PHIL309P

Philosophy, Politics and Economics

Eric Pacuit
University of Maryland, College Park
pacuit.org
Politics cases maxan Nition ine Philosophy Game The May's Theorem Gaus Nash Condorcet's Paradox kneeted
Rational Choice Theory. ParetoHarsany
ArrowSocial Choice TheorySen
Rationality
Arrow's Theorem

- Final Exam: Thu, May 12 8:00AM - 10:00AM, EGR 2116 (see Testudo)
- In-class exam
- Consult problem sets (Problem sets $2 \& 3$ will be graded by Thursday or Friday), quizzes
- Review sheet will be provided on Thursday or Friday
- Multiple choice, short answers, short essay (questions will be provided).
- Final class: Tuesday, May 10
- Final comment: General reflections about the course, topics you found most interesting, topics you wish we spent more time on, etc.
- A couple quizzes coming.
- I'll be in my office on Wednesday of finals week in case you have questions about the final (you can schedule an appointment to be sure that I'm there).

Fair Division

 NShiconal chore ECOMOMICS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ration }}$Suppose that there is a set G of objects that must be divided among a group of individuals.

Fair Division

 wens nemen wem Economics NashRational Choice Theory ParetoHarsany Arrow Social Choice
Rationality
arrows theocem

Suppose that there is a set G of objects that must be divided among a group of individuals.
Questions:

- Are the items divisible or indivisible?

Fair Division

Suppose that there is a set G of objects that must be divided among a group of individuals.
Questions:

- Are the items divisible or indivisible?
- A set of indivisible objects
- Several divisible objects
- A single heterogeneous object

Fair Division

Suppose that there is a set G of objects that must be divided among a group of individuals.
Questions:

- Are the items divisible or indivisible?
- A set of indivisible objects
- Several divisible objects
- A single heterogeneous object
- Are side-payments allowed?

Fair Division

 Mas semen wey NashRational Choice Theory ParetoHarsany Arrow Rationality

Suppose that there is a set G of objects that must be divided among a group of individuals.
Questions:

- Are the items divisible or indivisible?
- A set of indivisible objects
- Several divisible objects
- A single heterogeneous object
- Are side-payments allowed?
- Dividing "goods" or "bads"? or both?
- Individual utilities of the goods: Ordinal? Cardinal? Ns.ans
 ArrowSocial Choice
Rationality
- Individual utilities of the goods: Ordinal? Cardinal?
- Maximize social welfare:
- Utilitarian: maximize $\sum_{i} u_{i}$
- Egalitarian: maximize $\min _{i}\left\{u_{i}\right\}$
- Nash: maximize $\Pi_{i} u_{i}$
- Individual utilities of the goods: Ordinal? Cardinal?
- Maximize social welfare:
- Utilitarian: maximize $\sum_{i} u_{i}$
- Egalitarian: maximize $\min _{i}\left\{u_{i}\right\}$
- Nash: maximize $\Pi_{i} u_{i}$
- Preferences over bundles, or allocations: Separable? Additive? Lifted from an ordering over the objects?

Literature

 Nash conoracets parabox ECOM Pareto Harsanyi Arrow Socia Choice
Rationality
H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003.
S. Brams and A. Taylor. Fair Division: From cake-cutting to dispute resolution. Cambridge University Press, 1998.

Suppose that G is a set of goods to be distributed among n individuals.
An allocation is a function $A: N \rightarrow \wp(G)$ assigning goods to individuals (note that, in general, it need not be the case that $\left.\bigcup_{i \in N} A(i)=G\right)$.

For each $i \in N, u_{i}$ is i 's utility function on bundles of goods. Then, the utility of an allocation is $u_{i}(A)=u_{i}(A(i))$.

A profile of utilities for an allocation A is a tuple $\left(u_{1}(A(1)), \ldots, u_{n}(A(n))\right)$, where $N=\{1, \ldots, n\}$ is the set of individuals.

