PHIL309P Philosophy, Politics and Economics

Eric Pacuit University of Maryland, College Park pacuit.org

- Final Exam: Thu, May 12 8:00AM 10:00AM, EGR 2116 (see Testudo)
 - In-class exam
 - Consult problem sets (Problem sets 2 & 3 will be graded by Thursday or Friday), quizzes
 - Review sheet will be provided on Thursday or Friday
 - Multiple choice, short answers, short essay (questions will be provided).
- ► Final class: Tuesday, May 10
- Final comment: General reflections about the course, topics you found most interesting, topics you wish we spent more time on, etc.
- A couple quizzes coming.
- I'll be in my office on Wednesday of finals week in case you have questions about the final (you can schedule an appointment to be sure that I'm there).

Suppose that there is a set *G* of objects that must be divided among a group of individuals.

Suppose that there is a set *G* of objects that must be divided among a group of individuals.

Questions:

• Are the items *divisible* or *indivisible*?

Suppose that there is a set *G* of objects that must be divided among a group of individuals.

Questions:

- Are the items *divisible* or *indivisible*?
 - A set of indivisible objects
 - Several divisible objects
 - A single heterogeneous object

Suppose that there is a set *G* of objects that must be divided among a group of individuals.

Questions:

- Are the items *divisible* or *indivisible*?
 - A set of indivisible objects
 - Several divisible objects
 - A single heterogeneous object
- Are side-payments allowed?

Suppose that there is a set *G* of objects that must be divided among a group of individuals.

Questions:

- Are the items *divisible* or *indivisible*?
 - A set of indivisible objects
 - Several divisible objects
 - A single heterogeneous object
- Are side-payments allowed?
- Dividing "goods" or "bads"? or both?

• Individual utilities of the goods: Ordinal? Cardinal?

- Individual utilities of the goods: Ordinal? Cardinal?
- Maximize social welfare:
 - Utilitarian: maximize $\sum_i u_i$
 - Egalitarian: maximize min_i{u_i}
 - Nash: maximize $\Pi_i u_i$

- Individual utilities of the goods: Ordinal? Cardinal?
- Maximize social welfare:
 - Utilitarian: maximize $\sum_i u_i$
 - Egalitarian: maximize min_i{*u_i*}
 - Nash: maximize $\Pi_i u_i$
- Preferences over bundles, or allocations: Separable? Additive? Lifted from an ordering over the objects?

H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003.

S. Brams and A. Taylor. *Fair Division: From cake-cutting to dispute resolution*. Cambridge University Press, 1998.

Suppose that *G* is a set of goods to be distributed among *n* individuals.

An **allocation** is a function $A : N \to \wp(G)$ assigning goods to individuals (note that, in general, it need not be the case that $\bigcup_{i \in N} A(i) = G$).

For each $i \in N$, u_i is *i*'s utility function on *bundles* of goods. Then, the utility of an allocation is $u_i(A) = u_i(A(i))$.

A **profile** of utilities for an allocation *A* is a tuple $(u_1(A(1)), \ldots, u_n(A(n)))$, where $N = \{1, \ldots, n\}$ is the set of individuals.

Pareto Efficiency

Suppose that *A* and *A*' are allocations.

A **Pareto dominates** A' provided for all $i \in N$, $u_i(A(i)) \ge u_i(A'(i))$ and there is a $j \in N$ such that $u_i(A(j)) > u_i(A'(j))$.

A is **Pareto efficient** if it is not Pareto dominated. (That is, there is no *A*' such that *A*' Pareto dominates *A*)

An allocation A is **envy-free** provided there is no individual *i* such that

$u_i(A(j)) > u_i(A(i))$

for some *j*.

Proportionality

Suppose that *G* is the set of all the objects and there are *n* individuals. An allocation *A* is **proportional** provided for all *i*:

$$u_i(A) \ge \frac{1}{n}u_i(G)$$

Note that this only makes sense when the utilities are monotonic: for all sets of goods $C \subseteq D \subseteq G$, $u_i(C) \leq u_i(D)$.

