PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nimpen Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

Announcements

- Course website

```
https://myelms.umd.edu/courses/1133211
```

- Reading
- Gaus, Ch. 5
- EP, Voting Methods (Stanford Encyclopedia of Philosophy)
- C. List, Social Choice Theory (Stanford Encyclopedia of Philosophy)
- M. Morreau, Arrow's Theorem (Stanford Encyclopedia of Philosophy)

Quiz 4

There are many different voting methods

Many different electoral methods: Plurality, Borda Count, Antiplurality/Veto, and k-approval; Plurality with Runoff; Single Transferable Vote (STV)/Hare; Approval Voting; Cup Rule/Voting Trees; Copeland; Banks; Slater Rule; Schwartz Rule; the Condorcet rule; Maximin/Simpson, Kemeny; Ranked Pairs/Tideman; Bucklin Method; Dodgson Method; Young's Method; Majority Judgment; Cumulative Voting; Range/Score Voting; ...

Choosing how to choose

Pragmatic considerations: Is the procedure easy to use? Is it legal? The importance of ease of use should not be underestimated: Despite its many flaws, plurality rule is, by far, the most commonly used method.

Behavioral considerations: Do the different procedures really lead to different outcomes in practice?

Information required from the voters: What type of information do the ballots convey? I.e., Choosing a single alternative, linearly rank all the candidates, report something about the "intensity" of preference.

Axiomatics: Characterize the different voting methods in terms of normative principles of group decision making.

Principles of group decision making

 Nens shemenem Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Principles of group decision making

 Arrowsocia Choice

- Condorcet Condition: Always choose the candidate that beats every other candidate in head-to-head elections.

Principles of group decision making

 Arrow Rationality

- Condorcet Condition: Always choose the candidate that beats every other candidate in head-to-head elections.
- Unanimity (Pareto): If everyone ranks A above B, then B should not win the election.

Principles of group decision making

 was samene weme Economics ArrowSocial Choice
Rationality

- Condorcet Condition: Always choose the candidate that beats every other candidate in head-to-head elections.
- Unanimity (Pareto): If everyone ranks A above B, then B should not win the election.
- Anonymity: The names of the voters do not matter (if two voters swap votes, then the outcome is unaffected).

Monotonicity

 waveneme wein Economics Arrowsocial hoice
Rationality
Arrow sitereen

A candidate receiving more "support" shouldn't maker her worse off.

Monotonicity

 $\underset{\substack{\text { Rrows theorem }}}{\substack{\text { Rity } \\ \text { and }}}$

A candidate receiving more "support" shouldn't maker her worse off.

More-is-Less Paradox: If a candidate C is elected under a given a profile of rankings of the competing candidates, it is possible that, ceteris paribus, C may not be elected if some voter(s) raise C in their rankings.
P. Fishburn and S. Brams. Paradoxes of Preferential Voting. Mathematics Magazine (1983).

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics| \# voters | 6 | 5 | 4 | 2 | \# voters | 6 | 5 | 4 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B | | A | C | B | A |
| | B | A | C | A | | B | A | C | B |
| | C | B | A | C | | C | B | A | C |

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics| \# voters | 6 | 5 | 4 | 2 | | | | | |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B | | | | | |
| B | A voters | C | A | 5 | 4 | 2 | | | |
| | | | A | C | B | A | | | |
| | C | B | A | C | | B | A | C | B |
| | | | C | B | A | C | | | |

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics| \# voters | 6 | 5 | 4 | 2 | \# voters | 6 | 5 | 4 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B | | A | C | B | A |
| | B | A | C | A | | B | A | C | B |
| | C | B | A | C | | C | B | A | C |

More-is-Less Paradox: Plurality with Runoff

 uns came terer Economics Rational Choice Theory ParetoHarsanyi| \# voters | 6 | 5 | 4 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| | A | C | B | B |
| | B | A | C | A |
| | C | B | A | C |

\# voters | 6 | 5 | 4 | 2 | |
| ---: | :--- | :--- | :--- | :--- |
| | A | C | B | A |
| | B | A | C | B |
| | C | B | A | C |