Pareto Efficiency

 Nastional Choice The Chy pepetobessan Arrow Rationality

Suppose that A and A^{\prime} are allocations.
A Pareto dominates A^{\prime} provided for all $i \in N, u_{i}(A(i)) \geq u_{i}\left(A^{\prime}(i)\right)$ and there is a $j \in N$ such that $u_{j}(A(j))>u_{j}\left(A^{\prime}(j)\right)$.
A is Pareto efficient if it is not Pareto dominated. (That is, there is no A^{\prime} such that A^{\prime} Pareto dominates A)

Envy-Freeness

 Nashemences max ECOnOMICS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$An allocation A is envy-free provided there is no individual i such that

$$
u_{i}(A(j))>u_{i}(A(i))
$$

for some j.

Proportionality

 Mas seme temo Nastiona chowe Theory peretediscmy $\underset{\text { Rrrows theorem }}{\text { Ratity }}$Suppose that G is the set of all the objects and there are n individuals. An allocation A is proportional provided for all i :

$$
u_{i}(A) \geq \frac{1}{n} u_{i}(G)
$$

Note that this only makes sense when the utilities are monotonic: for all sets of goods $C \subseteq D \subseteq G, u_{i}(C) \leq u_{i}(D)$.

Equitability

 wens nemen wem Economics $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

An allocation A is equitable provided for all i, j :

$$
\left.u_{i}(A(i))=u_{j}(A(j))\right)
$$

Paradoxes of Fair Division: Indivisible Goods

 ArrowSocial Choice TheorySen Rationality
S. Brams, P. Edelman and P. Fishburn. Paradoxes of Fair Division. Journal of Philosophy, 98:6, pgs. 300-314, 2001.

No Envy-Free Division

 Nash condorcets Paradox LCO PCOM ParetoHarsanyi
Rational Choice Theory
ArrowSocial Choice TheorySen

Arrowsocial Choice

$$
\begin{array}{ll}
\text { Ann: } & 1>2>3 \\
\text { Bob: } & 1>3>2 \\
\text { Cath: } & 2>1>3
\end{array}
$$

No Envy-Free Division

 Arrow Rationality

$$
\begin{array}{ll}
\text { Ann: } & 1>2>3 \\
\text { Bob: } & 1>3>2 \\
\text { Cath: } & 2>1>3
\end{array}
$$

There are no envy-free divisions.

Envy-Freeness and Efficiency

 mays sheorem Geus Nash Condorceets Paradox ECO\OMOMICS Nash Consorcet's Paradox ECO COM ParetoHarsanyiRational Choice Theory

Arrow Rationality

Ann: $1>2>3>4>5>6$
Bob: $4>3>2>1>5>6$
Cath: $5>1>2>6>3>4$

Envy-Freeness and Efficiency

 Nash consorcetsRational Choice
Theory ParetoHarsanyi Arrow Rationality

```
Ann: 1 > 2 > 3>4>5>6
Bob: 4>3>2>1>5>6
Cath: 5 > 1>2>6> > > 4
```

Ann: $\{1,3\}$
Bob: $\{2,4\}$
Cath: $\{5,6\}$

Envy-Freeness and Efficiency

 NashRational Choice
Theory ParetoHarsanyi Arrow Sociaionality

```
Ann: 1 > 2 > 3 > 4>5 > 6
Bob: 4>3>2>1>5>6
Cath: 5 > 1>2>6>3>4
```

Ann: $\{1,3\} \quad$ Ann: $\{1,2\}$
Bob: $\{2,4\} \quad$ Bob: $\{3,4\}$
Cath: $\{5,6\} \quad$ Cath: $\{5,6\}$

Envy-Freeness and Efficiency

 Nash consorcetssRational Choice
Theory ParetoHarsanyi Arrowsocial Cholice
Ann: $1>2>3>4>5>6$
Bob: $4>3>2>1>5>6$
Cath: $5>1>2>6>3>4$

