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I Final Exam: Thu, May 12 8:00AM - 10:00AM, EGR 2116 (see Testudo)
I In-class exam
I Consult problem sets (Problem sets 2 & 3 will be graded by Thursday or

Friday), quizzes
I Review sheet will be provided on Thursday or Friday
I Multiple choice, short answers, short essay (questions will be provided).

I Final class: Tuesday, May 10
I Final comment: General reflections about the course, topics you found

most interesting, topics you wish we spent more time on, etc.
I A couple quizzes coming.
I I’ll be in my office on Wednesday of finals week in case you have

questions about the final (you can schedule an appointment to be sure
that I’m there).
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Fair Division

Suppose that there is a set G of objects that must be divided among a group of
individuals.

Questions:

I Are the items divisible or indivisible?

I A set of indivisible objects

I Several divisible objects

I A single heterogeneous object

I Are side-payments allowed?
I Dividing “goods” or “bads”? or both?
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I Individual utilities of the goods: Ordinal? Cardinal?

I Maximize social welfare:
I Utilitarian: maximize

∑
i ui

I Egalitarian: maximize mini{ui}
I Nash: maximize Πiui

I Preferences over bundles, or allocations: Separable? Additive? Lifted
from an ordering over the objects?
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Literature

H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003.

S. Brams and A. Taylor. Fair Division: From cake-cutting to dispute resolution. Cambridge Uni-
versity Press, 1998.
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Suppose that G is a set of goods to be distributed among n individuals.

An allocation is a function A : N → ℘(G) assigning goods to individuals (note
that, in general, it need not be the case that

⋃
i∈N A(i) = G).

For each i ∈ N, ui is i’s utility function on bundles of goods. Then, the utility of
an allocation is ui(A) = ui(A(i)).

A profile of utilities for an allocation A is a tuple (u1(A(1)), . . . ,un(A(n))),
where N = {1, . . . ,n} is the set of individuals.
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Pareto Efficiency

Suppose that A and A′ are allocations.

A Pareto dominates A′ provided for all i ∈ N, ui(A(i)) ≥ ui(A′(i)) and there is a
j ∈ N such that uj(A(j)) > uj(A′(j)).

A is Pareto efficient if it is not Pareto dominated. (That is, there is no A′ such
that A′ Pareto dominates A)
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Envy-Freeness

An allocation A is envy-free provided there is no individual i such that

ui(A(j)) > ui(A(i))

for some j.
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Proportionality

Suppose that G is the set of all the objects and there are n individuals. An
allocation A is proportional provided for all i:

ui(A) ≥
1
n

ui(G)

Note that this only makes sense when the utilities are monotonic: for all sets of goods
C ⊆ D ⊆ G, ui(C) ≤ ui(D).
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Equitability

An allocation A is equitable provided for all i, j:

ui(A(i)) = uj(A(j)))
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Paradoxes of Fair Division: Indivisible Goods

S. Brams, P. Edelman and P. Fishburn. Paradoxes of Fair Division. Journal of Philosophy, 98:6,
pgs. 300-314, 2001.
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No Envy-Free Division

Ann: 1 � 2 � 3

Bob: 1 � 3 � 2

Cath: 2 � 1 � 3

There are no envy-free divisions.
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Envy-Freeness and Efficiency

Ann: 1 � 2 � 3 � 4 � 5 � 6

Bob: 4 � 3 � 2 � 1 � 5 � 6

Cath: 5 � 1 � 2 � 6 � 3 � 4

Ann: {1, 3}
Bob: {2, 4}
Cath: {5, 6}

There is no other division that guarantees envy freeness
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Avoid envy or help the worse off?
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Ann: 1 � 2 � 3 � 4 � 5 � 6

Bob: 5 � 6 � 2 � 1 � 4 � 3

Cath: 3 � 6 � 5 � 4 � 1 � 2

Three efficient divisions: (12, 56, 34), (12, 45, 36) and
(14, 25, 36)
The only envy-free and efficient division is (14, 25, 36)
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Voting