More-is-Less Paradox: Plurality with Runoff

\# voters	6	5	4	2							
	A	C	B	B	\quad	\# voters	6	5	4	2	
:---	:---	:---	:---	:---	:---						
	B	A	C	A							
C	B	A	C		A						
C	B	A									
			C	A	C						
B	B	A	C								

Winner: A

More-is-Less Paradox: Plurality with Runoff

\# voters	6	5	4	2
	A	C	B	B
	B	A	C	A
	C	B	A	C

\# voters	6	5	4	2
	A	C	B	A
	B	A	C	B
	C	B	A	C

Winner: A

\# voters	6	5	4	2
	A	C	B	B
B	A	C	A	
	C	B	A	C

Winner: A

\# voters	6	5	4	2
	A	C	B	A
	B	A	C	B
	C	B	A	C

Winner: C

More-is-Less Paradox: Plurality with Runoff

 wes shemencer misconomics| \# voters | 6 | 5 | 4 | 2 |
| :---: | :---: | :---: | :---: | :---: |
| | A | C | B | B |
| | B | A | C | A |
| | C | B | A | C |
| | Winner: A | | | |

\# voters	6	5	4	2
	A	C	B	A
B	A	C	B	
C	B	A	C	
	Winner:			

Monotonicity: A candidate receiving more "support" shouldn't maker her worse off.

Monotonicity: A candidate receiving more "support" shouldn't maker her worse off.

No-Show Paradox: A voter may obtain a more preferable outcome if he decides not to participate in an election than, ceteris paribus, if he decides to participate in the election.

Monotonicity: A candidate receiving more "support" shouldn't maker her worse off.

No-Show Paradox: A voter may obtain a more preferable outcome if he decides not to participate in an election than, ceteris paribus, if he decides to participate in the election.

- Twin Paradox: A voter may obtain a less preferable outcome if his "twin" (a voter with the exact same ranking) decides to participate in the election.

Monotonicity: A candidate receiving more support shouldn't make her worse off

No-Show Paradox: A voter may obtain a more preferable outcome if he decides not to participate in an election than, ceteris paribus, if he decides to participate in the election.

- Twin Paradox: A voter may obtain a less preferable outcome if his "twin" (a voter with the exact same ranking) decides to participate in the election.
- Truncation Paradox: A voter may obtain a more preferable outcome if, ceteris paribus, he only reveals part of his ranking of the candidates.

No-Show Paradox: Plurality with Runoff

 Nash Consorcet's Paradox ECO
Rational Choice Theory ParetoHarsanyi

Arrow Rationality

\# voters | 4 | 3 | 1 | 3 | |
| ---: | :--- | :--- | :--- | :--- |
| | A | B | C | C |
| | B | C | A | B |
| | C | A | B | A |

No-Show Paradox: Plurality with Runoff

 mens Game theory Nash condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice TheorySen Arrow Sociadionality

\# voters	4	3	1	3
	A	B	C	C
B	C	A	B	
C	A	B	A	

No-Show Paradox: Plurality with Runoff

Politics asas humil tum
 ArrowSocial Choice
Rationality

\# voters	4	3	1	3
	A	B	C	C
	B	C	A	B
	C	A	B	A

Winner: C

No-Show Paradox: Plurality with Runoff

 Arrowsocial Cholice

\# voters	4	3	1	3	\# voters	2	3	1	3
	A	B	C	C		A	B	C	C
	B	C	A	B		B	C	A	B
	C	A	B	A		C	A	B	A

No-Show Paradox: Plurality with Runoff

 ArrowSocial Choice TheorySen

\# voters | 4 | 3 | 1 | 3 | |
| ---: | :--- | :--- | :--- | :--- |
| | A | B | C | C |
| | B | C | A | B |
| | C | A | B | A |

\# voters	2	3	1	3
	A	B	C	C
B	C	A	B	
C	A	B	A	

Winner: C

No-Show Paradox: Plurality with Runoff

\# voters	4	3	1	3
	A	B	C	C
	B	C	A	B
	C	A	B	A

Winner: C

\# voters	2	3	1	3
	A	B	C	C
	B	C	A	B
C	A	B	A	

Winner: B

Twin Paradox: Plurality with Runoff

 Nash condorcets Paradox ECO ParetoHarsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen Arrow Rationality