Ann: $\{1,3\} \quad$ Ann: $\{1,2\}$
Bob: $\{2,4\} \quad$ Bob: $\{3,4\}$
Cath: $\{5,6\} \quad$ Cath: $\{5,6\}$

Envy-Freeness and Efficiency

 mass Game theoryours Nash Condorcets ParresoxRational Choice Theory ParetoHarsany
ArrowSocial Choice Theory Sen Arrowsocial Rality

Ann: $1>2>3>4>5>6$
Bob: $4>3>2>1>5>6$
Cath: $5>1>2>6>3>4$

Ann: $\{1,3\} \quad$ Ann: $\{1,2\}$
Bob: $\{2,4\} \quad$ Bob: $\{3,4\}$
Cath: $\{5,6\} \quad$ Cath: $\{5,6\}$
There is no other division that guarantees envy freeness

Avoid envy or help the worse off?

$$
\begin{array}{cc}
\text { Ann: } 1>2>3>4>5 & > \\
\text { Bob: } 5>6>2>1>4 & > \\
\text { Cath: } 3>6>5 & >4
\end{array}
$$ Nesemmen

 Arrowsocial Choice
Rationality
Arows theorem

- Three efficient divisions: $(12,56,34),(12,45,36)$ and $(14,25,36)$ Nesemmen
 Arrowsocial Choice
Rationality
Arows theorem
Ann: $1>2>3>4>5>6$
Bob: $5>6>2>1>4>3$
Cath: $3>6>5>4>1>2$
- Three efficient divisions: $(12,56,34),(12,45,36)$ and $(14,25,36)$ N
 Arrowsocial Choice
Rationality
Arows theorem
Ann: $1>2>3>4>5>6$
Bob: $5>6>2>1>4>3$
Cath: $3>6>5>4>1>2$
- Three efficient divisions: $(12,56,34)$, $(12,45,36)$ and $(14,25,36)$

```
Ann: 1 > 2 > 3 > 4>5 > 6
Bob:5>6>2>1>4>3
Cath: 3>6>5>4>1>2
```

- Three efficient divisions: $(12,56,34),(12,45,36)$ and $(14,25,36)$
- The only envy-free and efficient division is $(14,25,36)$

- Three efficient divisions: $(12,56,34),(12,45,36)$ and $(14,25,36)$
- The only envy-free and efficient division is $(14,25,36)$

- Three efficient divisions: $(12,56,34),(12,45,36)$ and $(14,25,36)$
- The only envy-free and efficient division is $(14,25,36)$

Voting

 whene Fconomics Nast Condorcet's Paratox ECCO ParetoHarsanyi$\underset{\text { Rrrows theorem }}{\text { Ratity }}$
Ann: $1>2>3>4>5>6$
Bob: $5>6>2>1>4>3$
Cath: $3>6>5>4>1>2$

$\underline{\text { Allocations }}$	Preferences
$A_{1}:(12,56,34)$	Ann: $A_{1} I_{A} A_{2} P_{A} A_{3}$
$A_{2}:(12,45,36)$	Bob: $A_{1} P_{B} A_{3} P_{B} A_{2}$
$A_{3}:(14,25,36)$	Cath: $A_{2} I_{C} A_{3} P_{C} A_{1}$

Voting

 Whename fron Economics Nash Condorcets ParadoxRational Choice Theory
ParetoH Harsanyi Arrow Rationality

Ann: $1>2>3>4>5>6$
Bob: $5>6>2>1>4>3$
Cath: $3>6>5>4>1>2$

$\underline{\text { Allocations }}$	Preferences
$A_{1}:(12,56,34)$	Ann: $A_{1} I_{A} A_{2} P_{A} A_{3}$
$A_{2}:(12,45,36)$	Bob: $A_{1} P_{B} A_{3} P_{B} A_{2}$
$A_{3}:(14,25,36)$	Cath: $A_{2} I_{C} A_{3} P_{C} A_{1}$

Conclusion: The unique envy-free division would lose in a vote to any of the other efficient divisions

Maximize Total Utility

 mavs Treorem Geus Nash Condorcets ParaboxRational Choice Theory
Pareto Harsanyi

Maximize Total Utility

Conclusion: Maximizing the total utility (i.e., the modified Borda score) will not select the unique envy-free division.