Ann: 1 � 2 � 3 � 4 � 5 � 6

Bob: 5 � 6 � 2 � 1 � 4 � 3

Cath: 3 � 6 � 5 � 4 � 1 � 2

Allocations Preferences

A1: (12, 56, 34) Ann: A1 IA A2 PA A3

A2: (12, 45, 36) Bob: A1 PB A3 PB A2

A3: (14, 25, 36) Cath: A2 IC A3 PC A1

Conclusion: The unique envy-free division would lose in a
vote to any of the other efficient divisions
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Maximize Total Utility
Utility 6 5 4 3 2 1

Ann: 1 � 2 � 3 � 4 � 5 � 6

Bob: 5 � 6 � 2 � 1 � 4 � 3

Cath: 3 � 6 � 5 � 4 � 1 � 2

Allocations Total Utility
A1: (12, 56, 34) 31

A2: (12, 45, 36) 30

A3: (14, 25, 36) 30

Conclusion: Maximizing the total utility (i.e., the modified
Borda score) will not select the unique envy-free division.
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Improve the Worse Off
Utility 6 5 4 3 2 1

Ann: 1 � 2 � 3 � 4 � 5 � 6

Bob: 5 � 6 � 2 � 1 � 4 � 3

Cath: 3 � 6 � 5 � 4 � 1 � 2

Allocations Minimum Utilities
A1: (12, 56, 34) (5, 5, 3)

A2: (12, 45, 36) (5, 2, 5)

A3: (14, 25, 36) (3, 4, 5)

Conclusion: Maximin (I.e., Rawlsian criterion) will not
select the unique envy-free division.
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Improve the Worse Off
Utility 6 5 4 3 2 1

Ann: 1 � 2 � 3 � 4 � 5 � 6

Bob: 5 � 6 � 2 � 1 � 4 � 3

Cath: 3 � 6 � 5 � 4 � 1 � 2

Allocations Minimum Utilities
A1: (12, 56, 34) (5, 5, 3)

A2: (12, 45, 36) (5, 2, 5)

A3: (14, 25, 36) (3, 4, 5)

Conclusion: (Lexicographic) Maximin will not select the
unique envy-free division.
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Fair Division

www.spliddit.org
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Adjusted Winner
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Adjusted Winner

Adjusted winner (AW) is an algorithm for dividing n divisible goods among
two people (invented by Steven Brams and Alan Taylor).

For more information see
I Fair Division: From cake-cutting to dispute resolution by Brams and Taylor,

1998
I The Win-Win Solution by Brams and Taylor, 2000
I www.nyu.edu/projects/adjustedwinner

I Fair Outcomes, Inc.: www.fairoutcomes.com
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Item Ann Bob

A 5 4

B 65 46

C 30 50

Total 100 100

Item Ann Bob

A 5 4

B 65 46

C 30 50

Total 100 100

Suppose Ann and Bob are dividing three goods
{A, B, C}

Point Assignment: Both Ann and Bob dis-
tribute 100 points among the three items

Winner Take All: The person who assigned the
most points is given that good

Equitability Adjustment: Transfer all or part of
the goods from the person with the most points
until both receive the same number of points

Still not equal, so give (some of) B to Bob: 65p =

100 − 46p
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5/4 ≥ 1 ≥ 30/50
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Item Ann Bob

A 5 4

B 65 46

C 30 50

Total 100 100

Item Ann Bob

A 0 4

B 58.56 4.56

C 0 50

Total 58.56 58.56

Suppose Ann and Bob are dividing three goods
{A, B, C}

Point Assignment: Both Ann and Bob dis-
tribute 100 points among the three items

Winner Take All: The person who assigned the
most points is given that good

Equitability Adjustment: Transfer all or part of
the goods from the person with the most points
until both receive the same number of points

Still not equal, so give (some of) B to Bob: 65p =

100 − 46p yielding p = 100
111 = 0.901
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Easy Observations

I For two-party disputes, proportionality and envy-freeness are
equivalent.

