
1

Belief Revision: An Introduction

PETER GÄRDENFORS

Cognitive Science, Department of Philosophy,

Lund University, S-223 50 Lund, Sweden

1 THE PROBLEMS OF BELIEF REVISION

1.1 An Example

Suppose that you have a database that contains, among other things, the following pieces
of information (in some form of code):

α: All European swans are white.

β: The bird caught in the trap is a swan.

γ: The bird caught in the trap comes from Sweden.

δ: Sweden is part of Europe.

If your database is coupled with a program that can compute logical inferences in the given
code, the following fact is derivable from α - δ:

ε: The bird caught in the trap is white.

Now suppose that, as a matter of fact, the bird caught in the trap turns out to be black.
This means that you want to add the fact ¬ε, i.e., the negation of ε, to the database. But
then the database becomes inconsistent. If you want to keep the database consistent, which
is normally a sound methodology, you need to revise it. This means that some of the
beliefs in the original database must be retracted. You don't want to give up all of the
beliefs since this would be an unnecessary loss of valuable information. So you have to
choose between retracting α, β, γ or δ.

The problem of belief revision is that logical considerations alone do not tell you which
beliefs to give up, but this has to be decided by some other means. What makes things
more complicated is that beliefs in a database have logical consequences, so when giving
up a belief you have to decide as well which of the consequences to retain and which to
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retract. For example, if you decide to retract α in the situation described here, α has as
logical consequences, among others, the following two:

α ': All European swans except the one caught in the trap are white

and

α": All European swans except some of the Swedish are white.

Do you want to keep any of these sentences in the revised database?

1.2 The Methodological Problems of Belief Revisions

When trying to handle belief revisions in a computational setting, there are three main
methodological questions to settle:

(1) How are the beliefs in the database represented?

Most databases work with elements like facts and rules as primitive forms of representing
information. The code used to represent the beliefs may be more or less closely related to
standard logical formalism. A mechanism for belief revision is sensitive to the formalism
chosen to represent the beliefs.

(2) What is the relation between the elements explicitly represented in the database and
the beliefs that may be derived from these elements?

This relation is to a large extent dependent on the application area of the database. In some
cases the elements explicitly formulated in the database have a special status in comparison
to the logical consequences of these beliefs that may be derived by some inference
mechanism. In other cases, the formulation of the beliefs in the database is immaterial so
that any representation that has the same logical consequences, i.e., the same set of implicit
beliefs, is equivalent. As will be seen in several papers in this volume, the nature of the
relation between explicit and implicit beliefs is of crucial importance for how the belief
revision process is attacked.

(3) How are the choices concerning what to retract made?

Logic alone is not sufficient to decide between which beliefs to give up and which to retain
when performing a belief revision. What are the extralogical factors that determine the
choices? One idea is that the information lost when giving up beliefs should be kept
minimal. Another idea is that some beliefs are considered more important or entrenched
than others and the beliefs that should be retracted are the least important ones. Within
computer science the use of integrity constraints is a common way of handling the
problem. Again, the methodological rules chosen here are dependent on the application
area.
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1.3 Three Kinds of Belief Changes

A belief revision occurs when a new piece of information that is inconsistent with the
present belief system (or database) is added to that system in such a way that the result is a
new consistent belief system. But this is not the only kind of change that can occur in a
belief system. Depending on how beliefs are represented and what kinds of inputs are
accepted, different typologies of belief changes are possible.

In the most common case, when beliefs are represented by sentences in some code, and
when a belief is either accepted or rejected in a belief system K (so that no degrees of belief
are considered), one can distinguish three main kinds of belief changes:

(i) Expansion: A new sentence φ is added to a belief system K together with the logical
consequences of the addition (regardless of whether the larger set so formed is consistent).
The belief system that results from expanding K by a sentence φ will be denoted K+φ.

(ii) Revision: A new sentence that is inconsistent with a belief system K is added, but, in
order to maintain consistency in the resulting belief system, some of the old sentences in K
are deleted. The result of revising K by a sentence φ will be denoted K φ.

(iii) Contraction: Some sentence in K is retracted without adding any new facts. In order
for the resulting system to be closed under logical consequences some other sentences
from K must be given up. The result of contracting K with respect to φ will be denoted

K φ.

Expansions of belief systems can be handled comparatively easily. K+φ can simply be

defined as the logical closure of K together with φ:

(Def +) K+φ = {ψ: K ∪ {φ}  ψ}

As is easily shown, K+φ defined in this way will be closed under logical consequences

and will be consistent when φ is consistent with K.

It is not possible to give a similar explicit definition of revisions and contractions in logical
and set-theoretical notions only. The problems for revisions were presented in the
introductory example. There is no purely logical reason for making one choice rather than
the other among the sentences to be retracted, but we have to rely on additional information
about these sentences. Thus, from a logical point of view, there are several ways of
specifying the revision Kφ. Though K φ cannot be characterized uniquely in logical
terms, the general properties of a revision function can be investigated, and – in some
cases, at least – algorithms can be found for computing revision functions. These two
goals will be handled technically by using the notion of a revision function " " which has
two arguments, a belief system K and a sentence φ, and which has as its value the revised

belief system K φ.
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The contraction process faces parallel problems. To give a simple example, consider a
belief system K which contains the sentences φ, ψ , φ ψ  →  χ and their logical

consequences (among which is χ). Suppose that we want to contract K by deleting χ. Of

course, χ must be deleted from K when forming Kχ, but also at least one of the

sentences φ, ψ, or φ ψ → χ must be given up in order to maintain consistency. Again,
there is no purely logical reason for making one choice rather than the other. Another
concrete example is provided by Fagin, Ullman and Vardi (1983, p. 353).

The common denominator in both this example and the introductory one is that the
database is not viewed merely as a collection of logically independent facts, but rather as a
collection of axioms from which other facts can be derived. It is the interaction between the
updated facts and the derived facts that is the source of the problem.

In parallel with revision we can introduce the concept of a contraction function " " which
has the same two arguments as before, i.e., a belief system K and a sentence φ (to be

retracted from K), and which produces as its value the belief system Kφ. In Section 3.3,
I shall show that the problems of revision and contraction are closely related – being two
sides of the same coin.

1.4 Two Approaches to Describing Belief Revisions

When tackling the problem of belief revision there are two general strategies to follow,
namely, to present explicit constructions of the revision process and to formulate
postulates for such constructions. For a computer scientist the ultimate solution to the
problem about belief revision is to develop algorithms for computing appropriate revision
and contraction functions for an arbitrary belief system. In this volume several proposals
for constructions of revision methods will be presented. These methods are not presented
as pure algorithms, but on a slightly more general level.

However, in order to know whether an algorithm is successful or not it is necessary to
determine what an 'appropriate' revision function is. Our standards for revision and
contraction functions will be various rationality postulates. The formulations of these
postulates are given in a more or less equational form. One guiding idea is that the revision
K φ of K with respect to φ should represent the minimal change of K needed to

accommodate φ consistently. The consequences of the postulates will also be investigated.