\# voters	4	3	1	3	\# voters	2	3	1	3
	A	B	C	C		A	B	C	C
	B	C	A	B		B	C	A	B
	C	A	B	A		C	A	B	A
	Winner: C					Winner: B			

Failures of Monotonicity

 Nas shemen wismo ECONOMiCS Nash condorcets Rational Choice Theory ParetoHarsanyi Arrow RationalityExample: Burlington, VT 2009 Mayoral Race (rangevoting.org/Burlington.html)

Failures of Monotonicity

 Mssheme whern Arrow Rationality

Example: Burlington, VT 2009 Mayoral Race (rangevoting.org/Burlington.html)
D. Felsenthal and N. Tideman. Varieties of Failure of Monotonicity and Participation under Five Voting Methods. Theory and Decision, 75, pgs. 59-77, 2013.

Failures of Monotonicity

Example: Burlington, VT 2009 Mayoral Race (rangevoting.org/Burlington.html)
D. Felsenthal and N. Tideman. Varieties of Failure of Monotonicity and Participation under Five Voting Methods. Theory and Decision, 75, pgs. 59-77, 2013.

Theorem (Moulin). If there are four or more candidates, then every Condorcet consistent voting methods is susceptible to the No-Show paradox.
H. Moulin. Condorcet's Principle Implies the No Show Paradox. Journal of Economic Theory, 45, pgs. 53-64, 1988.

Spoiler Candidates: Plurality Rule

 Nash Condorcet's Paradox ECO OPM PaticS ArrowSocial Choice
Rationality

\# voters | 49 | 48 | 3 | |
| :---: | :---: | :---: | :---: |
| | A | B | C |
| | B | A | B |
| | C | C | A |

Winner: A

Spoiler Candidates: Plurality Rule

 Mame Theory Downsmaneorem Gus
Nash Consorcelts Paradot ECOMOMICS
 ArrowSocial Choice

\# voters	49	48	3
	A	B	C
	B	A	B
	C	C	A

Winner: B

Independence of Irrelevant Alternatives: If the voters in two different electorates rank A and B in exactly the same way, then A and B should be ranked the same way in both elections.

Failure of IIA: Borda Count

 Nash condorcets Paradox ECO ParetoHarsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen Arrowsocia Choice

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

Failure of IIA: Borda Count

 man ane fonomics Nash Condorcets Paradox ECO ParetoHarsanyiRational Choice Theory
ArrowSocial Choice Theory Sen Arrowsocial Cholice

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

$A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)$

Failure of IIA: Borda Count

Politics cese numm tume Mas seme temo
 Arrow Social Choice
Rationality
arrows theocem

\# voters	3	2	2
3	A	B	C
2	B	C	X
1	C	X	A
0	X	A	B

$$
A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)
$$

Failure of IIA: Borda Count

\# voters	3	2	2
3	A	B	C
2	B	C	A
1	C	A	B
0	X	X	X

$A(15)>_{B C} B(14)>_{B C} C(13)>_{B C} X(0)$

Politics ases hum iloum

 ArrowSocial Choice
Rationality

\# voters	3	2	2
3	A	B	C
2	B	C	X
1	C	X	A
0	X	A	B

$C(13)>_{B C} B(12)>_{B C} A(11)>_{B C} X(6)$

Voting Methods

Positional Scoring Rules: Given the rankings of the candidates provided by the voters, each candidate is assigned a score. The candidate(s) with the highest score is(are) declared the winner(s).

Examples: Borda, Plurality

Generalized Scoring Rules: Voters assign scores, or "grades", to the candidates. The candidate(s) with the "best" aggregate score is(are) declared the winner(s).

Examples: Approval Voting, Majority Judgement, Range Voting

Voting Methods

Staged Procedures: The winner(s) is(are) determined in stages. At each stage, one or more candidates are eliminated. The candidate or candidates that are never eliminated are declared the winner(s).

Examples: Plurality with Runoff, Hare, Coombs

Condorcet Consistent Methods: Voting methods that guarantee that the Condorcet winner is elected.

