2 Models of Epistemic States

2.1 Program

A cornerstone concept in an epistemological theory is that of an epistemic
state or state of belief. In this chapter I present a number of models of
epistemic states that have been used within different areas of philosophy,
computer science, psychology, and linguistics. I do not aim at presenting
a complete list of models; I confine myself to the models that allow me to
say something relevant about their dynamics, that is, how the states change
as a result of epistemic inputs. This chapter, however, is restricted to a
presentation of the static features of some models of epistemic states as well
as the rationality criteria that are used to motivate them. The dynamics of
different kinds of models are treated in chapters 3—6.

2.2 Belief Sets

A simple way of modeling the epistemic state of an individual is to represent
it by a set of sentences. The intended interpretation of such a set is that
it consists of exactly those sentences that the individual accepts in the
modeled state of belief. Instead of saying that the individual accepts the
sentence, we can also say that the individual believes it to be true or regards
it as certain.

This kind of model is linguistic in the sense that it presupposes an object
language L from which the sentences in the set are to be selected. For the
most part I leave the details of L open, assuming only that L contains
expressions for the standard sentential connectives. These connectives are
symbolized as follows:

negation: —
conjunction: &
disjunction: v
material implication; —

As sentential variables I use 4, B, C,.... It is also convenient to introduce
symbols for two sentential constants:

truth: T
falsity: L

Note that these sentences are used only as “ideal points”; they imply
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nothing about the correspondence between a state of belief and the external
world, and they do not represent truth values.

In later chapters the same formulas will be used to denote propositions,
that is, the “content” of sentences. However, it will be clear from the context
what the symbols denote. And, because it is assumed that logically equiva-
lent sentences cannot be distinguished within an epistemic state, there is
little risk of equivocation.

Modeling epistemic states by sets of sentences is connected with a typo-
logy of epistemic attitudes that for any sentence A allows only the following
three possibilities:

A is accepted,
A is rejected,
A is indetermined, that is, A is neither accepted nor rejected.

This typology can be reduced to two items by requiring A to be rejected
iff —A is accepted (compare this with section 2.3).

Not every set of sentences can be used to represent rational epistemic
states. Sets of sentences that may be rationally held by an individual are
called belief sets. In order to determine which sets of sentences constitute
belief sets, I focus on two rationality criteria:

(2.1) The set of accepted sentences should be consistent.

(2.2) Logical consequences of what is accepted should also be accepted.

Both these criteria presuppose a logic for the language L in order to
determine what is meant by “consistent” and “logical consequence.” Both
criteria are supported by the view of states of belief as idealized equilibria.
But the criteria can also be motivated by more pragmatic considerations—
inconsistent sets of belief are of no help when seeking guidance for how to
act, and, in order to use one’s knowledge effectively, one must be able to
draw the consequences of the information one has on a topic. It is clear,
however, that the two criteria are not realistic as descriptions of individuals’
actual sets of belief. In particular, this is the case for the requirement of
including logical consequences-—because of the limitations of our mental
powers, we often do not see all the consequences of what we accept. 1
still believe, however, that the criterion is useful, at least as an ideal of
rationality.

Because the concept of acceptance is central in the account of epistemic
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states and epistemic changes developed here, I want to make some remarks
on my use of the concept. First, acceptance is a broader concept than belief;
it also includes such attitudes as assuming, presupposing, and positing. To
accept a proposition is to treat it as true in one way or another.? For
example, in debates one often hypothetically assumes that one does not
believe the proposition under discussion in order not to beg the question.
In connection with an analysis of conditional sentences in chapter 7,
assumed acceptance plays a central role. This position entails that accep-
tance is relative to context: A person may accept something in one context
but reject it or leave it indetermined in another.

Second, one must distinguish the acceptance of a sentence from the
awareness of this acceptance.> Because of limited calculation ability and
memory failure, humans are not aware of all the consequences of their
beliefs. Harman (1986, pp. 12—14) makes a distinction between explicit
belief, which means that one’s belief involves an explicit mental repre-
sentation whose content is the content of the belief, and implicit belief,
which is a belief that is derivable from the explicit beliefs. Because epistemic
states are conceived of as rational equilibrium states, the beliefs that are
accepted in these states include all implicit beliefs.*

Finally, accepting a proposition A4 in an epistemic state K entails full
belief in the sense that in K there is no doubt that A is false (Levi expresses
this by saying that the negation of A4 is not a serious possibility in K). This
means that I take all accepted propositions to have maximal probability,
that is, probability 1. The consequences of this position are elaborated in
section 2.7 and in chapter 5. In contrast to this, some authors (for example,
de Finetti and Carnap) allow that a proposition with maximal probability
need not be accepted as true or, equivalently, that some propositions with
zero probability are not inconsistent with the accepted beliefs.> However,
even if on my account acceptance entails full belief, acceptance does not
entail infallibility in the sense that an accepted belief will never be doubted.
Because an agent is always influenced by different epistemic inputs, some-
times these inputs will contradict or in other ways undermine the accepted
beliefs. Then, as Peirce puts it: “The scientific spirit requires a man to be
at all times ready to dump his whole cartload of beliefs, the moment
experience is against them” (Peirce 1932, pp. 46-47).6

After this digression on the notion of acceptance, I now return to the
description of belief sets. The rationality criteria (2.1) and (2.2) can be seen
as minimal requirements on representations of epistemic states. Belief sets
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are here defined for weakly specified languages. If more is known or
assumed about the structure of the object language, it may be possible to
formulate other, more specific rationality criteria.

I'assume that the language L is governed by a logic that is identified with
its consequence relation [—; that is, a sentence 4 is logically valid iff it is a
consequence of the empty set. The relation | is assumed to satisfy the
following conditions:

(F1) 1If Ais a truth-functional tautology, then |- 4.
(F2) Modus ponens. That is,if -4 — B and |- 4, then - B.
(F3) Not | L. Thatis, |- is consistent.