An allocation *A* is **equitable** provided for all *i*, *j*:

 $u_i(A(i)) = u_j(A(j)))$

Paradoxes of Fair Division: Indivisible Goods

S. Brams, P. Edelman and P. Fishburn. *Paradoxes of Fair Division*. Journal of Philosophy, 98:6, pgs. 300-314, 2001.

No Envy-Free Division

- Ann: 1 > 2 > 3
- Bob: 1 > 3 > 2
- Cath: 2 > 1 > 3

No Envy-Free Division

Ann:1>2>3Bob:1>3>2Cath:2>1>3

There are no envy-free divisions.

- Ann: 1 > 2 > 3 > 4 > 5 > 6
- Bob: 4 > 3 > 2 > 1 > 5 > 6
- Cath: 5 > 1 > 2 > 6 > 3 > 4

Cath: 5 > 1 > 2 > 6 > 3 > 4

Ann: {1,3} Bob: {2,4} Cath: {5,6}

Ann:
$$1 > 2 > 3 > 4 > 5 > 6$$
Bob: $4 > 3 > 2 > 1 > 5 > 6$

Cath: 5 > 1 > 2 > 6 > 3 > 4

Ann: {1,3}	Ann: {1, 2}
Bob: {2, 4}	Bob: {3, 4}
Cath: {5,6}	Cath: {5,6}

Ann:1
$$>$$
2 $>$ 3 $>$ 4 $>$ 5 $>$ 6Bob:4>3>2>1>5>6Cath:5>1>2>6>3>4

Ann: {1,3}	Ann: {1, 2}
Bob: {2, 4}	Bob: {3, 4}
Cath: {5,6}	Cath: {5,6}

Ann:
$$1 > 2 > 3 > 4 > 5 > 6$$
Bob: $4 > 3 > 2 > 1 > 5 > 6$

Cath: 5 > 1 > 2 > 6 > 3 > 4

Ann: {1,3}	Ann: {1,2}
Bob: {2, 4}	Bob: {3, 4}
Cath: {5, 6}	Cath: {5,6}

There is no other division that guarantees envy freeness

Avoid envy or help the worse off?

Ann: 1 > 2 > 3 > 4 > 5 > 6Bob: 5 > 6 > 2 > 1 > 4 > 3Cath: 3 > 6 > 5 > 4 > 1 > 2

Ann:1>2>3>4>5>6Bob:5>6>2>1>4>3Cath:3>6>5>4>1>2

Three efficient divisions: (12, 56, 34), (12, 45, 36) and (14, 25, 36)

Ann:1>2>3>4>5>6Bob:5>6>2>1>4>3Cath:3>6>5>4>1>2

Three efficient divisions: (12, 56, 34), (12, 45, 36) and (14, 25, 36)

Ann:1>2>3>4>5>6Bob:5>6>2>1>4>3Cath:3>6>5>4>1>2

Three efficient divisions: (12, 56, 34), (12, 45, 36) and (14, 25, 36)

- Three efficient divisions: (12, 56, 34), (12, 45, 36) and (14, 25, 36)
- ► The only envy-free and efficient division is (14, 25, 36)

- Three efficient divisions: (12, 56, 34), (12, 45, 36) and (14, 25, 36)
- ► The only envy-free and efficient division is (14, 25, 36)

- Three efficient divisions: (12, 56, 34), (12, 45, 36) and (14, 25, 36)
- ► The only envy-free and efficient division is (14, 25, 36)

Voting

<u>Allocations</u>	Preferences
A_1 : (12, 56, 34)	Ann: $A_1 I_A A_2 P_A A_3$
A_2 : (12, 45, 36)	Bob: $A_1 P_B A_3 P_B A_2$
<i>A</i> ₃ : (14, 25, 36)	Cath: $A_2 I_C A_3 P_C A_1$

Voting

<u>Allocations</u>	Preferences
A_1 : (12, 56, 34)	Ann: $A_1 I_A A_2 P_A A_3$
A_2 : (12, 45, 36)	Bob: $A_1 P_B A_3 P_B A_2$
<i>A</i> ₃ : (14, 25, 36)	Cath: $A_2 I_C A_3 P_C A_1$

Conclusion: The unique envy-free division would lose in a vote to any of the other efficient divisions

Maximize Total Utility

Utility	6		5		4		3		2		1
Ann:	1	≻	2	\succ	3	\succ	4	\succ	5	\succ	6
Bob:	5	\succ	6	\succ	2	\succ	1	\succ	4	\succ	3
Cath:	3	\succ	6	\succ	5	\succ	4	\succ	1	\succ	2
Allocations					Total Utility						
A_1 : (12, 56, 34)				31							
A_2 : (12, 45, 36)				30							
	A_3 : (14, 25, 36)					30					

Maximize Total Utility

Conclusion: Maximizing the total utility (i.e., the modified Borda score) will not select the unique envy-free division.