Examples: Copeland, Dodgson, Young

Principles

Condorcet: Elect the Condorcet winner whenever it exists.
Monotonicity: More support should never hurt a candidate.
Participation: It should never be in a voter's best interests not to vote.
Multiple-Districts: If a candidate wins in each district, then that candidate should also win when the districts are merged.

Independence: The group's ranking of A and B should only depend on the voter's rankings of A and B.

More Principles

 uns nemene wein Nash Rational Choice Theory ParetoHarsany $\underset{\text { Rrows theorem }}{\text { Ration }}$Pareto: Never elect a candidate if another candidate is strictly preferred by all voters.

Anonymity: The outcome does not depend on the names of the voters.
Neutrality: The outcome does not depend on the names of the candidates.
Universal Domain: The voters are free to rank the candidates (or grade the candidates) in any way they want. whshemeres sum ECOMOMICS
 Arrow Social Choice
Rationality
arrows theocem

What are the relationships between these principles? Is there a procedure that satisfies all of them?

What are the relationships between these principles? Is there a procedure that satisfies all of them?

A few observations:

- Condorcet winners may not exist.
- No positional scoring method satisfies the Condorcet Principle.
- The Condorcet and Participation principles cannot be jointly satisfied.

Different Perspectives

 Nens shemenem Economics Nash Rational Choice Theory ParetoHarsanyi Arrowsocia ChoiceAxiomatics: Characterize the voting procedures in terms of the principles that they satisfy.

Different Perspectives

 Nash
Rational Choice Theory ParetoHarsany Arrow Rationality

Axiomatics: Characterize the voting procedures in terms of the principles that they satisfy.

Finding a Compromise: Which voting method produces a ranking that comes "closest" to the "consensus" ranking?

Different Perspectives

 ArrowSocial Choice TheorySen

Axiomatics: Characterize the voting procedures in terms of the principles that they satisfy.

Finding a Compromise: Which voting method produces a ranking that comes "closest" to the "consensus" ranking?

Finding the Optimal Choice: Which voting method is most likely to yield the "correct" choice?

Proceduralist View

 Mas semen weymeronomics Arrow Racial Chality
"[W]e could identify a set of ideals with which any collective decision-making procedure ought to comply. We might think of these as procedural ideals, and a process of collective decision making would be more or less justifiable depending on the extent to which it satisfies them...

Proceduralist View

"[W]e could identify a set of ideals with which any collective decision-making procedure ought to comply. We might think of these as procedural ideals, and a process of collective decision making would be more or less justifiable depending on the extent to which it satisfies them...What justifies a [collective] decision-making procedure is strictly a necessary property of the procedure-one entailed by the definition of the procedure alone." (pg. 7)
J. Coleman and J. Ferejohn. Democracy and social choice. Ethics, 97(1): 6-25, 1986..

Epistemic View

"Condorcet begins with the premise that the object of government is to make decisions that are in the best interest of society. This leads naturally to the question: what voting rules are most likely to yield good outcomes?

Epistemic View

"Condorcet begins with the premise that the object of government is to make decisions that are in the best interest of society. This leads naturally to the question: what voting rules are most likely to yield good outcomes?... Why should we buy the idea, though, that there really is such a thing as an objectively "best" choice? Aren't values relative, and isn't the point of voting to strike a balance between conflicting opinions, not to determine a correct one?

Epistemic View

"Condorcet begins with the premise that the object of government is to make decisions that are in the best interest of society. This leads naturally to the question: what voting rules are most likely to yield good outcomes?... Why should we buy the idea, though, that there really is such a thing as an objectively "best" choice? Aren't values relative, and isn't the point of voting to strike a balance between conflicting opinions, not to determine a correct one?...[I]n many situations, differences of opinion arise from differences in values, not erroneous judgments. In this case it seems better to adopt the view that group choice is an exercise in finding a compromise between conflicting opinions."
H. P. Young. Optimal Voting Rules. The Journal of Economic Perspectives, 9:1, pgs. 51-64, 1995.

Which voting rule is best?

Politics
camp thernew Philosituphy

Which voting rule is best?

 uns nemene wein Arrow Social Choice
Rationality
It depends....