It follows that |- contains classical propositional logic. Furthermore it is
assumed that |- satisfies the deduction theorem that is, that |- A — B iff
A} B), and that it is compact; in other words, if 4 is a logical consequence
of some set X, then 4 is a consequence of some finite subset of X). I note
explicitly further assumptions about the logic as they are used. We can then
formulate the two rationality criteria (2.1) and (2.2) more precisely in the
following definition:

(Def BS) A set K of sentences is a (nonabsurd) belief ser iff (i) Lisnota

logical consequence of the sentences in K and (i) if K |- B, then
BeK.

This means that technically a belief set is what logicians normally call a
theory. However, the interpretation here in terms of subjective beliefs is
somewhat different from the standard interpretation of a theory.

It is easy to show that (Def BS) is equivalent to Stalnaker’s (1984,
pp. 81-82) definition of an acceptance state. He uses the following three
conditions:

(2.3) If A is a member of a set of accepted sentences and A entails B, then
B is a member of that set.

(24) If A and B are each members of a set of accepted sentences, then
A & B is a member of that set.

(2.5) If A is a member of a set of accepted sentences, then — 4 is not a
member of that set.

Stalnaker then argues that each of these conditions applied to belief is
motivated by his pragmatic picture.

e
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The set of all logical consequences of a set K, that is, {4: K|- A},
is denoted Cn(K) and is called the consequence set of K. A basic and use-
ful fact about this set is that B e Cn(K U {4}) iff (4 - B) € Cn(K). From
(Def BS) it follows that all belief sets satisfy the following condition, which
is one way of expressing the idea that epistemic states are in equilibrium:

(Cn) K = Cn(K).

It turns out to be convenient for technical reasons to regard the set L of
all sentences as a belief set. This set is called the absurd belief set and is
denoted K ;. Note that it follows from condition (ii) in (Def BS) that the
set of logically valid sentences is included in every belief set. This set, which
may also be denoted Cn(), is thus the smallest belief set.

An important feature of belief sets is that they need not be maximal in
the sense that for every sentence A either 4 belongs to the belief set or —A
belongs to it. The epistemic interpretation of this is that an individual is
normally not omniscient. However, in some of the technical contexts to fol-
low, maximal belief sets are of interest. Such belief sets correspond to omni-
science with respect to what is expressible in L. In some contexts maximal
belief sets have been called “state descriptions” and even “possible worlds.”

In some of the applications in part II a richer language than what has
been assumed so far is needed. In standard propositional languages only
finite disjunctions and conjunctions are defined, but sometimes infinite
disjunctions and conjunctions are useful. Let us say that the language L is
complete iff, for every sequence (4,);.;, Where I is an index set, there exist
sentences | J;c;(4;) and ();c;(4;) in L representing the disjunction and
conjunction, respectively, of the sentences in (4;);c;- (In what follows the
index set I is suppressed from the notation.) Furthermore, let us say that
the relation |- of logical consequence is complete iff it satisfies the following
conditions:

(H4) Forall 4;, 4; - | J(4)

(—4) Forall 4, (\(4) - 4.

(5 If A; |- Bforall 4, then ( J(4)) - B.

(+5) IfC}| A, forall 4, then C | [(4).

In fact, it follows from de Morgan’s laws that (4) is equivalent to (—-4')

and that (- 5) is equivalent to (- 5'). The notion of a complete logic is
closely related to complete Boolean algebras.’
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Finally, let us say that a belief set is complete iff it is closed under a
complete logic. An important feature of a complete belief set K is that the
conjunction of all the sentences in K is a sentence, which also is in K. Let
us denote this conjunction (K and call it the determiner for K. The name
is motivated by the fact that (K determines K in the sense that, for any
sentence 4, A € K iff (\K |- 4; that is, everything that is believed in K is a
consequence of the single sentence NK.

2.3 Ellis’s Belief Systems

Ellis (1976, 1979) has put forward a type of model of epistemic states that
is closely related to belief sets. According to Ellis, a belief system is in the
simplest case a set of assignments of the values T, F,and X to the sentences
of a language L. T(A) denotes the conviction (or “firm belief™) that 4 is
true, F(A) the conviction that A is false, and X (A) the absence of any firm
belief concerning 4.8 This type of model is thus a direct way of representing
a set of epistemic attitudes toward the sentence in a language L.

Ellis writes down a number of rationality criteria for belief systems, which
he calls acceptability criteria (in contrast to truth conditions). The criteria
are dependent on the structure of the language that is considered. In the
simplest case, when L has the syntactic structure of the propositional
calculus, the conditions are of the form ‘T(A & B) occurs in a belief system
only if neither F(A) nor F(B) occur’ and ‘T(A — B) occurs in a belief system
only if T(A4) and F(B) do not both occur’. As regards the status of these
rationality criteria, Ellis says that they are “as much linguistic competence
requirements as rationality laws, since they serve to define the connectives
and operators [of the language L]” (Ellis 1979, p. 8). The ideal of rationality
is satisfied mainly because of Ellis’s requirement that belief systems be
completable through every extension of L. This means that, for every
language that syntactically includes L, there is some way of replacing the
X evaluations that occur in a given belief system by T or F evaluations
without violating any of the remaining acceptability criteria. Complet-
ability as an ideal of rationality is a consequence of “the requirement that
a rational belief system be defensible against all internal criticism” (Ellis
1979, p. 9), that is, reductio ad absurdum arguments. This requirement is,
of course, the same as the requirement of consistency [condition (i) in (Def
BS)] in section 2.2.

Ellis states without proof that the acceptability criteria for the proposi-
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tional language entail that a sentence A is a theorem of the classical
propositional calculus iff F(A4) does not occur in any rational belief system
[for a proof, see van Fraassen (1980a)].

In order to compare Ellis’s belief systems with the belief sets of section
2.2, it should be noted that it is not required that T(4 v — A) occur in a
belief system or that, if both T(4) and T(4 — B) occur, that T(B) also occur.
Ellis calls a belief system strictly rational if it satisfies these two additional
requirements. In such a system one accepts as true all logical consequences
of already accepted sentences. The two additional requirements thus cor-
respond to the requirement of deductive closure [condition (i) of (Def BS)].
Ellis seems to think that these requirements are too strong; he says that
“strictly rational belief systems are really only for the gods, and they
have no need for logic anyway. Therefore, I prefer the weaker concept
of rationality” (Ellis 1979, p. 32). Against this it can be said that strict
rationality in Ellis’s sense is an idealization for certain, but so are the ac-
ceptability criteria governing rational belief systems. As mentioned earlier,
Ellis also works with the equilibrium model of epistemic states. Because
these criteria can be simplified if we confine ourselves to strict rationality
[they can essentially be replaced by (Def BS)], there is much to be gained
by such an idealization.