Improve the Worse Off

Utility	6		5		4		3		2		1
Ann:	1	\succ	2	\succ	3	\succ	4	\succ	5	\succ	6
Bob:	5	\succ	6	\succ	2	\succ	1	\succ	4	\succ	3
Cath:	3	\succ	6	\succ	5	\succ	4	\succ	1	\succ	2
	Al	loca	tior	IS]	Min	imı	ım l	Utili	ities	
_	A_1 :	A_1 : (12, 56, 34)			(5, 5, 3)						
	A_2 :	(12,	45,3	36)			(5	, 2,	5)		
	A_3 :	(14,	25,3	36)			(3	, 4,	5)		

Improve the Worse Off

Utility	6		5		4		3		2		1
Ann:	1	\succ	2	\succ	3	\succ	4	\succ	5	\succ	6
Bob:	5	\succ	6	\succ	2	\succ	1	\succ	4	\succ	3
Cath:	3	\succ	6	\succ	5	\succ	4	\succ	1	\succ	2
	Al	loca	tior	IS]	Min	imu	ım l	Utili	ities	
_	A_1 :	A_1 : (12, 56, 34)			(5, 5, 3)						
	A_2 :	(12,	45,3	36)			(5	, 2, 5	5)		
	<i>A</i> ₃ :	(14,	25,3	36)			(3	, 4, 5	5)		

Conclusion: (Lexicographic) Maximin will not select the unique envy-free division.

Fair Division

www.spliddit.org

Adjusted Winner

Adjusted Winner

Adjusted winner (*AW*) is an algorithm for dividing *n* divisible goods among two people (invented by Steven Brams and Alan Taylor).

For more information see

- Fair Division: From cake-cutting to dispute resolution by Brams and Taylor, 1998
- The Win-Win Solution by Brams and Taylor, 2000
- www.nyu.edu/projects/adjustedwinner
- ► Fair Outcomes, Inc.: www.fairoutcomes.com

Item	Ann	Bob	Suppose Ann and Bob are dividing three goods {A, B, C}
Α			
В			
С			

Item	Ann	Bob
A	5	4
В	65	46
С	30	50
Total	100	100

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Item	Ann	Bob	
Α	5	4	
В	65	46	
С	30	50	
Total	100	100	
Item	Ann	Bob	
Α	5	0	
В	65	0	
С	0	50	
Total	70	50	

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Item	Ann	Bob	Suppose Ann and Bob are dividing three goods (A, B, C)
A	5	4	$- \{A, D, C\}$
В	65	46	Point Assignment: Both Ann and Bob dis-
С	30	50	tribute 100 points among the three items
Total	100	100	Winner Take All: The person who assigned the
			_ most points is given that good
Item	Ann	Bob	
A	5	0	- Equitability Adjustment: Transfer all or part of the goods from the person with the most points
В	65	0	until both receive the same number of points
С	0	50	
Total	70	50	_

Item	Ann	Bob	
Α	5	4	
В	65	46	
С	30	50	
Total	100	100	
Item	Ann	Bob	
Item A	Ann 5	Bob 0	
Item A B	Ann 5 65	Bob 0 0	
Item A B C	Ann 5 65 0	Bob 0 0 50	

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Find the item whose ratio is closes to 1: $65/46 \ge 5/4 \ge 1 \ge 30/50$

Item	Ann	Bob
Α	5	4
В	65	46
С	30	50
Total	100	100
Item	Ann	Bob
Item A	Ann 0	Bob 4
Item A B	Ann 0 65	Bob 4 0
Item A B C	Ann 0 65 0	Bob 4 0 50

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Find the item whose ratio is closes to 1: $65/46 \ge 5/4 \ge 1 \ge 30/50$