Which voting rule is best?

 Arrow Social Choice
Rationality
arrows theocem
It depends....

- Differences in rankings arise because of erroneous judgements about the objectively correct ranking of alternatives. Which voting rules are most likely to yield "good" outcomes?

Which voting rule is best?

It depends....

- Differences in rankings arise because of erroneous judgements about the objectively correct ranking of alternatives. Which voting rules are most likely to yield "good" outcomes?
- Differences in rankings arise because of differences in values. Which of the voting rules selects the "compromise" between the different rankings?
H.P. Young. Optimal Voting Rules. The Journal of Economic Perspectives, 9:1, pgs. 51-64, 1995.

Which voting rule is best?

It depends....

- Differences in rankings arise because of erroneous judgements about the objectively correct ranking of alternatives. Which voting rules are most likely to yield "good" outcomes?
- Differences in rankings arise because of differences in values. Which of the voting rules selects the "compromise" between the different rankings?
H.P. Young. Optimal Voting Rules. The Journal of Economic Perspectives, 9:1, pgs. 51-64, 1995.

Finding a compromise ranking

 Mens samene wemmeronomics Nash condorcetsRational Choice
Theory Arrowsocial Choice

- We need a notion of how far apart one ranking is from another, i.e., we need a notion of distance between rankings.

Finding a compromise ranking

 Mas seme temo Nash Consorcets parasooxRational Choice Theory ParetoHarsany
Arrow Social Choice Theory Sen Arrowsocial Choice
Rationality

- We need a notion of how far apart one ranking is from another, i.e., we need a notion of distance between rankings.
- Given an appropriate notion of distance, what is the definition of a compromise ranking?

Finding a compromise ranking

- We need a notion of how far apart one ranking is from another, i.e., we need a notion of distance between rankings.
- Given an appropriate notion of distance, what is the definition of a compromise ranking? mean or median
J. Kemeny. Mathematics Without Numbers. Daedalus, 88, pgs. 571-591, 1959.

Kemeny Distance

 Mens nemen wex Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

Key idea: The ranking $A>B>C$ is closer to $A>C>B$ than to $B>C>A$.

Kemeny Distance

 Nash Condorcet't Parasoox
Rational Choice Theory ParetoHarsany
ArrowSocial Choice TheorySen Arrow Social Choice
Ratrows theonem

Key idea: The ranking $A>B>C$ is closer to $A>C>B$ than to $B>C>A$.
Why?

	$\{A, B\}$	$\{B, C\}$	$\{A, C\}$
$A>B>C$	$A>B$	$B>C$	$A>C$
$A>C>B$	$A>B$	$C>B$	$A>C$
$B>C>A$	$B>A$	$B>C$	$C>A$

Kemeny Distance

Key idea: The ranking $A>B>C$ is closer to $A>C>B$ than to $B>C>A$.
Why?

	$\{A, B\}$	$\{B, C\}$	$\{A, C\}$
$A>B>C$	$A>B$	$B>C$	$A>C$
$A>C>B$	$A>B$	$C>B$	$A>C$
$B>C>A$	$B>A$	$B>C$	$C>A$

$K(A>B>C, A>C>B)=1$ because the rankings disagree on one pair of candidates, while $K(A>B>C, B>C>A)=2$ because the rankings disagree on two paris of candidates.

Kemeny Distance

 , henmen Economics Nash Consorcet'ts ParadotecOMOMICSArrowSocial Choice
Rationality

	A
A	B B
	C A
B	C
\|	\|
1	1
\|	\|
C	B
A	C - C
B	B 1 A
	A

Mean or Median?

Mean or Median?

Let a_{1}, \ldots, a_{n} be a set of numbers.

The mean is the number x that minimizes the sum of the square of the distance between each data point and x.

The median is the number x that minimizes the sum of the distances between each data point and x

Mean or Median?