I now show that a strictly rational belief system in Ellis’s sense is essen-
tially identical with a belief set. Let us first assume that a nonabsurd belief
set K satisfying (Def BS) is given and that the assumed logic is classical
propositional logic. Define a set By of T, F, and X assignments in the
following way: For any sentence 4, A is assigned T'iff 4 € K, A4 is assigned
Fiff —A e K, and A is assigned X otherwise. Then it is easy to show that
By is a strictly rational belief system in Ellis’s sense.

Conversely, suppose that a strictly rational belief system B is given.
Define a set K of sentences as follows: A € K iff T(A) € B. Then it is easy
to show that K is a nonabsurd belief set governed by standard proposi-
tional logic.

These simple results show that belief sets and Ellis’s strictly rational belief
systems are equivalent ways of modeling epistemic states. When applying
sets of sentences as models of epistemic states in what follows, I restrict
myself to deductively closed sets. I prefer the belief set representation
because it is more perspicuous.

I have given here only an outline of how Ellis develops, in terms
of acceptability criteria, an alternative to the standard truth-condition
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semantics for the simplest propositional language. Ellis extends this
approach to other classical and modal logics and logics of conditionals. He
states completeness results for about ten different systems of logic. As
regards conditional sentences, a semantical theory based on acceptability
criteria that is closely related to Ellis’s approach is developed in chapter 7.

2.4 Models Based on Possible Worlds

An obvious objection to using sets of sentences as models of epistemic states
is that the objects of belief are normally not sentences but rather the content
of sentences, that is, propositions. The characterization of propositions that
has been most popular among philosophers during recent years is to
identify them with sets of possible worlds. (An alternative construction of
propositions is presented in chapter 6.) The basic semantic idea connecting
sentences with propositions is then that a sentence expresses a given
proposition iff it is true in exactly those possible worlds that constitute the
set of worlds representing the proposition.

This set-theoretical approach to propositions makes it possible to de-
scribe some standard operations on propositions in a straightforward
manner: Let [A] and [B] denote propositions, that is, sets of possible
worlds. The conjunction of two propositions [A] and [B] interpreted as
sets of possible worlds is represented by [A] n [B], disjunction by [A] U
[B], and the negation of a proposition [A]is [T] — [4] = W — [A]. Here
W is the set of all possible worlds, which also may be taken as the proposi-
tion “truth” [ T] (corresponding to the sentence T). We can also use the
representation to introduce a relation of logical consequence between
propositions: [A4] is a logical consequence of a set of propositions S iff the
intersection of S is a subset of [4]. As is easily seen, the logic generated by
this definition of sentential connectives includes classical propositional
logic. The logic of propositions is discussed further in chapter 6.

By taking beliefs to be beliefs in propositions, we can then model an
epistemic state by a set [K] of possible worlds. This kind of model is called
a possible worlds model. The epistemic interpretation of [K] is that it is the
narrowest set of possible worlds in which the individual is certain to find
the actual world or, in other words, the largest set of possible worlds that
is compatible with the individual’s convictions.® Harper (1976) calls the set
[K] the individual’s “acceptance context.”

The interpretation of the set [K] entails that what you accept as known
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in a given epistemic state is exactly what is true in all worlds in [K]. In a
sense the use of possible worlds is a way of describing what you do not
know. The more you learn, the fewer possible worlds are compatible with
what you know. For example, I do not know whether the person who just
called me on the telephone has blue or brown eyes; I do not know whether
there are bats in the tower of the cathedral; and I do not know whether the
train I am waiting for will be on time. Each of these possibilities demarcates
a set of worlds that are compatible with what I accept as knowledge.

The central acceptability criterion is that a proposition [4] is accepted
in [K] iff [K] is a subset of the set of worlds representing [A]. Similarly
[A] is rejected iff [K] and the set representing [A] are disjoint. From these
criteria it follows immediately that the set of accepted propositions is closed
under logical consequences. The criterion that an epistemic state be con-
sistent corresponds to the requirement that the set [K] be nonempty.

Following the seminal work of Hintikka (1962), epistemic logic has
developed as a special branch of intensional logic.*® In this kind of logic
the object languages are augmented by epistemic operators, so that, for
example, “a knows that B” is expressed in these languages by the formula
K,B. A formal semantics for these operators is then developed in terms of
possible worlds (the corresponding notion in Hintikka’s writings is a model
set). In contrast to this, my strategy is to “epistemize” the whole semantics,
in the sense that I locate the epistemological machinery in the belief systems
rather than in the object language. This does not mean that I have any
aversion to epistemic logic—on the contrary. However, because I believe
that the study of epistemic operators in a formal or natural language is not
of primary concern for understanding the dynamics of knowledge and
belief, T have chosen to keep the object language as simple as possible.

There is a close correspondence between belief sets and possible worlds
models of epistemic states. An interpretation function I is a mapping from
sentences of the language L to sets of possible worlds from W that satisfies
the following conditions:

1) I(—A) = W — I(A).

(12) I(A&B) = I(4) ~ I(B).

(13) I(A v B) = I(4) U I(B).

(14) I(A - B) = (W — I(A)) U I(B).
15) I(T)=W.

16) I(L)= .
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Let the language L and an interpretation function I for L into W be given.
It is easy to show that, if K is a nonabsurd belief set and if I assigns some
sentence in K a nonempty set I(A4) = [A], then the intersection [K] of all
the sets I(A4) for A € K is nonempty. This intersection can then be taken as
a possible worlds model. In this model all sentences in K (or rather their
propositional interpretations) are accepted, and no other sentences from L
are accepted. However, there may be propositions, that is, subsets of W, that
are accepted in [ K], but these are not the interpretations of any sentences
in K. This is possible simply because not all subsets of W need be interpre-
tations of any sentences from L.