I AW only produces equitable allocations (equitability is essentially built
in to the procedure).

I AW produces allocations in which at most one good is split.
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Adjusted Winner is Fair

Theorem (Brams and Taylor) AW produces allocations that are efficient, equitable
and envy-free (with respect to the announced valuations).
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Strategizing

In Adjusted Winner, can the people improve their allocation by
misrepresenting their preferences?

Yes
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Strategizing: Example

Item Ann Bob
Matisse 75 25
Picasso 25 75

Ann will get the Matisse and Bob will get the Picasso and each gets 75 of his
or her points.
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Strategizing: Example

Suppose Ann knows Bob’s preferences, but Bob does not know Ann’s.

Item Ann Bob
M 75 25
P 25 75

Item Ann Bob
M 26 25
P 74 75

So Ann will get M plus a portion of P.

According to Ann’s announced allocation, she receives 50.33 points

According to Ann’s actual allocation, she receives 75 + 0.33 ∗ 25 = 83.33 points.
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26

83.33
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However, while honesty may not always be the best policy it is the only safe
one, i.e., the only one which will guarantee 50%.
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Main Question

How do we cut a cake fairly?
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Main Question

How do we cut a cake fairly?

I A cake is a metaphor for a divisible heterogeneous good.
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Main Question

How do we cut a cake fairly?

I We are interested not only in the existence of a (fair) division but also a
constructive procedure (an algorithm) for finding it

I discrete procedures
I continuous moving knife procedures
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Main Question

How do we cut a cake fairly?

I Different results known for 2,3,4,. . . cutters!
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Main Question

How do we cut a cake fairly?

I Many ways to make this precise!
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Main References

S. Brams and A. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. 1996.

J. Robertson and W. Webb. Cake-Cutting Algorithms: Be Fair If You Can. 1998.

J. Barbanel. The Geometry of Efficient Fair Division. 2005.
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The Cake-Cutting Problem

The cake is the unit interval [0, 1]

Only parallel, vertical cuts, perpendicular to the horizontal x-axis are made

0 1
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The Cake-Cutting Problem

Each player i has a continuous value measure vi(x) on [0, 1] such that

I vi(x) ≥ 0 for x ∈ [0, 1]
I vi is finitely additive, non-atomic, and absolutely continuous measures
I the area under vi on [0, 1] is 1 (probability density function)

value of finite number of disjoint pieces equals the value of their union (hence, no
subpieces have greater value than the larger piece containing them).
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I vi(x) ≥ 0 for x ∈ [0, 1]
I vi is finitely additive, non-atomic, and absolutely continuous measures
I the area under vi on [0, 1] is 1 (probability density function)

a single cut (which defines the border of a piece) has no area and so has no value.ads
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The Cake-Cutting Problem

Each player i has a continuous value measure vi(x) on [0, 1] such that

I vi(x) ≥ 0 for x ∈ [0, 1]
I vi is finitely additive, non-atomic, and absolutely continuous measures
I the area under vi on [0, 1] is 1 (probability density function)

no portion of cake is of positive measure for one player and zero measure for another
player. ads fasd fasdf a sdf asdf asd f asd asfd asd fa sdf asd fa sdf asdf asd
asfd
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The Cake-Cutting Problem

0 1
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The Cake-Cutting Problem

0 1A
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The Cake-Cutting Problem

0 1

vi(A)

A

34 / 47



Fairness

A division of a cake [0, 1] for n players is a partition (S1, . . . ,Sn) (i.e., each
Si ⊆ [0, 1], ∪iSi = [0, 1] and Si ∩ Sj = ∅). We are typically interested in divisions
where each Si is contiguous (i.e., a subinterval of [0, 1]).