Improve the Worse Off

Improve the Worse Off

Conclusion: (Lexicographic) Maximin will not select the unique envy-free division.

Fair Division

 nes nemene wemeconomics Arrowsocia Choice

www.spliddit.org

Adjusted Winner

Adjusted Winner

 Nash consorcets Paraod Theory ParetoHarsany Arrowsocial Ranality

Adjusted winner $(A W)$ is an algorithm for dividing n divisible goods among two people (invented by Steven Brams and Alan Taylor).

For more information see

- Fair Division: From cake-cutting to dispute resolution by Brams and Taylor, 1998
- The Win-Win Solution by Brams and Taylor, 2000
- www.nyu.edu/projects/adjustedwinner
- Fair Outcomes, Inc.: www.fairoutcomes.com

Item Ann Bob
Suppose Ann and Bob are dividing three goods \{A, B, C \}

A
B
C

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100
Item	Ann	Bob
A	5	0
B	65	0
C	0	50
Total	70	50

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100
Item	Ann	Bob
A	5	0
B	65	0
C	0	50
Total	70	50

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100
Item	Ann	Bob
A	5	0
B	65	0
C	0	50
Total	70	50

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Find the item whose ratio is closes to $1: 65 / 46 \geq$ $5 / 4 \geq 1 \geq 30 / 50$

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100
Item	Ann	Bob
A	0	4
B	65	0
C	0	50
Total	65	54

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Find the item whose ratio is closes to $1: 65 / 46 \geq$ $5 / 4 \geq 1 \geq 30 / 50$

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100
Item	Ann	Bob
A	0	4
B	65	0
C	0	50
Total	65	54

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Still not equal, so give (some of) B to Bob: $65 p=$ $100-46 p$ yielding $p=\frac{100}{111}=0.901$

Item	Ann	Bob
A	5	4
B	65	46
C	30	50
Total	100	100
Item	Ann	Bob
A	0	4
B	58.56	4.56
C	0	50
Total	58.56	58.56

Suppose Ann and Bob are dividing three goods \{A, B, C $\}$

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Still not equal, so give (some of) B to Bob: $65 p=$ $100-46 p$ yielding $p=\frac{100}{111}=0.901$

Easy Observations

 Nash Condorcers ArrowSocial Choice
Rationality

- For two-party disputes, proportionality and envy-freeness are equivalent.
- AW only produces equitable allocations (equitability is essentially built in to the procedure).
- AW produces allocations in which at most one good is split.

Adjusted Winner is Fair

 Nastional Choies Theory peretofyrsany Arrow Sociaionality

Theorem (Brams and Taylor) AW produces allocations that are efficient, equitable and envy-free (with respect to the announced valuations).

Strategizing

 Nashtional choice Theory Peratetorassny Arrow Socialionality

In Adjusted Winner, can the people improve their allocation by misrepresenting their preferences?

Strategizing

 uns nemene wein Nash consor Choice Theory ParetoHarsanyi Arrowsocial CholiceIn Adjusted Winner, can the people improve their allocation by misrepresenting their preferences?

Yes

Strategizing: Example

 National Choice Theory Pareto Harssany Arrow
Raciaionality
arrows theocem

Item	Ann	Bob
Matisse	75	25
Picasso	25	75

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his or her points.

Strategizing: Example

Suppose Ann knows Bob's preferences, but Bob does not know Ann's.