Conversely, given any nonempty possible worlds model [K] together
with an interpretation function I, we can define a set K of sentences as
follows: A € Kiff[K] = I(A). Itis easy to show that K is a nonabsurd belief
set. Here it can be noted that, if we assume that all propositions have a
name in L, that is, for every subset W’ of W there is some sentence A4 in L
such that I(4) = W", then the belief set generated in this way is complete,
that is, closed under infinite disjunctions and conjunctions. In particular,
there is then a determiner (\K for the belief set such that I (NK) = [K].
And in this case there will be a one-to-one mapping from sentences in L to
propositions in the power set of W.

2.5 Spohn’s Generalized Possible Worlds Models

A possible worlds model (as well as a belief set) gives a crude representation
of a subject’s beliefs because we can express only the most elementary
epistemic attitudes. This is a consequence of the fact that the set [K],
representing the epistemic state, divides the possible worlds into only two
classes. For these models there is no possibility of expressing any degree of
plausibility of different possible worlds or propositions. The best-known
way of modeling degrees of belief is to introduce probabilities defined over
a language or a class of propositions. This is the topic of the next section.
In this section I present Spohn’s (1987) ordinal conditional functions, which
are a different way of introducing degrees of belief. Isaac Levi has pointed
out that Shackle’s (1961) measure of “potential surprise” is closely related
to Spohn’s construction.

An ordinal conditional function, according to Spohn, is a function k from
a given set W of possible worlds into the class of ordinals such that some
possible worlds are assigned the smallest ordinal 0. Intuitively k represents
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a plausibility grading of the possible worlds. The worlds that are assigned
the smallest ordinals are the most plausible, according to the beliefs of the
individual.

The plausibility ordering of possible worlds can be extended to an
ordering of propositions, (sets of possible worlds), by requiring that the
ordinal assigned to a proposition A be the smallest ordinal assigned to the
worlds included in A; that is, k(A) = min{k(w): w € A}. This definition
entails that the plausibility ordering of propositions have the following two
properties:

(2.6) For all propositions A4, either k(4) = 0 or k(—A4) = 0.
(2.7) For all nonempty propositions A and B, k(4 U B) = min{k(A), k(B)}.

We can now identify the set [ K] of the previous section by the set of the
most plausible possible worlds, that is, the set of worlds w such that
k(w) = 0. Following this, we can introduce the basic acceptability criterion:
A proposition 4 is accepted in the epistemic state represented by the ordinal
conditional function k iff k(— A) > 0. That this definition is the natural one
follows from the fact that k(4) = 0 means that 4 and [ K] have some world
in common; that is, 4 is not believed false in [K]. So if k(— A) > 0, this
means that all worlds in [ K] must belong to A.

An important feature of ordinal conditional functions is that it makes
sense to talk of greater or lesser plausibility or firmness of belief, relative
to some function k. We can distinguish several cases: If both A and B are
accepted [that is, if k(—A) > 0 and k(—B) > 0], we can say that A is
believed more firmly than B iff k(— A) > k(— B), that is, if the most plausible
worlds outside A are less plausible than the most plausible worlds outside
B. There are other cases where A is more plausible than B. First, the case
where A is accepted and B is not, that is, where k(—A4) > k(—B) =0.
Second, there is the case where A is not believed false but B is; that is,
k(A) = 0 < k(B). Finally, we have the case where both 4 and B are believed
false but A4 less firmly so, that is, 0 < k(A) < k(B). This leads us to the
following definition: A is more plausible than B relative to k iff k(— A) >
k(—B) or k(A) < k(B).

We thus see that representing epistemic states by ordinal conditional
functions makes it possible to introduce more interesting epistemic atti-
tudes, to wit, “believed more firmly than” and “more plausible than,” beside
the standard “accepted,” “rejected,” and “kept in suspense.” However, the
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full forces of the ordinal conditional functions appears only in the next
chapter, when I turn to changes of epistemic states.

2.6 An Example from Artificial Intelligence: Doyle’s Truth
Maintenance System

So far the models of epistemic states that have been presented have been
taken from the philosophical literature. There are, however, other areas of
research where models of epistemic states are important. In general terms
it can be said that such models are important for cognitive science. In this
section I briefly comment on the use of semantic networks as models
of epistemic states and then present a particularly interesting example
from artificial intelligence (AI), to wit, Doyle’s (1979) truth maintenance
system.

Probably the most common models of epistemic states used in cognitive
science are those called semantic networks. A semantic network typically
consists of a set of nodes representing some objects of belief and, connecting
the nodes, a set of links representing relations between the nodes. The
networks are then complemented by some implicit or explicit interpreta-
tion rules that make it possible to extract beliefs and epistemic attitudes.
Changing a semantic network consists in adding or deleting nodes or links.

Different semantic networks have different types of objects as nodes and
different kinds of relations as links. In fact, the diversity is so large that it
is difficult to see what the various networks have in common. It seems that
any kind of object can serve as a node in the networks and that any type
of relation or connection between nodes can be used as a link between
nodes. This diversity seems to undermine the claims that semantic networks
represent epistemic states, and it raises the question of what they have to
do with semantics. In his excellent methodological article, Woods (1975)
admits that “we must begin with the realization that there is currently no
‘theory’ of semantic networks” (p. 36). As a preliminary to such a theory,
Woods formulates requirements for an adequate notation for semantic
networks and explicit interpretation rules for such a notation. My aim here
is not a presentation of his ideas but a brief outline of semantic networks
as models of epistemic states.

Turning now to artificial intelligence, the philosophically most impor-
tant problem seems to be the frame problem. In general terms, this problem
can be defined as the problem of finding a (basically epistemic) model that
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permits changing and complex information about the world to be repre-
sented in an adequate and efficient way.!! A solution to the frame problem
would be a way of describing the form of the world (or a substantial part
ofit) that would enable us to translate efficiently our knowledge and beliefs
about the world into a computer program. It should be noted that the frame
problem is not a question of content but one of form: The simple belief sets
presented in section 2.2 are perfectly capable of representing the blocks
worlds studied in Al but these models are badly suited for describing
actions that may be performed in such worlds and the changes of the world
the actions bring about.

