1. a group of self-interested agents (players) involved in some interdependent decision problem

Game Situations

 Nash Condorcets Parabox
Rational Choice Theory Pareto Harsanyi Arrow Rationality

1. a group of self-interested agents (players) involved in some interdependent decision problem

Just Enough Game Theory

 wens nemen wem Economics Nash Consorcets parasooxRational Choice Theory ParetoHarsany Arrow Rationality

A game is a mathematical model of a strategic interaction that includes

- the actions the players can take
- the players' interests (i.e., preferences),
- the "structure" of the decision problem

Just Enough Game Theory

 Nash condorcerss
Rational Choice
Theory ParetoHarsany Arrow Rationality

A game is a mathematical model of a strategic interaction that includes

- the actions the players can take
- the players' interests (i.e., preferences),
- the "structure" of the decision problem

It does not specify the actions that the players do take.

Politics
Game theornawisi Philosophy nes nemen wem Economics
 Arrowsocial Choice
Rationality
Arows theorem

Games

 nes nemen wemmenomics Arrow Social Choice
Rationality
Arrows theerem

Games

 nes nemen wem Economics

Arrow Social Choice
Rationality
arrows theocem

Games

Politicscass mamily fume
 ArrowSocial Choice
Rationality

From Decisions to Games, II

 ws.ans hame thery Nash Rational Choice 'Theory ParetoHarsany Arrow Social ChalityRationaliter
"[T]he fundamental insight of game theory [is] that a rational player must take into account that the players reason about each other in deciding how to play."
R. Aumann and J. Dreze. Rational Expectations in Games. American Economic Review, 98, pp. 72-86, 2008.

The Guessing Game

 Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.

The Guessing Game

 Nas shemen mow Conomics Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess?

The Guessing Game

 Nsshame whern Economics Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess? 100

The Guessing Game

 Nsshame whern Economics Arrow Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess? 100,99

The Guessing Game

 wavs rame werme Economics ArrowSocial Choice
Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
What number should you guess? 100, 96, ..., 67

The Guessing Game

 wash Arrow Social Cholice
Rationality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.
 2, 1

The Guessing Game

 Nas shemen mon ECONOMiCS Arrowsocialionality

Guess a number between $1 \& 100$.
The closest to $2 / 3$ of the average wins.

Solution Concept

 Nash Conaceres Pagabe Rationa Choice heory Paretotarsany ArrowSocial Choice TheorySen Aroustionacenty

A solution concept is a systematic description of the outcomes that may emerge in a family of games.

This is the starting point for most of game theory and includes many variants: Nash equilibrium, backwards induction, or iterated dominance of various kinds.

These are usually thought of as the embodiment of "rational behavior" in some way and used to analyze game situations.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

Suppose there are two players Ann and Bob dividing a cake. Suppose that Ann cuts the cake and then Bob chooses the first piece. (Suppose they only care about the size of the piece). Ann cannot cut the cake exactly evenly, so one piece is always larger than the other.

What should Ann do?

What should Ann do? Bob best choice in Ann's worst choice

What should Ann do? maximize over each row and choose the maximum value

What should Bob do? minimize over each column and choose the maximum value

Zero-Sum Games

Von Neumann Minmax Theorem. In any finite, two-player, zero-sum game, there is always at least one minmax solution.

Let $G=\left\langle\left\{S_{i}\right\}_{i \in N},\left\{u_{i}\right\}_{i \in N}\right\rangle$ be a finite strategic game (each S_{i} is finite and the set of players N is finite).

A strategy profile is an element $\sigma \in S=S_{1} \times \cdots \times S_{n}$
σ is a Nash equilibrium provided for all i, for all $s_{i} \in S_{i}$,

$$
u_{i}(\sigma) \geq u_{i}\left(s_{i}, \sigma_{-i}\right)
$$

Zero-Sum Games

 Nash Condional Choice 'Theory Pareto Harsanyi

The profile of security strategies (D, L) is a Nash equilbirium

Matching Pennies

 Nash Condorcets Paradox ECO ParetoHarsanyi ArrowSocial Choice
Rationality

There are no pure strategy Nash equilibria.

Mixed Strategies

\[

\]

A mixed strategy is a probability distribution over the set of pure strategies. For instance:

- $[1 / 2: H, 1 / 2: T]$
- $[1 / 3: H, 2 / 3: T]$
- ...

Matching Pennies

 Nash Condorcets Parabox
Rational Choice Theory Pareto Harsanyi ArrowSocial Choice
Rationality

The mixed strategy ([1/2:H,1/2:T],[1/2:H,1/2:T]) is the only Nash equilibrium.

Theorem (Von Neumann). For every two-player zero- sum game with finite strategy sets S_{1} and S_{2}, there is a number v, called the value of the game such that:

1. $v=\max _{p \in \Delta\left(S_{1}\right)} \min _{q \in \Delta\left(S_{2}\right)} U_{1}(p, q)=\min _{q \in \Delta\left(S_{2}\right)} \max _{p \in \Delta\left(S_{1}\right)} U_{1}(p, q)$
2. The set of mixed Nash equilibria is nonempty. A mixed strategy profile (p, q) is a Nash equilibrium if and only if

$$
\begin{aligned}
& p \in \operatorname{argmax}_{p \in \Delta\left(S_{1}\right)} \min _{q \in \Delta\left(S_{2}\right)} U_{1}(p, q) \\
& q \in \operatorname{argmax}_{q \in \Delta\left(S_{2}\right)} \min _{p \in \Delta\left(S_{1}\right)} U_{1}(p, q)
\end{aligned}
$$

3. For all mixed Nash equilibria $(p, q), U_{1}(p, q)=v$

Prisoner's Dilemma

Two people commit a crime.