Item	Ann	Bob
M	75	25
P	25	75

Item	Ann	Bob
M	26	25
P	74	75

So Ann will get M plus a portion of P.
According to Ann's announced allocation, she receives 50.33 points
According to Ann's actual allocation, she receives $75+0.33 * 25=83.33$ points.

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationaly }}$

However, while honesty may not always be the best policy it is the only safe one, i.e., the only one which will guarantee 50%.

Main Question

Politics

 $\underset{\text { Rrrows theorem }}{\text { Ratity }}$

How do we cut a cake fairly?

Main Question

How do we cut a cake fairly?

- A cake is a metaphor for a divisible heterogeneous good.

Main Question

 Nash fame theorn Economics Nast comana chiot Theary prepethussmy Arrow Rationality
How do we cut a cake fairly?

- We are interested not only in the existence of a (fair) division but also a constructive procedure (an algorithm) for finding it
- discrete procedures
- continuous moving knife procedures

Main Question

 Arrow Sociaionolity

How do we cut a cake fairly?

- Different results known for 2,3,4, . . cutters!

Main Question

 Arrow Sociationality

How do we cut a cake fairly?

- Many ways to make this precise!

Main References

 Nastleana whice Thecr prefertuss Arrow SociaionnaiceRationality
S. Brams and A. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. 1996.
J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair If You Can. 1998.
J. Barbanel. The Geometry of Efficient Fair Division. 2005.

The Cake-Cutting Problem

 Arrow Social Choice
Rationality

The cake is the unit interval $[0,1]$

The Cake-Cutting Problem

 wat same thern Nash Condorcets Paradox Rational Choice Theory ParetoHarsanyi ArrowSocial ChoiceRationality

The cake is the unit interval $[0,1]$
Only parallel, vertical cuts, perpendicular to the horizontal x-axis are made

The Cake-Cutting Problem

 ArrowSocial Choice
Rationality

The cake is the unit interval $[0,1]$
Only parallel, vertical cuts, perpendicular to the horizontal x-axis are made

The Cake-Cutting Problem

 Mas semen wey Nash Rational Choice Theory ParetoHarsany Arrow RationalityEach player i has a continuous value measure $v_{i}(x)$ on $[0,1]$ such that

- $v_{i}(x) \geq 0$ for $x \in[0,1]$
- v_{i} is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_{i} on $[0,1]$ is 1 (probability density function)

The Cake-Cutting Problem

 Nash Condorcets Paragox Rational Choice Theory ParetoHarsany Arrow Rationality

Each player i has a continuous value measure $v_{i}(x)$ on $[0,1]$ such that

- $v_{i}(x) \geq 0$ for $x \in[0,1]$
- v_{i} is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_{i} on $[0,1]$ is 1 (probability density function)
value of finite number of disjoint pieces equals the value of their union (hence, no subpieces have greater value than the larger piece containing them).

The Cake-Cutting Problem

 ArrowSocial Choice TheorySen ${ }_{\text {Rrows }}$ Rationality

Each player i has a continuous value measure $v_{i}(x)$ on $[0,1]$ such that

- $v_{i}(x) \geq 0$ for $x \in[0,1]$
- v_{i} is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_{i} on $[0,1]$ is 1 (probability density function)
a single cut (which defines the border of a piece) has no area and so has no value.

The Cake-Cutting Problem

 Mas sime therows Monomics ArrowSocial Choice TheorySen ${ }_{\text {Rrows }}$ RheoremEach player i has a continuous value measure $v_{i}(x)$ on $[0,1]$ such that

- $v_{i}(x) \geq 0$ for $x \in[0,1]$
- v_{i} is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_{i} on $[0,1]$ is 1 (probability density function)
no portion of cake is of positive measure for one player and zero measure for another player.