Much of the theoretical work within belief revision theory consists of connecting the two
approaches. This is done via a number of representation theorems, which show that the
revision methods that satisfy a particular set of rationality postulates are exactly those that
fall within some computationally well defined class of methods.1

1For further discussion of the two strategies cf. Makinson (1985, pp. 350-351).
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2 MODELS OF BELIEF STATES

2.1 Preliminaries

Before we can start discussing models of belief revision, we must have a way of
modelling belief states since a revision method is defined as a function from one belief
state into another. The most common models of belief states in computational contexts are
sentential or propositional, in the sense that the elements constituting the belief systems are
coded as formulas representing sentences. This kind of model will be the focus of this
introduction, but some alternative types of models will be encountered in the volume.

But even if we stick to propositional models of belief systems, there are many options.
First of all, we must choose an appropriate language to formulate the belief sentences. For
example, databases include some form of rules, and there are many ways of formalizing
these: as quantified sentences in first order logic, as PROLOG rules (corresponding to
Horn-clauses), as default statements (e.g., in the style of Reiter (1980)), as probability
statements, etc.

In this introduction, I shall work with a language L which is based on first order logic.
The details of L will be left open for the time being. It will be assumed that L is closed
under applications of the boolean operators ¬ (negation),  (conjunction), (disjunction)
and → (implication). We will use φ, ψ, χ, etc. as variables over sentences in L. It is also

convenient to introduce the symbols  and ⊥ for the two sentential constants "truth" and
"falsity."

What is accepted in a formal model of a belief state are not only the sentences that are
explicitly put into the database, but also the logical consequences of these beliefs. Hence,
the second factor which has to be decided upon when modelling a belief state is what logic
governs the beliefs. In practice this depends on which theorem-proving mechanism is used
in combination with the database. However, when doing a theoretical analysis, one wants
to abstract from the idiosyncracies of a particular algorithm for theorem proving and start
from a more general description of the logic. If the logic is undecidable, further
complications will arise, but we will ignore these for the time being.

I shall assume that the underlying logic includes classical propositional logic and that it is
compact.2 If K logically entails φ we will write this as K  φ. Where K is a set of
sentences, we shall use the notation Cn(K) for the set of all logical consequences of K,
i.e., Cn(K) = {φ: K  φ}. All papers in this volume presume classical logic, except the one
by Cross and Thomason where a four-valued logic is used instead.

2 A logic is compact iff whenever A is a logical consequence of a set of sentence K, then there is a finite

subset K' of K such that A is a logical consequence of K'.
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2.2 Belief Sets

The simplest way of modelling a belief state is to represent it by a set of sentences from L.
Accordingly, we define a belief set as a set K of sentences in L which satisfies the
following integrity constraint:3

(I) If K logically entails ψ, then ψ ∈ K.

In logical parlance, (I) says that K is closed under logical consequences. The interpretation
of such a set is that it contains all the sentences that are accepted in the modelled belief
state. Consequently, when φ ∈ K we say that φ is accepted in K and when ¬φ ∈ K we say

that φ is rejected in K. It should be noted that a sentence being accepted does not imply that

it has any form of justification or support.4 Α belief set can also be seen as a theory which

is a partial description of the world. "Partial" because in general there are sentences φ such

that neither φ nor ¬φ are in K.

By classical logic, whenever K is inconsistent, then K  φ for every sentence φ of the
language L. This means that there is exactly one inconsistent belief set under our
definition, namely, the set of all sentences of L. We introduce the notation K⊥ for this
belief set.

2.3 Belief Bases

Against modelling belief states as belief sets it has been argued (Makinson 1985, Hansson
1990, 1991, Nebel 1990, Fuhrmann 1991) that some of our beliefs have no independent
standing but arise only as inferences from our more basic belief. It is not possible to
express this distinction in a belief set since there are no markers for which beliefs are basic
and which are derived. Furthermore, it seems that when we perform revisions or
contractions we never do it to the belief set itself which contains an infinite number of
elements, but rather on some finite base for the belief set.

Formally, this idea can be modelled by saying that BK is a base for a belief set K iff B K is
a finite subset of K and Cn(BK) = K. Then instead of introducing revision and contraction
functions that are defined on belief sets it is assumed that these functions are defined on
bases. Such functions will be called base revisions and base contractions respectively.
This approach introduces a more finegrained structure since we can have two bases BK
and CK such that Cn(BK) = Cn(CK) but BK ≠ CK. The papers by Nebel and Hansson in
this volume concern base revisions. They will be presented in Section 3.5.

3Belief sets were called knowledge sets in Gärdenfors and Makinson (1988).

4For further discussion of the interpretation of belief sets cf. Gärdenfors (1988).
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There is no general answer to the question of which model is the best of full belief sets or
bases, but this depends on the particular application area. Within computer science
applications, bases seem easier to handle since they are explicitly finite structures.
However, it has been argued in Gärdenfors (1990) that much of the computational
advantages of bases for belief sets can be modelled by belief sets together with the notion
of epistemic entrenchment of beliefs (cf. Section 4.1).

2.4 Possible Worlds Models

An obvious objection to using sets of sentences as models of belief states is that the objects
of belief are normally not sentences but rather the contents of sentences, that is,
propositions. The characterization of propositions that has been most popular among
philosophers during recent years is to identify them with sets of possible worlds. The
basic semantic idea connecting sentences with propositions is then that a sentence
expresses a given proposition if and only if it is true in exactly those possible worlds that
constitute the set of worlds representing the proposition.

By taking beliefs to be beliefs in propositions, we can then model a belief state by a set
WK of possible worlds. The epistemic interpretation of WK is that it is the narrowest set of
possible worlds in which the individual being in the modelled belief state is certain to find
the actual world. This kind of model of a belief state has been used by Harper (1977),
Grove (1988), among others and in a generalized form by Spohn (1988) (also cf. the
comparisons in Gärdenfors (1978)). In this volume, Katsuno and Mendelzon, and
Morreau use this way of modelling belief states.

There is a very close correspondence between belief sets and possible worlds models. For
any set WK of possible worlds we can define a corresponding belief set K as the set of
those sentences that are true in all worlds in WK (assuming that the set of propositional
atoms is finite). It is easy to verify that K defined in this way satisfies the integrity
constraint (I) so that it is indeed a belief set. Conversely, for any belief set K, we can
define a corresponding possible worlds model WK by identifying the possible worlds in

WK with the maximal consistent extensions of K. Then we say that a sentence φ is true in

such an extension w iff φ ∈ w. Again it is easy to verify that this will generate an
appropriate possible worlds model (for details cf. Grove (1988)).

From a computational point of view, belief sets are much more tractable than possible
worlds models. So even though possible worlds models are popular among logicians, the
considerations here show that the two kinds of models are basically equivalent. And if we
want to implement belief revision systems, sentential models like belief sets, and in
particular bases for belief sets, are much easier to handle.