A division (S1, . . . ,Sn) is
I Fair (Proportional): for each i, vi(Si) ≥ 1

n

I Envy-Free: for each i, j, vi(Si) ≥ vi(Sj)

I Equitable: for each i, j, vi(Si) = vj(Sj)

I Efficient: there is no other division (T1, . . . ,Tn) such that vi(Ti) ≥ vi(Si) for
all i and there is some j such that vj(Tj) > vj(Sj).
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I Efficient: there is no other division (T1, . . . ,Tn) such that vi(Ti) ≥ vi(Si) for
all i and there is some j such that vj(Tj) > vj(Sj).
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Truthfulness

Some procedures ask players to represent their preferences.

This representation need not be “truthful”

Typically, it is assumed that agents will follow a maximin strategy (maximize
the set of items that are guaranteed)

36 / 47



Two Players

Procedure: one player cuts the cake into two portions and the other player
chooses one of the portions.

Maximin strategy: Suppose that A is the cutter. If A has no information about
the other player’s valuation, then A should cut the cake at some point x so
that the value of the portion to the left of x is equal to the value of the portion
to the right.

This strategy creates an envy-free and efficient allocation, but it is not
necessarily equitable.
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Example
Suppose that the cake is half chocolate and have vanilla.
Ann values the vanilla half twice as much as the chocolate half:

vA(x) =

4/3 x ∈ [0, 1/2]
2/3 x ∈ (1/2, 1]

Bob values both sides equally:

vB(x) =

1 x ∈ [0, 1/2]
1 x ∈ (1/2, 1]

Where should A cut the cake?
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Example

vA(x) =

4/3 x ∈ [0, 1/2]
2/3 x ∈ (1/2, 1]

vB(x) =

1 x ∈ [0, 1/2]
1 x ∈ (1/2, 1]

A should cut the cake at x = 3/8:

(4/3)(x − 0) = 4/3(1/2 − x) + 2/3(1 − 1/2)

Note that the portions are not equitable (B receive 5/8 according to his
valuation)
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Cut and Choose is not Equitable

Suppose A values the vanilla half twice as much as the chocolate half:

vA(x) =

4/3 x ∈ [0, 1/2]
2/3 x ∈ (1/2, 1]

vB(x) =

1 x ∈ [0, 1/2]
1 x ∈ (1/2, 1]

A should cut the cake at x = 3/8:

(4/3)(x − 0) = 4/3(1/2 − x) + 2/3(1 − 1/2)

The portions are not equitable: B receive 5/8 according to his valuation.
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The Surplus Procedure

S. Brams, M. A. Jones and C. Klamler. Better Ways to Cut a Cake. Notices of the AMS, 53:11,
pgs. 1314-1321, 2006.
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The Surplus Procedure

1. Independently, A and B report their value functions fA and fB over [0, 1] to
a referee. These need not be the same as vA and vB.

2. The referee determines the 50-50 points a and b of A and B according to fA

and fB, respectively.

3. If a and b coincide, the cake is cut at a = b. One player is randomly
assigned the piece to the left and the other to the right. The procedure
ends.

4. Suppose a is to the left of b (Then A receives [0, a] and B receives [b, 1]).
Cut the cake a point c in [a, b] at which the players receive the same
proportion p of the cake in this interval.
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The Surplus Procedure

Suppose A values the vanilla half twice as much as the chocolate half:

vA(x) =

4/3 x ∈ [0, 1/2]
2/3 x ∈ (1/2, 1]

vB(x) =

1 x ∈ [0, 1/2]
1 x ∈ (1/2, 1]

0 11
2

3
8

Proportional equitability: c = 7
16

Equitability: e = 3
7
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Which Cut-Point?

Suppose A values the vanilla half twice as much as the chocolate half:
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Surplus Procedure

A procedure is strategy-proof if maximin players always have an incentive to
let fA = vA and fB = vB.

Theorem. The Surplus Procedure (with the proportional equitability
cut-point c) is strategy-proof, whereas any procedure that makes e the
cut-point is strategy-vulnerable.

45 / 47



More than 2 Players

Fact. It is not always possible to divide a cake among three players into
envy-free and equitable portions using 2 cuts.
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More than 2 Players
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