The Cake-Cutting Problem

The Cake-Cutting Problem

 wavs rame tuen Economics

Arrow Rationality

The Cake-Cutting Problem

Fairness

 Mas semen wis Naghtoman chioce Theary Arrowsocial ChoiceRationality
Arrows theorem

A division of a cake $[0,1]$ for n players is a partition $\left(S_{1}, \ldots, S_{n}\right)$ (i.e., each $S_{i} \subseteq[0,1], \cup_{i} S_{i}=[0,1]$ and $\left.S_{i} \cap S_{j}=\emptyset\right)$. We are typically interested in divisions where each S_{i} is contiguous (i.e., a subinterval of $[0,1]$).

Fairness

 Mas semen wis Naghtoman chioce Theary Arrowsocial ChoiceRationality
Arrows theorem

A division of a cake $[0,1]$ for n players is a partition $\left(S_{1}, \ldots, S_{n}\right)$ (i.e., each $S_{i} \subseteq[0,1], \cup_{i} S_{i}=[0,1]$ and $\left.S_{i} \cap S_{j}=\emptyset\right)$. We are typically interested in divisions where each S_{i} is contiguous (i.e., a subinterval of $[0,1]$).

Fairness

A division of a cake $[0,1]$ for n players is a partition $\left(S_{1}, \ldots, S_{n}\right)$ (i.e., each $S_{i} \subseteq[0,1], \cup_{i} S_{i}=[0,1]$ and $\left.S_{i} \cap S_{j}=\emptyset\right)$. We are typically interested in divisions where each S_{i} is contiguous (i.e., a subinterval of $[0,1]$).

A division $\left(S_{1}, \ldots, S_{n}\right)$ is

- Fair (Proportional): for each $i, v_{i}\left(S_{i}\right) \geq \frac{1}{n}$

Fairness

A division of a cake $[0,1]$ for n players is a partition $\left(S_{1}, \ldots, S_{n}\right)$ (i.e., each $S_{i} \subseteq[0,1], \cup_{i} S_{i}=[0,1]$ and $\left.S_{i} \cap S_{j}=\emptyset\right)$. We are typically interested in divisions where each S_{i} is contiguous (i.e., a subinterval of $[0,1]$).

A division $\left(S_{1}, \ldots, S_{n}\right)$ is

- Fair (Proportional): for each $i, v_{i}\left(S_{i}\right) \geq \frac{1}{n}$
- Envy-Free: for each $i, j, v_{i}\left(S_{i}\right) \geq v_{i}\left(S_{j}\right)$

Fairness

A division of a cake $[0,1]$ for n players is a partition $\left(S_{1}, \ldots, S_{n}\right)$ (i.e., each $S_{i} \subseteq[0,1], \cup_{i} S_{i}=[0,1]$ and $\left.S_{i} \cap S_{j}=\emptyset\right)$. We are typically interested in divisions where each S_{i} is contiguous (i.e., a subinterval of $[0,1]$).

A division $\left(S_{1}, \ldots, S_{n}\right)$ is

- Fair (Proportional): for each $i, v_{i}\left(S_{i}\right) \geq \frac{1}{n}$
- Envy-Free: for each $i, j, v_{i}\left(S_{i}\right) \geq v_{i}\left(S_{j}\right)$
- Equitable: for each $i, j, v_{i}\left(S_{i}\right)=v_{j}\left(S_{j}\right)$

Fairness

A division of a cake $[0,1]$ for n players is a partition $\left(S_{1}, \ldots, S_{n}\right)$ (i.e., each $S_{i} \subseteq[0,1], \cup_{i} S_{i}=[0,1]$ and $\left.S_{i} \cap S_{j}=\emptyset\right)$. We are typically interested in divisions where each S_{i} is contiguous (i.e., a subinterval of $[0,1]$).