2.5 Justifications vs. Coherence Models
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Another question that has to be answered when modelling a state of belief is whether the
justifications for the beliefs should be part of the model or not. With respect to this
question there are two main approaches. One is the foundations theory which holds that
one should keep track of the justifications for one's beliefs: Propositions that have no
justification should not be accepted as beliefs. The other is the coherence theory which
holds that one need not consider the pedigree of one's beliefs. The focus is instead on the
logical structure of the beliefs – what matters is how a belief coheres with the other beliefs
that are accepted in the present state.5 The belief sets presented above clearly fall into the
latter category.

It should be obvious that the foundations and the coherence theories have very different
implications for what should count as rational changes of belief systems. According to the
foundations theory, belief revision should consist, first, in giving up all beliefs that no
longer have a satisfactory justification and, second, in adding new beliefs that have
become justified. On the other hand, according to the coherence theory, the objectives are,
first, to maintain consistency in the revised epistemic state and, second, to make minimal
changes of the old state that guarantee sufficient overall coherence. Thus, the two theories
of belief revision are based on conflicting ideas of what constitutes rational changes of
belief. The choice of underlying theory is, of course, also crucial for how a computer
scientist will attack the problem of implementing a belief revision system.

Doyle's paper in this volume deals with the relations between justification theories and
coherence theories of belief revision. In an earlier paper (Gärdenfors 1990), I presented
some arguments for preferring the coherence approach to the foundations approach. Doyle
argues that I have overemphasized the differences between the two approaches. He also
wants to show that the foundations approach represents the most direct way of making the
coherence approach computationally accessible.

Galliers' theory of autonomous belief revision, also in this volume, suggests in another
way that the choice between coherence and foundational theories may not be exclusive; her
theory in fact represents a blend between the two approaches. In a sense, also the belief
base models presented in Section 2.3 show traces of justificationalism – the beliefs in the
base are thought of as more foundational than the derived beliefs.

5Harman (1986) presents an analysis of the epistemological aspects of the two approaches.
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3 RATIONALITY POSTULATES FOR BELIEF REVISION

3.1 The AGM Postulates for Revision

In this section, it will be assumed that belief sets (that is sets of sentences closed under
logical consequences) are used as models of belief states. The goal is now to formulate
postulates for rational revision and expansion functions defined over such belief sets.

The underlying motivation for these postulates (which are taken from Alchourrón,
Gärdenfors, and Makinson (1985), hence the name) is that when we change our beliefs,
we want to retain as much as possible from our old beliefs – we want to make a minimal
change. Information is in general not gratuitous, and unnecessary losses of information are
therefore to be avoided. This heuristic criterion may be called the criterion of informational
economy.

However, it turns out to be difficult to give a precise quantitative definition of the loss of
information (see, e.g., the discussion of minimality in Gärdenfors 1988, pp. 66-68).
Instead we shall follow another line of specifying 'minimal change': We assume that the
sentences in a belief set have different degrees of epistemic entrenchment, and when we
give up sentences when forming a revision or a contraction, we give up those with the
lowest degree of entrenchment. The idea of epistemic entrenchment will be presented in
greater detail in Section 4.1.

It is assumed that for every belief set K and every sentence φ in L, there is a unique belief

set K φ representing the revision of K with respect to φ. In other words  is a function
taking a belief set and a sentence as arguments and giving a belief set as a result. This is
admittedly a strong assumption, since in many cases, the information available is not
sufficient to determine a unique revision. However, from a computational point of view
this assumption is gratifying. In Doyle (1991) and Galliers' paper in this volume this
assumption is not made.

The first postulate requires that the outputs of the revision function indeed be belief sets:

(K 1) For any sentence φ and any belief set K, Kφ is a belief set.

The second postulate guarantees that the input sentence φ is accepted in Kφ:

(K 2) φ ∈ K φ.

The normal application area of a revision process is when the input φ contradicts what is

already in K, that is ¬φ ∈ K. However, in order to have the revision function defined for

all arguments, we can easily extend it to cover the case when ¬φ ∉ K. In this case,
revision is identified with expansion. For technical reasons, this identification is divided
into two parts:
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(K 3) K φ  K+φ.

(K 4) If ¬φ ∉ K, then K+φ  K φ.

The purpose of a revision is to produce a new consistent belief set. Thus Kφ should be

consistent, unless φ is logically impossible:

(K 5) K φ = K⊥ if and only if  ¬φ.

It should be the content of the input sentence φ rather than its particular linguistic
formulation that determines the revision. In other words, belief revisions should be
analysed on the knowledge level and not on the syntactic level. This means that logically
equivalent sentences should lead to identical revisions:

(K 6) If  φ ↔ ψ, then K φ = K ψ.

The postulates (K1) - (K 6) are elementary requirements that connect K, φ and K φ.
This set will be called the basic set of postulates. The final two conditions concern
composite belief revisions. The idea is that, if Kφ is a revision of K and Kφ is to be

changed by a further sentence ψ, such a change should be made by expansions of Kφ
whenever possible. More generally, the minimal change of K to include both φ and ψ, that

is, K φ ψ, ought to be the same as the expansion of Kφ by ψ, so long as ψ does not

contradict the beliefs in Kφ. For technical reasons the precise formulation is split into two
postulates:

(K 7) K φ ψ  (K φ)+ψ.

(K 8) If ¬ψ ∉ K φ, then (K φ)+ψ K φ ψ.

When ¬ψ ∈ K, then (K φ)+ψ is K⊥, which is why the proviso is needed in (K8) but
not in (K 7).

We turn next to some consequences of the postulates. It can be shown (Gärdenfors, 1988,
p. 57) that in the presence of the basic set of postulates (K7) is equivalent to:

(1) K φ ∩ K ψ K φ ψ.

Another principle that is useful is the following 'factoring' condition:

(2) K φ ψ = K φ or K φ ψ = K ψ or K φ ψ = K φ ∩ K ψ.

It can be shown that, given the basic postulates, (2) is in fact equivalent to the conjunction
of (K 7) and (K 8).

Furthermore (K 7) and (K 8) together entail the following identity criterion:

(3) K φ = K ψ if and only if ψ ∈ K φ and φ ∈ K ψ.
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The postulates (K1) - (K 8) do not uniquely characterise the revision Kφ in terms of

only K and φ. This is, however, as it should be. I believe it would be a mistake to expect
that only logical properties are sufficient to characterise the revision process.

3.2 The AGM Postulates for Contraction

The postulates for the contraction function '' will, to an even larger extent than for
revisions, be motivated by the princple of informational economy. The first postulate is of
a familiar kind:

(K 1) For any sentence φ and any belief set K, Kφ is a belief set.

Because K φ is formed from K by giving up some beliefs, it should be required that no

new beliefs occur in Kφ:

(K 2) K φ K.

When φ ∉ K, the criterion of informational economy requires that nothing be retracted
from K:

(K 3) If φ ∉ K, then K φ = K.