Doyle’s (1979) truth maintenance system (TMS) is an attempt to model
changes of belief within an Al setting and, as such, is of direct relevance for
the frame problem. As Doyle remarks (p. 232), the name “truth maintenance
system” not only sounds like Orwellian Newspeak, but is also a misnomer,
because what is maintained is the consistency of beliefs and reasons
for belief. Doyle (1983) later changed the name to “reason maintenance
system.” In a broad sense TMS can be said to be a semantic network model,
but its belief structure and its techniques for handling changes of belief are
more sophisticated than in other semantic network models.

There are two basic types of entities in TMS: nodes representing proposi-
tional beliefs and justifications representing reasons for beliefs. These jus-
tifications may be other beliefs from which the current belief is derived. A
node may be in or out, which corresponds to the epistemic attitudes of
accepting and not accepting the belief represented by the node. As should
be expected, if a certain belief is out in the system, this does not entail that
its negation is in. On the other hand, as a rationality requirement, if both
a belief and its negation are in, then the system will start a revision of the
set of nodes and their justifications in order to reestablish consistency.

A justification consists of a pair of lists: an inlist and an outlist. A node
is in if and only if it has some justification (there may be several for the
same node), the inlist of which contains only nodes that are in and the
outlist of which contains only nodes that are out. A particular type of
justification, called “nonmonotonic justification,” is used to make tentative
guesses within the system. For example, a belief in A can be justified simply
by the fact that the belief in — A is out. Beliefs that are justified in this way
are called assumptions. This technique gives us a way of representing
commonsense “default” expectations. It also leads to nonmonotonic rea-
soning in the following sense: If belief in A is justified only by the absence
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of any justification for — A4, then a later addition of a justification for — 4

will lead to a retraction of the belief in A. The general problem of non-

monotonic reasoning and retraction of beliefs is analyzed in chapter 3.
The basic concepts of TMS are best illustrated by an example:

Node Justification Status
Inlist Outlist
(N1) Oscar is not guilty of defamation. (N2) (N3) in

(N2) The accused should have the
benefit of the doubt.

(N3) Oscar called the queen a harlot. (N4), (N5)

- out
(N4) It may be assumed that the
witness’s report is correct. —~ - in
(N5) The witness says he heard Oscar
call the queen a harlot — - out

In this situation (N1) is in because (N2) is in and (N3) is out. Node (N3) is
out because not both of (N4) and (N5) are in. If (N5) changes status to in
(this may be assumed to be beyond the control of the system), (N3) will
become in and consequently assumption (N1) is out.

Apart from the representations of nodes and justifications as presented
here, TMS contains techniques for handling various problems that arise
when the system of beliefs is adjusted to accommodate the addition of a
new node or justification. In particular, when a contradiction is found, the
system uses a form of backtracking to find the fundamental assumptions
that directly or indirectly give support to the contradiction. One of these
assumptions is chosen as the culprit and is given the status out. This process
sometimes needs to be iterated, but it is beyond the scope of this chapter
to give a full description of the mechanics of TMS.

However, the TMS representation of beliefs is not without epistemo-
logical problems. The example can be used to illustrate some of the draw-
backs of TMS. In the handling of beliefs and Justifications, TMS takes no
notice of what the nodes happen to stand for. The sentences that I have
added to the node names are not interpreted in any way by the system.
This means that much of the logic of propositions is lost in the TMS
representation of beliefs. All forms of logical inferences that are to be used
by the system have to be reintroduced as special systems of justifications.




e |

Epistemic States 35

Doyle discusses conditional proofs, but the process for handling such
inferences seems extremely complex.

Furthermore, as regards the frame problem, TMS is not an ideal solution
because it leaves much of the work to the programmer. The programmer
produces the nodes and their justifications; she has to organize the infor-
mation in levels, and she also has to decide on how contradictions are to
be engineered. In short, the programmer may end up in a task that is no
easier than describing the relevant beliefs and their connections in a belief
set.

I find TMS to be an interesting way of modeling epistemic states. In
particular, the idea of including justifications for the beliefs held seems
fruitful. This aspect of belief systems seems to be neglected in other models
of epistemic states. An exception, however, is Spohn (1983a), who tries to
define the notion of one belief being a reason for another within his model
of states of belief.

Harman (1986, ch. 4) introduces a distinction between two competing
theories of belief revision that is helpful here: the foundations theory, which
holds that one needs to keep track of one’s original justifications for belief,
and the coherence theory, which holds that one need not.

The foundations theory holds that some of one’s beliefs “depend on” others for their
current justification; these other beliefs may depend on still others, until one gets
to foundational beliefs that do not depend on any further beliefs for their justifica-
tion. In this view reasoning or belief revision should consist, first, in subtracting
any of one’s beliefs that do not have a satisfactory justification and, second, in
adding new beliefs that either need no justification or are justified on the basis of
other justified beliefs one has.

On the other hand, according to the coherence theory, it is not true that one’s
ongoing beliefs have or ought to have the sort of justificational structure required
by the foundations theory. In this view ongoing beliefs do not usually require any
justification. Justification is taken to be required only if one has a special reason to
doubt a particular belief. Such a reason may consist in a conflicting belief or in the
observation that one’s beliefs could be made more “coherent,” that is, more or-
ganized or simpler or less ad hoc, if the given belief were abandoned (and perhaps
if certain other changes were made). According to the coherence theory, belief
revision should involve minimal changes in one’s beliefs in a way that sufficiently
increases overall coherence. (Harman 1986, pp- 29-30)

Levi (1980) defends the coherence theory. He claims (p. 1) that knowledge
is not “a matter of pedigree.” It is clear that, with the exception of Doyle’s
TMS, all models of epistemic states presented in this chapter adhere to the
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coherence theory. This is true also of the probabilistic models to be pre-
sented in the following sections. Harman (1986, ch. 4) discusses the pros
and cons of the foundations theory versus the coherence theory. Among
other things he reviews some psychological experiments [see Ross and
Anderson (1982)] that tend to support the coherence theory. It seems to
be a matter of fact that people do not keep track of the justifications for
their beliefs. The main reason for this is that it would soon lead to a
combinatorial explosion, and it is a matter of the economy of thought to
avoid cluttering one’s mind. Harman sees this as the decisive reason in
favor of the coherence theory. However, it should be admitted that, in the
view of epistemic states as equilibrium points adopted here, combinatorial
considerations are of less importance than other rationality criteria.