 No Gen frow Fonomics

\# voters	21	5	4	11
	A	B	C	C
	B	C	A	B
	C	A	B	A

$K \mid K^{2}$	$A B C A C B \quad B A C B C A C A B C B A$
$A B C$	
$B \subset A$	
$C A B$	
$C B A$	

$K \mid K^{2}$	$A B \subset A \subset B \quad B A C \quad B \subset A \subset C B C B A$					
$A B C$	010	$1 \mid 1$	$1 \mid 1$	$2 \mid 4$	$2 \mid 4$	31
$B \subset A$	$2 \mid 4$	319	$1 \mid 1$	010	$2 \mid 4$	$1 \mid$
$C A B$	$2 \mid 4$	$1 \mid 1$	319	$2 \mid 4$	$0 \mid 0$	1 \|
C B A	319	$2 \mid 4$	$2 \mid 4$	$1 \mid 1$	1 \| 1	01

$n * K \mid n * K^{2}$	A B C	A C B	B A C	B C A	C A B	C B A
(21) A B C	$0 \mid 0$	$21 \mid 21$	$21 \mid 21$	$42 \mid 84$	$42 \mid 84$	$63 \mid 189$
B C A	$2 \mid 4$	$3 \mid 9$	$1 \mid 1$	$0 \mid 0$	$2 \mid 4$	$1 \mid 1$
C A B	$2 \mid 4$	$1 \mid 1$	$3 \mid 9$	$2 \mid 4$	$0 \mid 0$	$1 \mid 1$
C B A	$3 \mid 9$	$2 \mid 4$	$2 \mid 4$	$1 \mid 1$	$1 \mid 1$	$0 \mid 0$

| $n * K \mid n * K^{2}$ | A B C | A C B | B A C | B C A | C A B | C B A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (21) A B C | $0 \mid 0$ | $21 \mid 21$ | $21 \mid 21$ | $42 \mid 84$ | $42 \mid 84$ | $63 \mid 189$ |
| (5) B C A | $10 \mid 20$ | $15 \mid 45$ | $5 \mid 5$ | $0 \mid 0$ | $10 \mid 20$ | $5 \mid 5$ |
| (4) C A B | $8 \mid 16$ | $4 \mid 4$ | $12 \mid 36$ | $8 \mid 16$ | $0 \mid 0$ | $4 \mid 4$ |
| (11) C B A | $33 \mid 99$ | $22 \mid 44$ | $22 \mid 44$ | $11 \mid 11$ | $11 \mid 11$ | $0 \mid 0$ |
| Sum | $51 \mid 135$ | $62 \mid 114$ | $60 \mid 106$ | $61 \mid 111$ | $63 \mid 115$ | $71 \mid 198$ |

$n * K \mid n * K^{2}$	A B C	A C B	B A C	B C A	C A B	C B A
(21) A B C	$0 \mid 0$	$21 \mid 21$	$21 \mid 21$	$42 \mid 84$	$42 \mid 84$	$63 \mid 189$
(5) B C A	$10 \mid 20$	$15 \mid 45$	$5 \mid 5$	$0 \mid 0$	$10 \mid 20$	$5 \mid 5$
(4) C A B	$8 \mid 16$	$4 \mid 4$	$12 \mid 36$	$8 \mid 16$	$0 \mid 0$	$4 \mid 4$
(11) C B A	$33 \mid 99$	$22 \mid 44$	$22 \mid 44$	$11 \mid 11$	$11 \mid 11$	$0 \mid 0$
Sum	$51 \mid 135$	$62 \mid 114$	$60 \mid 106$	$61 \mid 111$	$63 \mid 115$	$71 \mid 198$

\# voters	21	5	4	11
	A	B	C	C
	B	C	A	B
	C	A	B	A

- Median Ranking: $A>B>C$ (Minimizes the sum of the Kemeny distances)
- Mean Ranking: $B>A>C$ (Minimizes the sum of the square of the Kemeny distances)

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose.
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose. In order to choose between different possibilities through the use of discriminating axioms, we have to introduce further axioms, until only and only one possible procedure remains.
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

Axiomatics

"When a set of axioms regarding social choice can all be simultaneously satisfied, there may be several possible procedures that work, among which we have to choose. In order to choose between different possibilities through the use of discriminating axioms, we have to introduce further axioms, until only and only one possible procedure remains. This is something of an exercise in brinkmanship. We have to go on and on cutting alternative possibilities, moving-implicitly-towards an impossibility, but then stop just before all possibilities are eliminated, to wit, when one and only one options remains."
(pg. 354)
A. Sen. The Possibility of Social Choice. The American Economic Review, 89:3, pgs. 349-378, 1999 (reprint of his Nobel lecture).