We also postulate that the sentence to be contracted not be a logical consequence of the
beliefs retained in Kφ (unless φ is logically valid in which case it can never be retracted
because of the integrity constraint (I)):

(K 4) If not φ, then φ ∉ K φ.

From (K 1) to (K 4) it follows that

(4) If φ ∉ K, then (K φ)+φ K.

In other words, if we first retract φ and then add φ again to the resulting belief set Kφ, no
beliefs are accepted that were not accepted in the original belief set. The criterion of
informational economy demands that as many beliefs as possible should be kept in Kφ.

One way of guaranteeing this is to require that expanding Kφ by φ should take us back to
exactly the same state as before the contraction, that is K:

(K 5) If φ ∈ K, then K (K φ)+φ.

This is the so called recovery postulate, which enables us to ’undo’ contractions. It has
turned out to be the most controversial among the AGM postulates for contraction.

The sixth postulate is analogous to (K6):

(K 6) If  φ ↔ ψ, then K φ = K ψ.
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Postulates (K 1) - (K 6) are called the basic set of postulates for contractions. Again,
two further postulates for contractions with respect to conjunctions will be added. The
motivations for these postulates are much the same as for (K7) and (K 8).

(K 7) K φ ∩ K ψ K φ ψ.

(K 8) If φ ∉ K φ ψ, then K φ ψ K ψ.

It is interesting to note that (K7) is in fact equivalent, given the basic postulates, to the
seemingly weaker

(5) K φ ∩ Cn({φ}) K φ ψ.

In parallel with (2) it can be shown that (K7) and (K 8) are jointly equivalent to the
following condition:

(6) K φ ψ = K φ or K φ ψ = K ψ or K φ ψ = K φ ∩ K ψ.

A useful consequence of (6) is the following which says that Kφ ψ is 'covered' either

by K φ or by K ψ:

(7) Either K φ ψ  K φ or K φ ψ  K ψ.

The postulates for revision and contraction and their consequences are dicussed further in
Chapter 3 of Gärdenfors (1988).

3.3 From Contractions to Revisions and vice versa

We turn next to a study of the connections between revision and contraction functions. In
the previous two sections they were characterized by two sets of postulates. These
postulates are independent in the sense that the postulates for revisions do not refer to
contractions and vice versa. A natural question is now whether either contraction or
revision can be defined in terms of the other. Here we shall present two positive answers
to this question.

A revision of a knowledge set can be seen as a composition of a contraction and an
expansion. More precisely: In order to construct the revision Kφ, one first contracts K

with respect to ¬φ and then expands K¬φ by φ. Formally, we have the following
definition which is called the Levi identity:

(Def ) K φ = (K ¬φ)+φ

That this definition is appropriate is shown by the following result:

Theorem 1: If a contraction function '' satisfies (K 1) to (K 4) and (K 6), then the
revision function ' ' obtained from (Def ) satisfies (K 1) - (K 6). Furthermore, if
(K 7) also is satisfied, (K7) will be satisfied for the defined revision function; and if
(K 8) also is satisfied, (K8) will be satisfied for the defined revision function.
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This result supports (Def ) as an appropriate definition of a revision function. Note that
the controversial recovery postulate (K5) is not used in the theorem.

Conversely, contractions can be defined in terms of revisions. The idea is that a sentence ψ
is accepted in the contraction Kφ if and only if ψ is accepted both in K and in K¬φ.
Formally, this amounts to the following definition which has been called the Harper
identity:

(Def ) K φ = K ∩ K ¬φ.

Again, this definition is supported by the following result:

Theorem 2: If a revision function ' ' satisfies (K -1) to (K 6), then the contraction
function ' ' obtained from (Def ) satisfies (K 1) - (K 6). Furthermore, if (K 7) is
satisfied, (K 7) will be satisfied for the defined contraction function; and if (K8) is
satisfied, (K 8) will be satisfied for the defined contraction function.

The two theorems show that the defined revision and contraction functions have the right
properties. Hence, the two sets of postulates for revision and contraction functions are
interchangeable and a method for constructing one of the functions would automatically,
via (Def ) or (Def ), yield a construction of the other function satisfying the desired set
of postulates.

3.4 Representation Theorems

This section will introduce a first kind of explicit modelling of a contraction function for
belief sets. Via the Levi identity (Def ) and Theorem 1, such a model can be used to
define a revision function as well.

The problem in focus is how to define the contraction Kφ with respect to a belief set K

and a proposition φ. A general idea is to start from K and then give some recipe for

choosing which propositions to delete from K so that Kφ does not contain φ as a logical
consequence. According to the criterion of informational economy we should look at as
large a subset of K as possible.

The following notion is useful: A belief set K' is a maximal subset of K that fails to imply
φ if and only if (i) K' K, (ii) φ ∉ Cn(K'), and (iii) for any K" such that K'⊂ K" ⊆ K,

φ ∈ Cn(K"). The last clause entails that if K' were to be expanded by some sentence from

K-K’ it would entail φ. The set of all belief sets that fail to imply φ will be denoted K⊥φ.
Using the assumption that  is compact it is easy to show that this set is nonempty, unless
φ is logically valid.

A first tentative solution to the problem of constructing a contraction function is to identify
K φ with one of the maximal subsets in K⊥φ. Technically, this can be done with the aid
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of a selection function γ that picks out an element γ(K⊥φ) of K⊥φ for any K and any φ
whenever K⊥φ is nonempty. We then define Kφ by the following rule:

(Maxichoice) K φ = γ(K⊥φ) when not φ, and K φ = K otherwise.

Contraction functions determined by some such selection function were called maxichoice
contraction functions in Alchourrón, Gärdenfors and Makinson (1985).

A first test for this construction is whether it has the desirable properties. It is easy to show
that any maxichoice contraction function satisfies (K1) - (K 6). But it will also satisfy
the following fullness condition:

(K F) If ψ ∈ K and ψ ∉ K φ, then ψ → φ ∈ K φ for any belief set K.

We can now show that (K1) - (K 6) and (K F) characterizes maxichoice contraction
function in the sense of the following representation theorem. Let us say that a contraction
function ' ' can be generated by a maxichoice contraction function iff there is some
selection function γ such that ' ' is identical with the function obtained from γ by the
maxichoice rule above.

Theorem 3: Any contraction function that satisfies (K1) - (K 6) and (K F) can be
generated by a maxichoice contraction function.

However, in a sense, maxichoice contraction functions in general produce contractions that
are too large. A result from Alchourrón and Makinson (1982) is applicable here: Let us say
that a belief set K is maximal iff for every sentence ψ, either ψ ∈ K or ¬ψ ∈ K. One can
now show the following discomforting result:

Theorem 4: If a revision function ' ' is defined from a maxichoice contraction function
' ' by means of the Levi identity, then, for any φ such that ¬φ ∈ K, K φ will be
maximal.