2.7 Bayesian Models

The best-known models of epistemic states and of how epistemic inputs
affect an epistemic state are models that are based on subjective or per-
sonalistic probabilities. A central part of the Bayesian doctrine is that the
epistemic state of an individual can be represented by a probability function
defined over a language or a set of possible worlds. The intended interpre-
tation is that such a probability function provides a measure of the indi-
vidual’s degrees of belief in the sentences or propositions. These degrees of
belief then provide us with a richer repertoire of epistemic attitudes than
is possible with belief sets or traditional possible worlds models.

The criterion of rationality that is used to motivate the assumption that
degrees of belief should be represented by a probability function is that
degrees of belief should be coherent. The meaning of coherence is best
explained by a brief description of the so-called Dutch book theorem. In
the form of Bayesianism advocated by Ramsey (1931b) and de Finetti
(1937), it is assumed that the probability an individual assigns to a sentence
can be determined with the aid of his inclination to accept bets concerning
the truth of the sentence. If he, for example, accepts a bet that A is true at
the odds of 1:4, then this is taken to imply that he estimates the probability
of A to be at least 1/(1 + 4) = 0.2. The Dutch book theorem says that if it
is not possible to construct a bet where the individual will lose money no
matter what happens (a Dutch book), then there is a unique probability
measure that describes the individual’s degrees of belief in the different
sentences of the language.!2 It should be noted that a necessary assumption

et
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for this theorem is that, if an individual is not willing to bet on A at odds
of a:b, then he should be willing to bet on — 4 at odds of b:a. In the betting
context the requirement that the individual’s beliefs be coherent is simply
that no Dutch book can be made against him. The Dutch book theorem
then shows that coherence entails that the individual’s degrees of belief can
be represented by a probability function.

The Bayesian models of epistemic states have been used extensively
within many areas of decision theory and game theory. In combination
with a utility measure the subjective probabilities have been used in various
forms of decision rules, the most familiar being the principle of maximizing
expected utility. In decision-theoretic contexts it is often assumed that all
information about the world that is relevant for the decision maker is
conveyed by his subjective probability function, that is, the Bayesian model
of an epistemic state.

I have not yet raised the question of how the probability function on L
(or W) s to be defined. We want to consider a numerical function defined
on L that obeys the laws of probability. The standard formulation of these
laws is as follows:

(28) 0< P(A4) < 1for all sentences 4 in L.
29 P(M)y=1.

(2.10) For all sentences 4 and B, if A and B are logically disjoint [that is,
if - — (4 & B)], then P(4 v B) = P(4) + P(B).

However, this formulation of the axioms presumes that we know the logic
of L, because otherwise we cannot determine when two sentences are
logically disjoint. In order to prepare the ground for chapter 6, I use instead
an axiomatization of the laws of probability that shows that we need not
presuppose a logic. On the contrary, the axiomatization can be used to
define a logic for L. Historically the first axiomatization of this kind
is Popper’s (1959, app. *iv) axioms for conditional probability. For my
purposes an axiomatization of unconditional probability is sufficient,

and I can use the following definition, which is adopted from Stalnaker
(1970):

(Def Prob) A (language-based) probability function is a function P from
sentences in L into real numbers that meets the following six
conditions for all sentences A, B, and C:
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@ O0<PA<I
(i) P(4) = P(4&A).

(iii) P(A&B)= P(B& A).

(iv) P(A&(B&C)) = P((A& B)&C).
) P(A) + P(—A4)=1.

(vi) P(A) = P(A&B) + P(A & —B).

In this definition we assume that — and & are the only primitive connec-
tives and that the remaining connectives are defined in the standard way.
It is worth noting that Stalnaker introduces these probability functions “as
an autonomous semantics for propositional calculus, based on the concept
of knowledge rather than truth” (Stalnaker 1970, p. 65). This semantic
program has since been developed by Leblanc (1983) and Field (1977)
among others.

It is easy to show that, on the standard axiomatization of probability
functions, the six conditions in (Def Prob) are satisfied. In order to show
that we can use (Def Prob) to derive the standard axiomatization of
probability functions, we must first show how it can be used to generate a
logic for L. Let us say that a sentence A is logically valid iff P(A) = 1 for all
probability functions that satisfy conditions (i)—(vi). On the basis of this we
can then say that two sentences A and B are logically disjoint iff —(A & B)
is logically valid. From these definitions the following lemmas can be
established:!?

LEMMA 2.1 A sentenceis logically validiffit is a truth-functional tautology.

LEMMA 2.2 If A and B are logically disjoint, then, for any probability
function P, P(A v B) = P(A) + P(B).

Lemma 2.2 expresses the key axiom in the standard axiomatization of
probability functions. Because the other axioms are trivial, we conclude
that the standard axiomatization and the one presented here are essentially
equivalent.

I next turn to the connections between belief sets and the probability
models presented here. Probabilities represent degrees of belief, and belief
sets represent beliefs that are accepted as certain. In a probabilistic model
it is natural to define the second notion by saying that a sentence A is
accepted as certain relative to P iff P(A) = 1. We can then introduce a
relation between probability functions and sets of sentences:
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(Def Gen) A probability function P defined over L generates the set K of
sentences iff, for all sentences A in L, P(4) = 1 iff 4 € K.

In other words, the set generated by P is the set of sentences that are
accepted as certain relative to P. The relation is many to one—different
probability functions may generate the same set of sentences. The following
result is trivial but useful [for a proof, see Girdenfors (1978a), p. 398]:

LEMMA 2.3 K is a nonabsurd belief set iff there exists some probability
function P that generates K.

This result shows that, in applications where we are interested only in the
sentences that are accepted as certain, we need not use the full complexity
of probability functions but can confine ourselves to belief sets.