Item	Ann	Bob
Α	5	4
В	65	46
С	30	50
Total	100	100
Item	Ann	Bob
Item A	Ann 0	Bob 4
Item A B	Ann 0 65	Bob 4 0
Item A B C	Ann 0 65 0	Bob 4 0 50

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Still not equal, so give (some of) *B* to Bob: 65p = 100 - 46p yielding $p = \frac{100}{111} = 0.901$

Item	Ann	Bob
A	5	4
В	65	46
С	30	50
Total	100	100
Item	Ann	Bob
A	0	4
В	58.56	4.56
С	0	50

Point Assignment: Both Ann and Bob distribute 100 points among the three items

Winner Take All: The person who assigned the most points is given that good

Equitability Adjustment: Transfer all or part of the goods from the person with the most points until both receive the same number of points

Still not equal, so give (some of) *B* to Bob: 65p = 100 - 46p yielding $p = \frac{100}{111} = 0.901$

Easy Observations

 For two-party disputes, proportionality and envy-freeness are equivalent.

 AW only produces equitable allocations (equitability is essentially built in to the procedure).

• *AW* produces allocations in which at most one good is split.

Theorem (Brams and Taylor) *AW produces allocations that are efficient, equitable and envy-free (with respect to the announced valuations).*

In Adjusted Winner, can the people improve their allocation by misrepresenting their preferences?

In Adjusted Winner, can the people improve their allocation by misrepresenting their preferences?

Yes

Strategizing: Example

Item	Ann	Bob
Matisse	75	25
Picasso	25	75

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his or her points.

Strategizing: Example

Suppose Ann knows Bob's preferences, but Bob does not know Ann's.

Item	Ann	Bob		Item	Ann	Bob
M	75	25	_	M	26	25
P	25	75		P	74	75

So Ann will get *M* plus a portion of *P*.

According to Ann's announced allocation, she receives 50.33 points

According to Ann's actual allocation, she receives 75 + 0.33 * 25 = 83.33 points.

However, while honesty may not always be the best policy it is the only **safe** one, i.e., the only one which will guarantee 50%.

How do we cut a cake fairly?

How do we cut a cake fairly?

• A cake is a metaphor for a divisible heterogeneous good.

How do we cut a cake fairly?

- We are interested not only in the *existence* of a (fair) division but also a *constructive procedure* (an algorithm) for finding it
 - discrete procedures
 - continuous moving knife procedures

How do we cut a cake fairly?

• Different results known for 2,3,4,... cutters!

How do we cut a cake fairly?

Many ways to make this precise!

S. Brams and A. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. 1996.

J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair If You Can. 1998.

J. Barbanel. The Geometry of Efficient Fair Division. 2005.

The cake is the unit interval [0, 1]

0 1

The cake is the unit interval [0, 1]

Only parallel, vertical cuts, perpendicular to the horizontal *x*-axis are made

The cake is the unit interval [0, 1]

Only parallel, vertical cuts, perpendicular to the horizontal *x*-axis are made

Each player *i* has a continuous value measure $v_i(x)$ on [0, 1] such that

- $v_i(x) \ge 0$ for $x \in [0, 1]$
- v_i is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_i on [0, 1] is 1 (probability density function)

Each player *i* has a continuous value measure $v_i(x)$ on [0, 1] such that

- $v_i(x) \ge 0$ for $x \in [0, 1]$
- ► *v_i* is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_i on [0, 1] is 1 (probability density function)

value of finite number of disjoint pieces equals the value of their union (hence, no subpieces have greater value than the larger piece containing them).

Each player *i* has a continuous value measure $v_i(x)$ on [0, 1] such that

- $v_i(x) \ge 0$ for $x \in [0, 1]$
- v_i is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_i on [0, 1] is 1 (probability density function)

a single cut (which defines the border of a piece) has no area and so has no value.

Each player *i* has a continuous value measure $v_i(x)$ on [0, 1] such that

- $v_i(x) \ge 0$ for $x \in [0, 1]$
- ► *v_i* is finitely additive, non-atomic, and absolutely continuous measures
- the area under v_i on [0, 1] is 1 (probability density function)

no portion of cake is of positive measure for one player and zero measure for another player.