In a sense, maxichoice contraction functions create maximal belief sets. So a second
tentative idea is to assume that Kφ contains only the propositions that are common to all

of the maximal subsets in K⊥φ:

(Meet) K φ = ∩(K⊥φ) whenever K⊥φ is nonempty and Kφ = K otherwise.

This kind of function was called full meet contraction function in Alchourrón, Gärdenfors,
and Makinson (1985). Again, it is easy to show that any full meet contraction function
satisfies (K 1) - (K 6). They also satisfy the following intersection condition:

(K I) For all φ and ψ, K φ ψ = K φ ∩ K ψ.

We have the following representation theorem:
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Theorem 5: A contraction function satisfies (K1) - (K 6) and (K I) iff it can be
generated as a full meet contraction function.

The drawback of of full meet contraction is the opposite of maxichoice contraction – in
general it results in contracted belief sets that are far too small. The following result is
proved in Alchourrón and Makinson (1982):

Theorem 6: If a revision function ' ' is defined from a full meet contraction function ''
by means of the Levi identity, then, for any φ such that ¬φ ∈ K, K φ = Cn({φ}).

In other words, the revision will contain only φ and its logical consequences.

A third attempt is to use only some of the maximal subsets in K⊥φ when defining K φ.

Technically, a selection function γ can be used to pick out a nonempty subset γ(K⊥φ) of

K⊥φ, if the latter is nonempty, and that puts γ(K⊥φ) = K in the limiting case when K⊥φ is
empty. The contraction function can then be defined as follows:

(Partial meet): K φ = ∩γ(K⊥φ).

Such a contraction function was called a partial meet contraction function in Alchourrón,
Gärdenfors, and Makinson (1985). The following representation theorem shows that
(K 1) - (K 6) indeed characterizes the class of partial meet contraction functions:

Theorem 7: For every belief set K, '' is a partial meet contraction function iff  ' '
satisfies postulates (K1) - (K 6).

So far we have put no constraints on the selection function γ. The idea of γ picking out the

'best' elements of K⊥φ can be made more precise by assuming that there is an ordering of

the maximal subsets in K⊥φ that can be used to pick out the top elements. Technically, we

do this by introducing the notation M(K) for the union of the family of all the sets K⊥φ,

where φ is any proposition in K that is not logically valid. Then it is assumed that there

exists a transitive and reflexive ordering relation ≤ on M(K). When K⊥φ is nonempty, this
relation can be used to define a selection function that picks out the top elements in the
ordering:

(Def γ) γ(K⊥φ) = {K' ∈ K⊥φ: K" ≤ K' for all K" ∈ K⊥φ}

A contraction function that is determined from ≤ via the selection function γ given by

(Def γ) will be called a transitively relational partial meet contraction function. This way of
defining the selection function constrains the class of partial meet contraction functions that
can be generated:

Theorem 8: For any belief set K, '' satisfies (K 1) - (K 8) iff ' ' is a transitively
relational partial meet contraction function.
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Thus we have found a way of connecting the rationality postulates with a general way of
modelling contraction functions. The drawback of the construction is that the computa-
tional costs involved in determining the content of the relevant maximal subsets of a belief
set K are so overwhelming that we should take a look at some other possible solutions to
the problem of constructing belief revisions and contractions.

3.5 Contraction and Revision of Bases

As a generalization of the AGM postulates several authors have suggested postulates for
revisions and contractions of bases for belief sets rather than the belief sets themselves. In
this volume the papers by Hansson and Nebel (see also Fuhrmann 1989, Hansson 1989,
1991, Makinson 1987, Nebel 1990) use this kind of model. As Hansson writes in his
paper, "this model is based on the intuition that some of our beliefs have no independent
standing but arise only as inferences from our more basic beliefs."

Hansson and Nebel analyse various forms of base revision and base contractions. Nebel
evaluates his models, in a number of theorems, in relation to the AGM postulates, but
Hansson also introduces some postulates that are special for base revision. For example,
his postulate of relevance can (slightly simplified) be written as follows in my terminology:

(8) If ψ ∈ H, but ψ ∉ H φ, then there is some H' such that Hφ H' H and

φ ∉ Cn(H'), but φ ∈ Cn(H' ∪ { ψ}).

Here H denotes a finite base for a belief state consisting of sentences from L. The logical
closure of H, that is Cn(H), will be a belief set. The intuition behind this postulate is that if
a sentence ψ is retracted from H when φ is rejected, then ψ plays some role in the fact that

H but not H φ logically entails φ. On the basis of relevance and other postulates for base
contraction, Hansson proves several representation theorems (and further results can be
found in Hansson (1991)).

An interesting feature of Nebel's paper is that he investigates the computational complexity
of different belief revision procedures. As far as I know, he is the first one to attack these
issues. An initial problem is that already the trivial case of deciding whether
ψ ∈ Cn(Ø) φ is co-NP-complete so that a more finegrained set of complexity classes are
needed than just saying that belief revision is NP-hard. Nebel solves this problem by using
the polynomial hierarchy of complexity classes (Garey and Johnson 1979). On the basis of
this hierarchy, he is then able to prove a number of results concerning the complexity of
various revision methods. The analysis shows that all base revision methods analyzed in
his paper that satisfy the full set of AGM postulates turn out to be no harder than ordinary
propositional derivability.

4 CONSTRUCTIVE MODELS

4.1 Epistemic Entrenchment
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Even if all sentences in a belief set are accepted or considered as facts (so that they are
assigned maximal probability), this does not mean that all sentences are are of equal value
for planning or problem-solving purposes. Certain pieces of our knowledge and beliefs
about the world are more important than others when planning future actions, conducting
scientific investigations, or reasoning in general. We will say that some sentences in a
belief system have a higher degree of epistemic entrenchment than others. This degree of
entrenchment will, intuitively, have a bearing on what is abandoned from a belief set, and
what is retained, when a contraction or a revision is carried out. This section begins by
presenting a set of postulates for epistemic entrenchment which will serve as a basis for a
constructive definition of appropriate revision and contraction functions.

The guiding idea for the construction is that when a belief set K is revised or contracted,
the sentences in K that are given up are those having the lowest degrees of epistemic
entrenchment. Fagin, Ullman and Vardi (1983), pp. 358 ff., introduce the notion of
"database priorities" which is closely related to the idea of epistemic entrenchment and is
used in a similar way to update belief sets. However, they do not present any
axiomatization of this notion. Section 5 of Nebel’s paper in this volume provides a precise
characterization of the relationship between epistemic entrenchment and database priorities.

We will not assume that one can quantitatively measure degrees of epistemic entrenchment,
but will only work with qualitative properties of this notion. One reason for this is that we
want to emphasise that the problem of uniquely specifying a revision function (or a
contraction function) can be solved, assuming only very little structure on the belief sets
apart from their logical properties.

If φ and ψ are sentences in L, the notation φ ≤ ψ will be used as a shorthand for "ψ is at

least as epistemically entrenched as φ." The strict relation φ < ψ, representing "ψ is

epistemically more entrenched than φ," is defined as φ ≤ ψ and not ψ ≤ φ.