(Def Gen) identifies the accepted sentences with the sentences that have
full belief, that is, probability 1. Some authors, for example, de Finetti,
Carnap, and Levi, drive a wedge between acceptability and maximal
probability and thus allow that some sentences that have probability 1 are
not accepted [see Levi (1980, ch. 5)]. For example, in a problem of estimat-
ing the value of a real-valued parameter x that ranges between 0 and 1, the
hypothesis that x has an irrational value normally has probability 1, but,
according to these authors, it should not be accepted. Even if a distinction
between acceptability and full belief is motivated in some cases, it does not
play any role in this book; so, in order to avoid unnecessary complications,
I assume (Def Gen) in chapter 5 and to some extent in the applications in
part IIL i

Corresponding to his belief systems, Ellis (1979) also discusses a class of
models of epistemic states that use probability values. These models are
based on a set of “P-evaluations,” which are assignments of subjective
probabilities to sentences in L. In addition to evaluations of the form
P(A) = x, Ellis also allows evaluations of the form Y(A), which occur in
the model of an individual’s epistemic state when she has no determinate
degree of belief in A. Thus these systems of P-evaluations are related to
standard Bayesian probability models just like Ellis’s belief systems are
related to belief sets. Forrest (1986) develops Ellis’s probabilistic models
into a dynamic setting. An important difference between the dynamics of
probabilistic models to be presented in chapter 5 and Forrest’s system is
that he does not make the idealizing assumption that belief systems be
closed under logical implications. Besides this, his typology of epistemic
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changes is different from the one presented there. Some further models of
“indeterminate” degrees of belief are discussed in the next section.

Itis, of course, also possible to have a probabilistic version of the possible
worlds models. Such a model consists of a probability function defined over
sets of possible worlds taken from some given set W. This kind of model is
studied by several authors, and an extended version of it is introduced in
chapter 8.14

A central feature of probabilistic possible worlds models is that, because
propositions are defined as sets of possible worlds, we can immediately
assign probabilities to propositions as soon as we have a probability
function defined over W. And if we have an interpretation function I
available that takes sentences into propositions, we can assign probabilities
to sentences by saying that the probability of the sentence is the same as
the probability of the set of possible worlds that is its interpretation. It
should come as no surprise that such a probability assignment to the sen-
tences in L satisfies (Def Prob). Thus it is clear that, in light of the results of
section 2.6, a probability model defined over a set W of possible worlds is
but a slight generalization of a probability model defined over a language L.

2.8 Generalized Probabilistic Models

The main rationale for the Bayesian way of modeling epistemic states is
the Dutch book theorem or closely related results. As was mentioned
earlier, a presupposition for the theorem is that an individual be willing to
take either side of a bet so that, if he is not willing to bet on a sentence A
at odds of a:b, he should be willing to bet on — 4 at odds of b:a. A general
criticism of the Bayesian models is that this requirement demands too much
of people’s willingness to accept bets, and, perhaps more important, it is
far from certain that the requirement is rationally motivated. People are
often not willing to accept either of the two bets, and they may have good
reasons for not doing so. This criticism of the standard Bayesian models
of epistemic states is directed against the assumptions needed for the Dutch
book theorem, but similar points can be made against other arguments for
representing beliefs by a single probability measure.

A probability function is one way of representing beliefs that are partial
in the sense that they are neither accepted nor rejected. The probability
function provides detailed information about how strongly the beliefs are
held, but, as we have seen, such a function may be unrealistically detailed.
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In this section I present some other ways of representing partial beliefs that
have been suggested within theories of decision making. These models are
based on less demanding assumptions about an individual’s behavior than
in the standard Bayesian model.

The first alternative way of describing partial beliefs is to associate with
each sentence in a language (or each proposition in a possible worlds
context) a probability interval.'> The intended interpretation of such an
interval is that the information available to the individual entails that the
“true” probability of the sentence is a point in the interval and that no
narrower interval is justified by this information. On this interpretation the
width of the probability interval associated with a sentence 4 can be taken
as a measure of the individual’s degree of ignorance of the probability of
A. The interval associated with a sentence 4 can be denoted (P.(A), P*(A)),
where 0 < P,(A4) < P*(4) < 1. P,(A) and P*(A) are called the lower and
upper probabilities of A, respectively.

The rationality criteria governing the assignment of probability intervals
take the form of certain restrictions that guarantee that the assignment is
coherent. If we consider only a single sentence A, then it must be the case
that P,(4) = 1 — P*(—A) and P*(4) =1 — P,(— A) in order to maintain
the interpretation that every value within the interval assigned to A is
a “possible” probability of A. Generally the coherence restriction is that,
for every value x within the interval (P,(A4), P*(4)), there must be values
within the intervals associated with the other sentences in the language
such that x together with these values form a standard probability function
over the language [see Gérdenfors (1979b), p. 169]. If this criterion is not
fulfilled for some assignment of intervals, it is possible to construct a Dutch
book against an individual using these intervals as a basis for his betting
behavior.

The second generalization of the traditional Bayesian models that I
consider is based on utilizing a class P of probability functions, instead of
a single probability function, to represent the beliefs of an individual. The
interpretation of the set P is that the information available to the individual
is not sufficient to single out a unique probability function, but it deter-
mines a class of epistemologically possible [or, as Levi (1974) calls them,
“permissible”] probability functions. A probability function is said to be
epistemologically possible if it does not contradict the individual’s knowl-
edge in the given epistemic state. Several authors have suggested that a
state of belief be represented by such a class of probability functions.!®
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Levi (1974) also assumes that the set P is convex, which means that, if P
and P’ are two functions in P, then for all a, 0 < a < 1, the “mixture”
function a- P + (1 — a)- P'is also in P. (The mixture function is defined by
[a-P+(1—a)P](A)=a-P(A) + (1 — a): P'(A) for all A. Mixture func-
tions and their properties are analyzed in section 5.2.) The interpretation
of this assumption is that, if P and P’ are both epistemologically possible
probability functions according to the beliefs of an individual, then any
mixture of these functions is also possible.