The Cake-Cutting Problem

The Cake-Cutting Problem

A division of a cake [0, 1] for *n* players is a partition $(S_1, ..., S_n)$ (i.e., each $S_i \subseteq [0, 1], \cup_i S_i = [0, 1]$ and $S_i \cap S_j = \emptyset$). We are typically interested in divisions where each S_i is **contiguous** (i.e., a subinterval of [0, 1]).

A division of a cake [0, 1] for *n* players is a partition $(S_1, ..., S_n)$ (i.e., each $S_i \subseteq [0, 1], \cup_i S_i = [0, 1]$ and $S_i \cap S_j = \emptyset$). We are typically interested in divisions where each S_i is **contiguous** (i.e., a subinterval of [0, 1]).

A division of a cake [0, 1] for *n* players is a partition $(S_1, ..., S_n)$ (i.e., each $S_i \subseteq [0, 1], \cup_i S_i = [0, 1]$ and $S_i \cap S_j = \emptyset$). We are typically interested in divisions where each S_i is **contiguous** (i.e., a subinterval of [0, 1]).

A division (S_1, \ldots, S_n) is

• Fair (Proportional): for each $i, v_i(S_i) \ge \frac{1}{n}$

A division of a cake [0, 1] for *n* players is a partition $(S_1, ..., S_n)$ (i.e., each $S_i \subseteq [0, 1], \cup_i S_i = [0, 1]$ and $S_i \cap S_j = \emptyset$). We are typically interested in divisions where each S_i is **contiguous** (i.e., a subinterval of [0, 1]).

A division (S_1, \ldots, S_n) is

- Fair (Proportional): for each $i, v_i(S_i) \ge \frac{1}{n}$
- **Envy-Free**: for each $i, j, v_i(S_i) \ge v_i(S_j)$

A division of a cake [0, 1] for *n* players is a partition $(S_1, ..., S_n)$ (i.e., each $S_i \subseteq [0, 1], \cup_i S_i = [0, 1]$ and $S_i \cap S_j = \emptyset$). We are typically interested in divisions where each S_i is **contiguous** (i.e., a subinterval of [0, 1]).

A division (S_1, \ldots, S_n) is

- Fair (Proportional): for each $i, v_i(S_i) \ge \frac{1}{n}$
- **Envy-Free**: for each $i, j, v_i(S_i) \ge v_i(S_j)$
- **Equitable**: for each $i, j, v_i(S_i) = v_j(S_j)$

A division of a cake [0, 1] for *n* players is a partition $(S_1, ..., S_n)$ (i.e., each $S_i \subseteq [0, 1], \cup_i S_i = [0, 1]$ and $S_i \cap S_j = \emptyset$). We are typically interested in divisions where each S_i is **contiguous** (i.e., a subinterval of [0, 1]).

A division (S_1, \ldots, S_n) is

- Fair (Proportional): for each $i, v_i(S_i) \ge \frac{1}{n}$
- **Envy-Free**: for each $i, j, v_i(S_i) \ge v_i(S_j)$
- **Equitable**: for each $i, j, v_i(S_i) = v_j(S_j)$
- **Efficient**: there is no other division $(T_1, ..., T_n)$ such that $v_i(T_i) \ge v_i(S_i)$ for all *i* and there is some *j* such that $v_j(T_j) > v_j(S_j)$.

Truthfulness

Some procedures ask players to represent their preferences.

This representation need not be "truthful"

Typically, it is assumed that agents will follow a maximin strategy (maximize the set of items that are guaranteed)

Two Players

Procedure: one player cuts the cake into two portions and the other player chooses one of the portions.

Two Players

Procedure: one player cuts the cake into two portions and the other player chooses one of the portions.

Maximin strategy: Suppose that A is the cutter. If A has no information about the other player's valuation, then A should cut the cake at some point x so that the value of the portion to the left of x is equal to the value of the portion to the right.

Two Players

Procedure: one player cuts the cake into two portions and the other player chooses one of the portions.

Maximin strategy: Suppose that A is the cutter. If A has no information about the other player's valuation, then A should cut the cake at some point x so that the value of the portion to the left of x is equal to the value of the portion to the right.

This strategy creates an **envy-free** and **efficient** allocation, but it is not necessarily **equitable**.