Postulates for epistemic entrenchment:

(EE1) If φ ≤ ψ and ψ ≤ χ, then φ ≤ χ (transitivity)

(EE2) If φ  ψ, then φ ≤ ψ (dominance)

(EE3) For any φ and ψ, φ ≤ φ ψ or ψ ≤ φ ψ (conjunctiveness)

(EE4) When K ≠ K⊥, φ ∉ K iff φ ≤ ψ, for all ψ (minimality)

(EE5) If ψ ≤ φ for all ψ, then  φ (maximality)

The justification for (EE2) is that if φ logically entails ψ, and either φ or ψ must be

retracted from K, then it will be a smaller change to give up φ and retain ψ rather than to

give up ψ, because then φ must be retracted too, if we want the revised belief set to satisfy
the integrity constraint (I). The rationale for (EE3) is as follows: If one wants to retract
φ ψ from K, this can only be achieved by giving up either φ or ψ and, consequently, the

informational loss incurred by giving up φ ψ will be the same as the loss incurred by
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giving up φ or that incurred by giving up ψ. (Note that it follows already from (EE2) that

φ ψ ≤ φ and φ ψ ≤ ψ.) The postulates (EE4) and (EE5) only take care of limiting cases:
(EE4) requires that sentences already not in K have minimal epistemic entrenchment in
relation to K; and (EE5) says that only logically valid sentences can be maximal in ≤. (The
converse of (EE5) follows from (EE2), since if  φ, then ψ  φ, for all ψ.)

It should be noted that the relation ≤ is only defined in relation to a given K – different
belief sets may be associated with different orderings of epistemic entrenchment.6

We mention the following simple consequences of these postulates:

Lemma: Suppose the ordering ≤ satisfies (EE1) - (EE3). Then it also has the following
properties:

(i) φ ≤ ψ or ψ ≤ φ (connectivity);

(ii) If ψ χ ≤ φ, then ψ ≤ φ or χ ≤ φ;

(iii) φ < ψ iff φ ψ < ψ.

(iv) If χ ≤ φ and χ ≤ ψ, then χ ≤ φ ψ.

(v) If φ ≤ ψ, then φ ≤ φ ψ.

The main purpose of this section is to show the connections between orderings of
epistemic entrenchment and the AGM contraction and revision functions presented in
Sections 3.1 and 3.2. We will accomplish this by providing two conditions, one of which
determines an ordering of epistemic entrenchment assuming a contraction function and a
belief set as given, and the other of which determines a contraction function assuming an
ordering of epistemic entrenchment and a belief set as given. The first condition is:

(C≤) φ ≤ ψ if and only if φ ∉ K φ ψ or  φ ψ.

The idea underlying this definition is that when we contract K with respect to φ ψ we

must give up φ or ψ (or both) and φ should be retracted just in case ψ is at least as

epistemically entrenched as φ. In the limiting case when both φ and ψ are logically valid,
they are of equal epistemic entrenchment (in conformity with (EE2)).

The second, and from a constructive point of view most central, condition gives an explicit
definition of a contraction function in terms of the relation of epistemic entrenchment:

(C ) ψ ∈ K φ if and only if ψ ∈ K and either φ < φ ψ or φ.

6Rott (1992) has developed a generalized notion of epistemic entrenchment which is not dependent on a

particular K.
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Condition (C ) provides us with a tool for explicitly defining a contraction function in
terms of the ordering ≤. An encouraging test of the appropriateness of such a definition is
the following theorem proved in Gärdenfors and Makinson (1988):

Theorem 9: If an ordering ≤ satisfies (EE1) - (EE5), then the contraction function which is
uniquely determined by (C) satisfies (K 1) - (K 8) as well as the condition (C≤ ).

Conversely, we can show that if we start from a given contraction function and determine
an ordering of epistemic entrenchment with the aid of condition (C≤), the ordering will
have the desired properties:

Theorem 10: If a contraction function ' ' satisfies (K 1) - (K 8), then the ordering ≤
that is uniquely determined by (C≤) satisfies (EE1) - (EE5) as well as the condition (C).

These results suggest that the problem of constructing appropriate contraction and revision
functions can be reduced to the problem of providing an appropriate ordering of epistemic
entrenchment. Furthermore, condition (C) gives an explicit answer to which sentences
are included in the contracted belief set, given the initial belief set and an ordering of
epistemic entrenchment. From a computational point of view, applying (C) is trivial,
once the ordering ≤ of the elements of K is given.

The comparison φ < φ ψ in (C ) is somewhat counterintuitive. Rott (1991) has
investigated the following more natural version of the condition:

(C R) ψ ∈ K Rφ if and only if ψ ∈ K and either φ < ψ or φ.

He then shows that the contraction function 'R' defined in this way has the following
properties:

Theorem 11: Let ' R' be the contraction function defined in (CR). If ≤ satisfies (EE1) -
(EE5), then ' R' satisfies (K 1) - (K 4) and (K 6) - (K 8), but not (K 5).

Since ' R' does not satisfy the controversial 'recovery' postulate (K5), it follows that
' R' defined by (C R) is in general not identical to '' defined by (C ).7 However, let
' R' and ' ' be the revision functions defined from 'R' and ' ' by the Levi identity.
Rott proves:

Theorem 12: ' R' and ' ' are identical revision functions.

A consequence of this theorem is that if we are only interested in modelling revisions and
not contractions, we can use the extremely simple test (CR) when computing the revision
functions, without having to bother about the disjunctions in (C).

4.2 Safe Contraction

7'-R' is a 'withdrawal function' in the sense of Makinson (1987).
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Yet another approach to the problem of constructing contraction functions was introduced
by Alchourrón and Makinson (1985) and is called safe contraction. Their contraction
procedure can be described as follows: Let K be a belief set, and suppose that we want to
contract K with respect to φ. Alchourrón and Makinson postulate a "hierarchy" < over K

that is assumed to be acyclical (that is, for no φ1, φ2 ..., φn in K is it the case that φ1< φ2 <

... < φn < φ1). Given such a hierarchy, we say that an element ψ is safe with respect to φ
iff ψ is not a minimal element (under <) of any minimal subset K' of K such that K'  φ.

Equivalently, every minimal subset K' of K such that K' φ either does not contain ψ or

else contains some χ such that χ < ψ. Intuitively, the idea is that ψ is safe if it can never be

"blamed" for the implication of φ. Note that, in contrast to the earlier constructions, this

definition uses minimal subsets of K that entail φ rather than maximal subsets of K that do

not entail φ.

Rott's paper in this volume concerns the relation between orderings of epistemic
entrenchment and the hierarchies over K used in the definition of safe contraction. He
presents ways of translating between the types of orderings and proves that they are
equivalent. This is in contrast to what was conjectured by Alchourrón and Makinson
(1985) and Gärdenfors (1988). In this way, he completes the map of correspondences
between (1) the AGM postulates for contractions, (2) the AGM postulates for revisions,
(3) relational partial meet contractions functions, (4) epistemic entrenchment contractions,
and (5) safe contractions.