The Social Choice Model

Notation

 was semme whorn Nonomics Nash condores Choice' Theory ParetoHarsany Arrowsocial Cholice- N is a finite set of voters (assume that $N=\{1,2,3, \ldots, n\}$)
- X is a (typically finite) set of alternatives, or candidates
- A relation on X is a linear order if it is transitive, irreflexive, and complete (hence, acyclic)
- $L(X)$ is the set of all linear orders over the set X
- $O(X)$ is the set of all reflexive and transitive relations over the set X

Notation

 Nash Nastional Choice Theory ParetoHarsanyi ArrowSocial Choice TheorySen- A profile for the set of voters N is a sequence of (linear) orders over X, denoted $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right)$.
- $L(X)^{n}$ is the set of all profiles for n voters (similarly for $\left.O(X)^{n}\right)$
- For a profile $\mathbf{R}=\left(R_{1}, \ldots, R_{n}\right) \in O(X)^{n}$, let $\mathbf{N}_{\mathbf{R}}(A P B)=\left\{i \mid A P_{i} B\right\}$ be the set of voters that rank A above B (similarly for $\mathbf{N}_{\mathbf{R}}(A$ I $B)$ and $\mathbf{N}_{\mathbf{R}}(B P A)$)

Preference Aggregation Methods

 Arrow Rationality

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Preference Aggregation Methods

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$
Comments

- \mathcal{D} is the domain of the function: it is the set of all possible profiles
- Aggregation methods are decisive: every profile \mathbf{R} in the domain is associated with exactly one ordering over the candidates
- The range of the function is $L(X)$: the social ordering is assumed to be a linear order
- Tie-breaking rules are built into the definition of a preference aggregation function

Preference Aggregation Methods

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ratity }}$

Social Welfare Function: $F: \mathcal{D} \rightarrow L(X)$, where $\mathcal{D} \subseteq L(X)^{n}$

Variants

- Social Choice Function: $F: \mathcal{D} \rightarrow \wp(X)$ - \emptyset, where $\mathcal{D} \subseteq L(X)^{n}$ and $\wp(X)$ is the set of all subsets of X.
- Allow Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X
- Allow Indifference and Ties: $F: \mathcal{D} \rightarrow O(X)$ where $O(X)$ is the set of orderings (reflexive and transitive) over X and $\mathcal{D} \subseteq O(X)^{n}$

Examples

 was seme whorn conomics Arrowsocial
Rationality
Arrows theocem
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))

Examples

 Mas seme temo N Nonomics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
$\operatorname{Maj}(\mathbf{R})=>_{M}$ where $A>_{M} B$ iff $\left|\mathbf{N}_{\mathbf{R}}(A P B)\right|>\left|\mathbf{N}_{\mathbf{R}}(B P A)\right|$
(the problem is that $>_{M}$ may not be transitive (or complete))
$\operatorname{Borda}(\mathbf{R})=\geq_{B C}$ where $A \geq_{B C} B$ iff the Borda score of A is greater than the Borda score for B.
(the problem is that $\geq_{B C}$ may not be a linear order)

Characterizing Majority Rule

 Mens.amentuen $\underset{\text { Rrrows theorem }}{\text { Ratity }}$
When there are only two candidates A and B, then all voting methods give the same results

Characterizing Majority Rule

 Nash fame theorn Economics Nash Condorcets Parasox Leory ParetoHarsany ArrowSocial ChoiceRationality

When there are only two candidates A and B, then all voting methods give the same results

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

Characterizing Majority Rule

When there are only two candidates A and B, then all voting methods give the same results

Majority Rule: A is ranked above (below) B if more (fewer) voters rank A above B than B above A, otherwise A and B are tied.

When there are only two options, can we argue that majority rule is the "best" procedure?
K. May. A Set of Independent Necessary and Sufficient Conditions for Simple Majority Decision. Econometrica, Vol. 20 (1952).