A division $\left(S_{1}, \ldots, S_{n}\right)$ is

- Fair (Proportional): for each $i, v_{i}\left(S_{i}\right) \geq \frac{1}{n}$
- Envy-Free: for each $i, j, v_{i}\left(S_{i}\right) \geq v_{i}\left(S_{j}\right)$
- Equitable: for each $i, j, v_{i}\left(S_{i}\right)=v_{j}\left(S_{j}\right)$
- Efficient: there is no other division $\left(T_{1}, \ldots, T_{n}\right)$ such that $v_{i}\left(T_{i}\right) \geq v_{i}\left(S_{i}\right)$ for all i and there is some j such that $v_{j}\left(T_{j}\right)>v_{j}\left(S_{j}\right)$.

Truthfulness

 Arrow Rationality

Some procedures ask players to represent their preferences.

This representation need not be "truthful"

Typically, it is assumed that agents will follow a maximin strategy (maximize the set of items that are guaranteed)

Two Players

Procedure: one player cuts the cake into two portions and the other player chooses one of the portions.

Two Players

 Mas seme temo conomics Nash Condorcets ParaotoxRational Choice
Theory Arrowsocia Choice

Procedure: one player cuts the cake into two portions and the other player chooses one of the portions.

Maximin strategy: Suppose that A is the cutter. If A has no information about the other player's valuation, then A should cut the cake at some point x so that the value of the portion to the left of x is equal to the value of the portion to the right.

Two Players

Procedure: one player cuts the cake into two portions and the other player chooses one of the portions.

Maximin strategy: Suppose that A is the cutter. If A has no information about the other player's valuation, then A should cut the cake at some point x so that the value of the portion to the left of x is equal to the value of the portion to the right.

This strategy creates an envy-free and efficient allocation, but it is not necessarily equitable.

Example

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$
Suppose that the cake is half chocolate and have vanilla.
Ann values the vanilla half twice as much as the chocolate half:

$$
v_{A}(x)= \begin{cases}4 / 3 & x \in[0,1 / 2] \\ 2 / 3 & x \in(1 / 2,1]\end{cases}
$$

Bob values both sides equally:

$$
v_{B}(x)= \begin{cases}1 & x \in[0,1 / 2] \\ 1 & x \in(1 / 2,1]\end{cases}
$$

Where should A cut the cake?

Example

 Noshem freme Economics
$v_{A}(x)= \begin{cases}4 / 3 & x \in[0,1 / 2] \\ 2 / 3 & x \in(1 / 2,1]\end{cases}$
$v_{B}(x)= \begin{cases}1 & x \in[0,1 / 2] \\ 1 & x \in(1 / 2,1]\end{cases}$
A should cut the cake at $x=3 / 8$:

$$
(4 / 3)(x-0)=4 / 3(1 / 2-x)+2 / 3(1-1 / 2)
$$

Example

 nestem Economics NashRational Choice
Theory ParetoHarsany
$v_{A}(x)= \begin{cases}4 / 3 & x \in[0,1 / 2] \\ 2 / 3 & x \in(1 / 2,1]\end{cases}$
$v_{B}(x)= \begin{cases}1 & x \in[0,1 / 2] \\ 1 & x \in(1 / 2,1]\end{cases}$
A should cut the cake at $x=3 / 8$:

$$
(4 / 3)(x-0)=4 / 3(1 / 2-x)+2 / 3(1-1 / 2)
$$

Note that the portions are not equitable (B receive $5 / 8$ according to his valuation)

Cut and Choose is not Equitable

 mess Game theoryours Nash Condorcets Paradox ECO ParetoHarsany Arrow RationalitySuppose A values the vanilla half twice as much as the chocolate half:
$v_{A}(x)= \begin{cases}4 / 3 & x \in[0,1 / 2] \\ 2 / 3 & x \in(1 / 2,1]\end{cases}$

$$
v_{B}(x)= \begin{cases}1 & x \in[0,1 / 2] \\ 1 & x \in(1 / 2,1]\end{cases}
$$

A should cut the cake at $x=3 / 8$:

$$
(4 / 3)(x-0)=4 / 3(1 / 2-x)+2 / 3(1-1 / 2)
$$

The portions are not equitable: B receive $5 / 8$ according to his valuation.