4.3 Possibility Theory

Apart from the five areas mentioned in the previous paragraph, possibility theory can be
added as a sixth area which can be connected to epistemic entrenchment relations, in the
first place, and thereby also indirectly with belief revisions and contraction. This is the
topic of Dubois and Prade's contribution to the volume.

Perhaps the best way of relating possibility theory to the theory of belief revision is to start
with the qualitative necessity relation (Dubois 1986) which is an ordering ≥c (and the
corresponding strict relation >c) of sentences satisfying the following axioms:

(A0)  >c ⊥
(A1) φ ≥c ψ or ψ ≥c φ
(A2) φ ≥c ψ and ψ ≥c χ imply φ ≥c χ
(A3) φ ≥c ⊥
(C) if φ ≥c ψ, then, for all χ, φ  χ ≥c ψ  χ

A qualitative necessity relation can be generated from a necessity measure N so that φ ≥c ψ
if and only if N(φ) ≥ N(ψ), where N satisfies the following characteristic property:

(9) N(φ  ψ) = min(N(φ),N(ψ))
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Dually, one can define a possibility measure Π as a function satisfying:

(10) Π(φ ψ) = max(Π(φ),Π(ψ))

Indeed, possibility measures are related to necessity measures through the relationship
N(φ) = 1 - Π(¬φ). The dual qualitative possibility ordering ≥Π can be related to ≥c by the
following equivalence:

(11) φ ≥Π ψ if and only if ¬ψ ≥c ¬φ.

It has been shown by Dubois and Prade (1991) that a qualitative necessity ordering is
almost identical to an epistemic entrenchment relation. The exception is that for epistemic
entrenchment it is requested that  >c φ instead of (A0).

This connection between possibility theory and epistemic entrenchment forms the starting
point for the paper by Dubois and Prade in this volume. They represent belief states by
necessity measures and rewrite the rationality postulates for revision and contraction
accordingly. They also show how this model of a belief state can be used to describe
updating with uncertain pieces of evidence. They make some interesting comparisons with
Spohn´s (1988) ordinal conditional functions, which form a different way of introducing
degrees of belief.

4.4 Updates vs. Revisions

Katsuno and Mendelzon present an interesting alternative to revision in their contribution
to this volume. This alternative method is called updating and is also used by Morreau in
his paper on planning. The basic idea is that one needs to make a distinction between two
kinds of information and the corresponding changes. On the one hand there is new
information about a static world. For this kind of information the revision process, as it
has been described is appropriate. On the other hand, there is new information about
changes in the world brought about by some agent. For both types, the new piece of
information may be inconsistent with the current state of belief. However Katsuno,
Mendelzon and Morreau argue that the revision process is inadequate as a model of rational
belief change caused by the second type of information. For this kind of change an
updating procedure is appropriate

To illustrate their argument, let me borrow an example from Winslett (1988). Suppose that
all we know in K about a particular room is that there is a table, a book and a magazine in
it, and that either (β) the book is on the table, or (µ) the magazine is on the table, but not

both, i.e., the belief state K is essentially Cn((β ¬µ) (µ ¬β)). A robot is then

ordered to put the book on the table, and as a consequence, we learn that β. If we change
our beliefs by revision we should, according to (K4), end up in a belief state that
contains β ¬µ since β is consistent with K. But why should we conclude that the
magazine is not on the table?
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In order to describe how updating works, we must present their version of a possible
worlds model for belief states. Let L be the language of standard propositional logic and let
P be the set of propositional letters in L. An interpretation of L is a function I from P to the
set {T,F} of truth values. This function is extended to L recursively in the standard way,
so that I(φ ψ) = T iff I(φ) = T and I(ψ) = T, etc. A model of a sentence φ is an

interpretation I such that I(φ) = T. A model of a set of sentences K is an interpretation I

such that I(φ) = T, for all φ ∈ K. Mod(K) denotes the set of all models of K.

Instead of using an ordering of K⊥¬φ (the maximal consistent subsets of K that don't

entail ¬φ) when determining Kφ, Katsuno and Mendelzon (and several other researchers;
see Katsuno and Mendelzon's (1989) survey) have proposed to look at an ordering of the
set of all interpretations and then use this ordering to decide which interpretations should
constitute models of K φ, and thus indirectly determine Kφ in this way. The intended

meaning of such an ordering is that some interpretations that are models of φ (but not of K)
are closer to models of K than other interpretations. Such an ordering of interpretations
should, of course, be dependent on K.

Technically, we assign to each belief set K a pre-ordering ≤K over the set of interpretations
of L (and a corresponding strict ordering <K).8 Following Katsuno and Mendelzon we say
that ≤K is faithful9 if these conditions hold:

(i) ≤K is transitive and reflexive.

(ii) If I, J ∈ Mod(K), then I <K J does not hold.

(iii) If I ∈ Mod(K) and J ∉ Mod(K), then I <K J.

If M is a set of interpretations of L, we let Min(M,≤K) denote the set of interpretations I

which are minimal in M with respect to ≤K. K φ can now be determined from ≤K as the

belief set which has exactly Min(Mod({φ}), ≤K ) as its set of models. Katsuno and
Mendelzon (1989) prove the following general result:

Theorem 13: A revision function  satisfies (K 1) - (K 8) if and only if there exists a
total faithful ordering ≤K such Mod(K φ) = Min(Mod({φ}),≤K).

This theorem gives a representation of belief revision in their terminology. Using this
terminology the difference between revising and updating can be described as follows:
Methods for revising K by φ that satisfy (K 1) - (K 8) are exactly those that select from

the models of φ that are 'closest' to the models of K. In contrast, update models select, for

8To be precise, Katsuno and Mendelson only consider belief sets that can be represented by a single

sentence from L (i.e., the conjunction of all the beliefs in K).

9This condition is called 'persistent' in Katsuno and Mendelzon (1989).
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each model I of K, the set of models of φ that are closest to I.10 The update Kφ is then
characterized by the union of all such models.

The difference between the methods may seem marginal at a first glance, but the properties
of updating are, in general, quite different from those of revision. In connection with the
example above, we have already noted that updating violates (K4). On the other hand,
updating satisfies the following postulate, which is violated by revision:

(12) (K K') φ = (K φ) (K' φ)

This postulates presumes that belief states are modelled by single sentences so that
disjunctions of belief states are well defined.

Morreau's paper in this volume is an application to planning of the updating procedure.
Using this method he presents a framework for modelling reasoning about action. The
language he uses includes a conditional operator > which is used to represent statements of
the form 'If the agent were to do α, this would result in φ being true.' The conditionals are
analyzed both semantically and axiomatically. By nesting conditionals of this kind he can
describe the content of sequences of actions, and in this way obtain an elegant way of
representing planning.