Example

Suppose that the cake is half chocolate and have vanilla. Ann values the vanilla half twice as much as the chocolate half:

$$v_A(x) = \begin{cases} 4/3 & x \in [0, 1/2] \\ 2/3 & x \in (1/2, 1] \end{cases}$$

Bob values both sides equally:

$$v_B(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$$

Where should *A* cut the cake?

Example

$$v_A(x) = \begin{cases} 4/3 & x \in [0, 1/2] \\ 2/3 & x \in (1/2, 1] \end{cases}$$
$$v_B(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$$

A should cut the cake at x = 3/8:

$$(4/3)(x-0) = 4/3(1/2-x) + 2/3(1-1/2)$$

Example

$$v_A(x) = \begin{cases} 4/3 & x \in [0, 1/2] \\ 2/3 & x \in (1/2, 1] \end{cases}$$
$$v_B(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$$

A should cut the cake at x = 3/8:

$$(4/3)(x-0) = 4/3(1/2 - x) + 2/3(1 - 1/2)$$

Note that the portions are not equitable (*B* receive 5/8 according to his valuation)

Cut and Choose is not Equitable

Suppose *A* values the vanilla half twice as much as the chocolate half:

$$v_A(x) = \begin{cases} 4/3 & x \in [0, 1/2] \\ 2/3 & x \in (1/2, 1] \end{cases} \qquad \qquad v_B(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$$

A should cut the cake at x = 3/8:

$$(4/3)(x-0) = 4/3(1/2 - x) + 2/3(1 - 1/2)$$

The portions are not equitable: *B* receive 5/8 according to his valuation.

S. Brams, M. A. Jones and C. Klamler. *Better Ways to Cut a Cake*. Notices of the AMS, 53:11, pgs. 1314-1321, 2006.

1. Independently, *A* and *B* report their value functions f_A and f_B over [0, 1] to a referee. These need not be the same as v_A and v_B .

- 1. Independently, *A* and *B* report their value functions f_A and f_B over [0, 1] to a referee. These need not be the same as v_A and v_B .
- 2. The referee determines the 50-50 points *a* and *b* of *A* and *B* according to f_A and f_B , respectively.

- 1. Independently, *A* and *B* report their value functions f_A and f_B over [0, 1] to a referee. These need not be the same as v_A and v_B .
- 2. The referee determines the 50-50 points *a* and *b* of *A* and *B* according to f_A and f_B , respectively.
- 3. If *a* and *b* coincide, the cake is cut at a = b. One player is randomly assigned the piece to the left and the other to the right. The procedure ends.

- 1. Independently, *A* and *B* report their value functions f_A and f_B over [0, 1] to a referee. These need not be the same as v_A and v_B .
- 2. The referee determines the 50-50 points *a* and *b* of *A* and *B* according to f_A and f_B , respectively.
- 3. If *a* and *b* coincide, the cake is cut at a = b. One player is randomly assigned the piece to the left and the other to the right. The procedure ends.
- 4. Suppose *a* is to the left of *b* (Then *A* receives [0, *a*] and B receives [*b*, 1]). Cut the cake a point *c* in [*a*, *b*] at which the players receive the *same proportion p* of the cake in this interval.

Suppose *A* values the vanilla half twice as much as the chocolate half:

 $v_A(x) = \begin{cases} 4/3 & x \in [0, 1/2] \\ 2/3 & x \in (1/2, 1] \end{cases} \qquad v_B(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$

Which Cut-Point?

Suppose *A* values the vanilla half twice as much as the chocolate half:

$$v_A(x) = \begin{cases} 4/3 & x \in [0, 1/2] \\ 2/3 & x \in (1/2, 1] \end{cases} \qquad v_B(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 1 & x \in (1/2, 1] \end{cases}$$

Proportional equitability: $c = \frac{7}{16}$

Equitability: $e = \frac{3}{7}$

Surplus Procedure

A procedure is **strategy-proof** if maximin players always have an incentive to let $f_A = v_A$ and $f_B = v_B$.

Theorem. The Surplus Procedure (with the proportional equitability cut-point *c*) is strategy-proof, whereas any procedure that makes *e* the cut-point is strategy-vulnerable.

More than 2 Players

Fact. It is not always possible to divide a cake among three players into **envy-free and equitable** portions using 2 cuts.