Prisoner's Dilemma

Two people commit a crime. The are arrested by the police, who are quite sure they are guilty but cannot prove it without at least one of them confessing.

Prisoner's Dilemma

 Nash
Rational Choice Theory ParetoHarsany Arrow Social Choice
Rationality

Two people commit a crime. The are arrested by the police, who are quite sure they are guilty but cannot prove it without at least one of them confessing. The police offer the following deal. Each one of them can confess and get credit for it.

Prisoner's Dilemma

 wens nemen wem Economics NashRational Choice Theory ParetoHarsany $\underset{\substack{\text { Rrowstionality } \\ \text { Aneorem }}}{ }$

Two people commit a crime. The are arrested by the police, who are quite sure they are guilty but cannot prove it without at least one of them confessing. The police offer the following deal. Each one of them can confess and get credit for it. If only one confesses, he becomes a state witness and not only is he not punished, he gets a reward.

Prisoner's Dilemma

Two people commit a crime. The are arrested by the police, who are quite sure they are guilty but cannot prove it without at least one of them confessing. The police offer the following deal. Each one of them can confess and get credit for it. If only one confesses, he becomes a state witness and not only is he not punished, he gets a reward. If both confess, they will be punished but will get reduced sentences for helping the police.

Prisoner's Dilemma

Two people commit a crime. The are arrested by the police, who are quite sure they are guilty but cannot prove it without at least one of them confessing. The police offer the following deal. Each one of them can confess and get credit for it. If only one confesses, he becomes a state witness and not only is he not punished, he gets a reward. If both confess, they will be punished but will get reduced sentences for helping the police. If neither confesses, the police honestly admit that there is no way to convict them, and they are set free.

Prisoner's Dilemma

Two options: Cooperate with each other by not confessing (C), Defect by confessing (D)

Prisoner's Dilemma

Two options: Cooperate with each other by not confessing (C), Defect by confessing (D)

Possible outcomes:

Prisoner's Dilemma

Two options: Cooperate with each other by not confessing (C), Defect by confessing (D)

Possible outcomes: Both cooperate (C, C),

Prisoner's Dilemma

Two options: Cooperate with each other by not confessing (C), Defect by confessing (D)

Possible outcomes: Both cooperate (C, C), I cooperate but my partner doesn't (C, D),

Prisoner's Dilemma

Two options: Cooperate with each other by not confessing (C), Defect by confessing (D)

Possible outcomes: Both cooperate (C, C), I cooperate but my partner doesn't (C, D), My partner cooperates but I don't (D, C),

Prisoner's Dilemma

Two options: Cooperate with each other by not confessing (C), Defect by confessing (D)

Possible outcomes: Both cooperate (C, C), I cooperate but my partner doesn't (C, D), My partner cooperates but I don't (D, C), both defect (D, D).

Prisoner's Dilemma

Arrowsocial Choice

Prisoner's Dilemma

Ann's preferences

Prisoner's Dilemma

Politics.ew imwion En can inime Philosophy Nash condorcets Paradox ECO O O OMICS
Rational Choice Theory

ArrowSocial Choice TheorySen
$\underset{\substack{\text { Ratrows theosemality }}}{ }$

Bob's preferences

Prisoner's Dilemma

 Game theory downsmars Theorem Guss
Nash Consorestsp Paratox ECOMOMICS Nash Condorcets Paradox ECO ParetoHarsanyi

$$
\begin{aligned}
& \text { Bob } \\
& \text { C D }
\end{aligned}
$$

What should Ann (Bob) do?

Dominance Reasoning

Dominance Reasoning

Dominance Reasoning

 mars sheorem GeusNash Condorceets Paradox ECOMN
EOMOMICS Nash Consorcets Paradox ECO Pary ArrowSocial Choice
Rationality

Dominance reasoning is appropriate only when probability of outcome is independent of choice.

Dominance reasoning is appropriate only when probability of outcome is independent of choice.

A nasty nephew wants inheritance from his rich Aunt.

Dominance reasoning is appropriate only when probability of outcome is independent of choice.

A nasty nephew wants inheritance from his rich Aunt. The nephew wants the inheritance, but other things being equal, does not want to apologize.

Dominance reasoning is appropriate only when probability of outcome is independent of choice.

A nasty nephew wants inheritance from his rich Aunt. The nephew wants the inheritance, but other things being equal, does not want to apologize. Does dominance give the nephew a reason to not apologize?

Dominance reasoning is appropriate only when probability of outcome is independent of choice.

A nasty nephew wants inheritance from his rich Aunt. The nephew wants the inheritance, but other things being equal, does not want to apologize. Does dominance give the nephew a reason to not apologize? Whether or not the nephew is cut from the will may depend on whether or not he apologizes.

Prisoner's Dilemma

 mass Game theory ArrowSocial Choice
Rationality

$$
\begin{aligned}
& \text { Bob } \\
& \text { C D }
\end{aligned}
$$

What should Ann (Bob) do?

Prisoner's Dilemma

What should Ann (Bob) do? Dominance reasoning

Prisoner's Dilemma

What should Ann (Bob) do? Dominance reasoning

Prisoner's Dilemma

\section*{Bob D
 | ξ^{C} | 3,3 | 1,4 |
| :--- | :--- | :--- |
| ${ }_{D}$ | 4,1 | 2.2 |}

What should Ann (Bob) do? Dominance reasoning is not Pareto!

Prisoner's Dilemma

What should Ann (Bob) do? Think as a group!

Prisoner's Dilemma

What should Ann (Bob) do? Play against your mirror image!

Prisoner's Dilemma

What should Ann (Bob) do? Play against your mirror image!

Prisoner's Dilemma

What should Ann (Bob) do? Change the game...