4.5 Autonomous Belief Revision and Communication

Postulate (K 2) requires that an input φ given to a belief state K must be accepted in the

revision K φ. Galliers argues in her paper in this volume that this is in conflict with the
autonomy of the agents having the various belief states. In communication, one agent
informs another about something, aiming at changing the receiver's belief state. It remains,
however, the decision of the autonomous receiver whether the information should be
accepted or not. As Gallier's puts it, "Autonomous agents may or may not comply with the
recognised intended effects of an utterance on their cognitive states. There are no
specialised rules dictating what is a cooperative response. Rational communicative action
must therefore be planned not only as purposive, but as strategic."

So in order to model belief revisions in a communicative setting one must be able to
specify whether to accept the contents of an utterance from another agent, as well as how
to perform the possible revisions caused by the utterance. The underlying principle for
Galliers is that the acceptability of a new utterance is dependent on the degree of coherence
of the belief state that would result if the utterance were added. Her model of revision is
essentially determined by such a coherence ordering, where the degree of coherence is
defined as maximal derivability of core beliefs. It is not required that there be a unique

10This method is essentially equivalent to 'imaging' as introduced in a probabilistic context by Lewis

(1976) and generalized to the context of belief sets in Gärdenfors (1988).
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revision, and, furthermore, it is not required that any preferred revision incorporate the
communicated information.

Galliers then adds a foundational aspect to the belief revision model by working with
assumptions of various kinds and justifications for the assumptions. For example, the
endorsement of an assumption depends on whether it is communicated by a reliable source
or a spurious source. In this way, her model model of autonomous belief revision is a
mixture of coherence and foundationalism. The model has been implemented as a
component of a strategic planner for cooperative dialogue.

4.6 Conditionals and the Ramsey Test

There is a close connection between belief revisions and the meaning of conditional
sentences. The carrying hypothesis is that conditional sentences, in various forms, are
about changes of states of belief. The form of conditional sentence that is central is "if φ
were the case, then β would be the case" or "if φ is the case, then β is (will be) the case,"

where φ may or may not contradict what is already accepted in a given epistemic state K. If

φ contradicts what is accepted in K, the conditional is called a counterfactual (relative to
K), otherwise it is called an open conditional (relative to K).

The epistemic semantics for counterfactuals and open conditionals will be based on
F. P. Ramsey's test for evaluating a conditional sentence. His test can be described as
follows: In order to find out whether a conditional sentence is acceptable in a given state of
belief, one first adds the antecedent of the conditional hypothetically to the given stock of
beliefs. Second, if the antecedent together with the formerly accepted sentences leads to a
contradiction, then one makes some adjustments, as small as possible without modifying
the hypothetical belief in the antecedent, such that consistency is maintained. Finally, one
considers whether or not the consequent of the conditional is accepted in this adjusted state
of belief.

Given the analysis of belief revisions in Section 2, we see that it is very natural to
reformulate the Ramsey test in a more condensed way:

(RT) φ > β ∈ K iff β ∈ K φ

This test has attracted a great deal of attention as a possible starting point for a formal
semantics of conditionals. Ginsberg (1986) argues that a formal semantics for counter-
factuals is of great value for many problem areas within AI, in particular since they form
the core of nonmonotonic inferences.

Note that the formulation of (RT) presupposes that sentences of the form φ > β belong to
the object language and that they can be elements of the belief sets in a belief revision
model. Let us call this extended object language L'.
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Some results in Gärdenfors (1978) seem to justify the claim that the Ramsey test can be
used as a basis for an epistemic semantics of conditionals. However, the list of conditions
that were used to generate the logic of conditionals does not include (K4) (or the full
strength of (K 8)). An interesting question is whether it is possible to use (RT) together
with (K 4) when analysing the logic of conditionals. With minor qualifications, the
answer turns out to be no. In order to put the result as strongly as possible, one can start
from the following preservation condition:

(K P) If ¬φ ∉ K and ψ ∈ K, then ψ ∈ K φ

It is easy to show that the preservation criterion is essentially equivalent to (K4).

The Ramsey test and the preservation criterion are each of considerable interest for the
analysis of the dynamics of belief. Unfortunately, it can be proved that, on the pain of
triviality, the Ramsey test and the preservation criterion are inconsistent with each other
(Gärdenfors 1986).

Let us formulate this result with some care. A background assumption is that the revision
function is defined for all belief sets.11 Note that in L', sentences containing the conditional
connective '>' will be treated on a par with sentences without this operator. The Ramsey
test (RT) is, of course, dependent on this assumption. A consequence of (RT) that is
crucial is the following monotonicity criterion:

(K M) For all belief sets K and K' and all φ, if K  K', then K φ  K' φ.

The conditions on the revision function that will be needed for the proof are (K2) and the
following very weak criterion, which is one half of (K5):

(K 5w) If K ≠ K⊥ and K φ = K⊥, then  ¬φ.

 The final assumption that will be needed for the inconsistency result is that the belief
revision system is non-trivial. As usual, two propositions φ and ψ are said to be disjoint iff

 ¬(φ  ψ). A belief revision system will be said to be non-trivial iff there are at least

three pairwise disjoint sentences φ, ψ, and χ and some belief set K which is consistent

with all three sentences, i.e., ¬φ ∉ K, ¬ψ ∉ K, and ¬χ ∉ K.

Theorem 14: There is no non-trivial belief revision system that satisfies all the conditions
(K 2), (K 5w), (K M) and (K P).

It should be noted that the conditional connective '>' is used neither in the formulation of
the theorem nor in its proof. If (KP) is replaced by (K4), then (K 2) is not needed for
the proof of the theorem.

11What is needed for the proof is only the assumption that if K is in the domain of the revision function,

so are are all expansions K+φ.
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Corollary: There is no non-trivial belief revision system that satisfies all the conditions
(K 2), (K 5w), (RT) and (K P).

The theorem and its corollary show that the Ramsey test (RT) and the preservation
condition (K P) (or, equivalently, (K4)) cannot both be rational criteria for belief
revisions. However, the Ramsey test has a great deal of appeal, and several ways of
getting around the impossibility result have been tried. In his paper in this volume,
Morreau uses updating instead of revision in formulating the Ramsey test (as was noted
above, updating does not satisfy (K4)) and it is easy to show that this combination is
consistent.

Another approach is taken by Cross and Thomason in their paper in this volume. They
also retain the Ramsey test, but they work with a different logical framework than what
has been used above. Firstly, they use a four-valued logic which changes the
accompanying proof theory. Secondly, they restrict revision to atomistic inputs, i.e., the
only sentences for which the revision process is defined are either atomic sentences or
negated atomic sentences.

By restricting the revision procedure in this way, Cross and Thomason show that it is now
possible to work out a theory of conditionals that satisfies the Ramsey test. Furthermore,
they show that the theory of nonmonotonic inheritance from Horty, Thomason, and
Touretzky (1990) can be interpreted as a special case of their logic of conditionals. In this
way we find yet another connection between the theory of belief revision and other areas
of computer science.
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