Note that, if P is assumed to be convex, then for any sentence A4 the set
of probabilities assigned to 4 by the functions in P form an interval
(possibly open). In this sense we can say that the set P generates an interval
assignment to the sentences of L. Representing beliefs by a convex set of
probability functions is, however, a more general method than representing
them by probability intervals, because from a convex set of probability
functions a unique set of associated intervals can be computed; but if we
start from a given assignment of coherent probability intervals, there is in
general a large number of convex sets of probability functions that generate
the intervals. And when it comes to decision making, this may make a
difference. Levi (1974, pp. 416-417) presents an example that shows that
there may be two decision situations with the same alternative states and
outcomes but with different sets of “permissible” probability functions,
which give different decisions when his theory is used, although the proba-
bility intervals that are generated are identical.

It is argued in Gérdenfors and Sahlin (1982) that not all aspects of an
individual’s beliefs that are relevant for decision making can be captured
by a set of probability functions. As a second element in the models of states
of belief, in addition to the set P a measure r of the epistemic reliability of
the probability functions in P is introduced. The motivation for including
r is that, even if several probability functions are epistemologically possible,
some distributions are more reliable to the individual—they are backed
up by more evidence or information than other distributions. The measure
of epistemic reliability is intended to represent these degrees of information.
In a sense the measure r can be seen as a probabilistic generalization of
Spohn’s notion of believing more firmly, as presented in section 2.5.

The concept of epistemic reliability is also closely related to the “weight
of evidence” that was introduced by Keynes (1921, p. 71). In fact, this way
of extending the Bayesian representation of beliefs was forestalled by
Peirce:
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To express the proper state of belief, not one number but two are requisite, the first
depending on the inferred probability, the second on the amount of knowledge on
which that probability is based. (Peirce 1932, p. 421)

For a discussion of the weight of evidence, see Girdenfors (1979b, pp.
176-178).

I have now presented some of the main extensions of the standard
Bayesian models of belief. There are several variants of each of the types
that have been presented here, but my aim has not been to give a complete
list. A general approach to both belief set representations and prob-
abilistic models can be found in Domotor (1983). Yet another extension of
the Bayesian model is presented in chapter 8 as a tool for analyzing
explanations.

2.9 Johnson-Laird’s Mental Models

Most of the models of epistemic states presented so far have presumed
sentences or propositions as the building blocks of the models. Further-
more, the models have been governed by a propositional logic. In this
concluding section I give an outline of Johnson-Laird’s (1983) “mental
models,” which deal with reasoning in first-order logic and which have
“things” as building blocks.

One of the main applications of Johnson-Laird’s models is syllogistic
reasoning. He considers syllogisms that involve two premises of the forms
‘All X are Y°, ‘Some X are Y’, and ‘No X are Y. The key step in the
modeling of premises in a syllogism is to set up a table of “actors” taking
different “roles” (Johnson-Laird 1983, ch. 5). For example, the premise ‘All
artists are beekeepers’ may be represented as follows:

artist = beekeeper

artist = beekeeper

artist = beekeeper
(beekeeper)
(beekeeper)

Here three actors are playing the joints roles of artists and beekeepers, and
two (optional) actors are taking the role of the beekeepers who are not
artists. If a second premise, ‘All the beekeepers are chemists’, is now added,
the table is expanded to accommodate this premise in the following way:
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artist = beekeeper = chemist

artist = beekeeper = chemist

artist = beekeeper = chemist
(beekeeper) = (chemist)
(beekeeper) = (chemist)
(chemist)

By inspecting this table, we can readily determine that the conclusion ‘All
the artists are chemists’ follows.

Similarly the premise ‘None of the authors are burglars’ can be modeled
by “fencing off” the actors:

author

author

author
burglar
burglar
burglar

Suppose now that we want to add the premise ‘Some of the chefs are
burglars’. The most straightforward way of doing this is as follows:

(i) author
author
author

burglar = chef
burglar = chef
(burglar)

(chef)

If this table is used, it is tempting to conclude that ‘None of the authors
are chefs’, which some experimental subjects do. However, here are two
other ways of modeling the premises:

(i) author
author
author = chef

burglar = chef
burglar = chef
(burglar)
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(i) author = chef
author = chef

author = chef

burglar = chef
burglar = chef
(burglar)

Because all these tables are consistent with the premises, it follows that the
conclusion ‘None of the authors are chefs’ is invalid (and so is ‘Some of the
authors are not chefs’). Given these three tables, it may be tempting to claim
that there is no valid conclusion connecting the authors with the chefs (as
many subjects do). However, in all three ‘Some of the chefs are not authors’
is valid.

I have here only presented Johnson-Laird’s method of modeling syl-
logistic reasoning by way of examples. The reader is referred to Johnson-
Laird (1983) for the theoretical basis of these models. He there uses the
tables and the various places where the constructions can g0 wrong in the
subjects’ minds (for example, not seeing all possible types of tables for a
particular pair of premises) to explain several experimental findings con-
cerning people’s performance in syllogistic reasoning.

Another application in Johnson-Laird’s book is a computer program
that constructs models of spatial descriptions. For example, if given the
input

Xis to the right of Y
Zis in front of Y
W is to the left of Z,

the program constructs the following spatial representation:

Y X
W z

The interesting cases occur when the program is given indeterminate
descriptions, such as

X is to the right of Y
Zis to the left of X.

Even if this information does not fully specify the model, the program
nevertheless constructs a model, for example:
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Z Y X
However, if the program is subsequently informed that
Z is to the right of Y,

then this information contradicts the constructed model. This forces the
program to check whether there is any revision of the model that is consis-
tent with all the information available. This is accomplished by (recursively)
rearranging the indetermined positions of the items in the model and
checking whether the rearrangement satisfies the premises. In the example
given here, the program returns the model

Y Z X

as expected.

Also for this application I have chosen to present Johnson-Laird’s theory
by means of examples. My main reason for presenting these applications
is that the models do not use sentences or propositions as building blocks.
As we have seen, however, it is still possible to make inferences from the
models. Furthermore, I want to emphasize that expansions and revisions
can be represented in a systematic manner for these models.