The Surplus Procedure

 Nashmonacheme ECOnOMICS ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Ratity }}$S. Brams, M. A. Jones and C. Klamler. Better Ways to Cut a Cake. Notices of the AMS, 53:11, pgs. 1314-1321, 2006.

The Surplus Procedure

 Arrowscial Choice
Rationality

The Surplus Procedure

 waven shme theormeconomics Arrow
Ration Chality
arrows theosem

1. Independently, A and B report their value functions f_{A} and f_{B} over $[0,1]$ to a referee. These need not be the same as v_{A} and v_{B}.

The Surplus Procedure

 Arrowsociaionality

1. Independently, A and B report their value functions f_{A} and f_{B} over $[0,1]$ to a referee. These need not be the same as v_{A} and v_{B}.
2. The referee determines the 50-50 points a and b of A and B according to f_{A} and f_{B}, respectively.

The Surplus Procedure

 ArrowSocial Choice TheorySen Rationality
arrows theorem

1. Independently, A and B report their value functions f_{A} and f_{B} over $[0,1]$ to a referee. These need not be the same as v_{A} and v_{B}.
2. The referee determines the 50-50 points a and b of A and B according to f_{A} and f_{B}, respectively.
3. If a and b coincide, the cake is cut at $a=b$. One player is randomly assigned the piece to the left and the other to the right. The procedure ends.

The Surplus Procedure

1. Independently, A and B report their value functions f_{A} and f_{B} over $[0,1]$ to a referee. These need not be the same as v_{A} and v_{B}.
2. The referee determines the 50-50 points a and b of A and B according to f_{A} and f_{B}, respectively.
3. If a and b coincide, the cake is cut at $a=b$. One player is randomly assigned the piece to the left and the other to the right. The procedure ends.
4. Suppose a is to the left of b (Then A receives $[0, a]$ and B receives $[b, 1]$). Cut the cake a point c in $[a, b]$ at which the players receive the same proportion p of the cake in this interval.

The Surplus Procedure

 Mars chame ceess mano ECOMOMICS ArrowSocial Choice
Rationality

Suppose A values the vanilla half twice as much as the chocolate half:
$v_{A}(x)= \begin{cases}4 / 3 & x \in[0,1 / 2] \\ 2 / 3 & x \in(1 / 2,1]\end{cases}$

$$
v_{B}(x)= \begin{cases}1 & x \in[0,1 / 2] \\ 1 & x \in(1 / 2,1]\end{cases}
$$

Which Cut-Point?

 ArrowSocial Choice TheorySen $\underset{\text { Rrows theorem }}{\text { Rationality }}$Suppose A values the vanilla half twice as much as the chocolate half:
$v_{A}(x)= \begin{cases}4 / 3 & x \in[0,1 / 2] \\ 2 / 3 & x \in(1 / 2,1]\end{cases}$

$$
v_{B}(x)= \begin{cases}1 & x \in[0,1 / 2] \\ 1 & x \in(1 / 2,1]\end{cases}
$$

Proportional equitability: $c=\frac{7}{16}$
Equitability: $e=\frac{3}{7}$

Surplus Procedure

 wans rame ther NashRational Choice
Theory ParetoHarsany Arrow Rationality

A procedure is strategy-proof if maximin players always have an incentive to let $f_{A}=v_{A}$ and $f_{B}=v_{B}$.

Theorem. The Surplus Procedure (with the proportional equitability cut-point c) is strategy-proof, whereas any procedure that makes e the cut-point is strategy-vulnerable.

More than 2 Players

 wavs rame weiceme Economics Nash ouma chice Theary, perethenssm ArrowSocial ChoiceRationality

Fact. It is not always possible to divide a cake among three players into envy-free and equitable portions using 2 cuts.

