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Abstract.
We present a decision-theoretically motivated notion of contraction which, we

claim, encodes the principles of minimal change and entrenchment. Contraction is
seen as an operation whose goal is to minimize loses of informational value. The oper-
ation is also compatible with the principle that in contracting A one should preserve
the sentences better entrenched than A (when the belief set contains A). Even when
the principle of minimal change and the latter motivation for entrenchment figure
prominently among the basic intuitions in the works of, among others, Quine (Quine,
1973), Levi (Levi, 1980) (Levi, 1991), Harman (Harman, 1988), and Gardenfors
(Gärdenfors, 1988), formal accounts of belief change (AGM, KM - see (Gärdenfors,
1988) and (Katsuno et al., 1991)) have abandoned both principles (see (Rott, 2000)).
We argue for the principles and we show how to construct a contraction operation
which obeys both. An axiom system is proposed. We also prove that the decision-
theoretic notion of contraction can be completely characterized in terms of the given
axioms. Proving this type of completeness result is a well-known open problem in
the field, whose solution requires employing both decision-theoretical techniques and
logical methods recently used in belief change.

Keywords: Belief Revision, Contraction, Decision Theory, Entrenchment, Severe
Withdrawal

1. Introduction

Students of belief change have recognized the need to give some sort of
account of how to contract a belief state represented by a deductively
closed theory or corpus K to a deductively closed subset K ′ when some
specific sentence is to be removed. Contraction from K removing A may
be achieved in many ways so that the inquirer is called upon to make
a decision. There is a broad and often deceptive unanimity that the
choice made should ”Keep loss at a minimum” as the Principle of Econ-
omy as formulated by Rott and Pagnucco ((Rott and Pagnucco, 1999),
502) stipulates. The unanimity unravels when the issue of evaluating
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”loss” is addressed. Nonetheless, the principle of economy recommends
optimizing by minimizing loss of something of value.

An alternative type of principle for recommending a contraction
removing A urges retaining all and only those elements of K that are
better entrenched than A. Such a Principle of Entrenchment is formu-
lated as a satisficing principle rather than a maximizing (or minimizing)
one. Instead of urging the choice of a ”best” contraction, one may
urge the choice of a contraction consisting of sentences in K that are
”good enough” to be retained. Once more there has been controversy
concerning how entrenchment is to be evaluated.1

To obtain a viable account of contraction based on both principles
as authors like Gardenfors (Gärdenfors, 1988) sought to do, not only
must the methods of evaluating loss and of assessing entrenchment be
specified but they must be specified in a manner that assures that
the maximizing Principle of Economy and the satisficing Principle of
Entrenchment recommend the same contraction.

In this discussion, we shall focus on the Principle of Economy. The
Principle of Entrenchment will receive brief attention towards the end
of the paper.

The Principle of Economy is a schema. The loss to be minimized
needs to be specified. The approach to contraction introduced in the
classic paper by Alchourrón, Gardenfors and Makinson (AGM, (Al-
chourrón et al., 1985) considered loss of information incurred in con-
traction. Potential state K2 carries more information than K1 if and
only if the set of sentences in K1 is a subset of the set of sentences in K2

so that K2 can be said to be logically stronger than K1. Hence if two
contractions K1 and K2 of K removing A are compared with respect
to the loss of information incurred where K2 is more informative than
K1, the loss incurred by shifting from K to K2 is clearly less than that
incurred by shifting from K to K1.

When the Principle of Economy is construed as recommending the
minimization of loss of information in this subset sense, it has become
known as a Principle of Conservatism as in Harman, (Harman, 1988).

1 Levi ((Levi, 1980), (Levi, 1991)) uses a notion of degrees of incorrigibility rather
than degrees of entrenchment. According to this view, the recommended contraction
of K removing A is the set of incorrigible sentences in K which in turn is the set
of sentences in K better entrenched than A. Gardenfors (Gärdenfors, 1988) uses
a different condition relating contraction with entrenchment; but he presupposes
the controversial Recovery Postulate (Recovery stipulates that removing an item
of information from K by contraction and then adding it back to the contracted
belief state yields the initial point of view K.). In the presence of the Recovery
Postulate, his approach corresponds to the account of contraction given in terms of
incorregibility.
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Conservatism played, without doubt, a motivating role in the early
stages of research in the AGM tradition. It led to some precise formula-
tions of contraction, like the so-called maxichoice contraction (Gärdenfors,
(Gärdenfors, 1988)) and it paved the way towards the more sophis-
ticated account of contraction defended in (Alchourrón et al., (Al-
chourrón et al., 1985)): partial meet contraction.

Maxichoice contractions propose to achieve the contraction of a the-
ory by a sentence A by selecting some maximal subset of K that does
not imply A. This account is directly motivated by Conservatism, but
it produces an unintuitive account of revision. In fact, if we denote the
(maxichoice) contraction of K with ¬A, by K/¬A, it seems reasonable
to represent the revision of K with A as the logical closure of the set
{K/¬A ∪ {A}}. But then all revisions of theories will be represented
by maximal and consistent theories, an undesirable result.

AGM departed from the Principle of Conservatism by rejecting the
recommendation of maxichoice contractions as mandatory in all cases.
The central idea in (AGM, (Alchourrón et al., 1985)) was to make a
selection of the ’best’ elements in the set of all maximal non-A-implying
subsets of K; and then take the intersection of this selection. This is
what is usually called a partial-meet contraction. Recommending partial
meet contraction is generally paradigmatic of the AGM approach.

It is clear that partial-meet contractions do not follow Conserva-
tivism. As Rott and Pagnucco ((Rott and Pagnucco, 1999), 503) have
recently observed: ”The Principle of Economy has been severely com-
promised in the AGM framework.” In a more recent article, Rott called
the principles of Economy and Entrenchment ”dogmas” ”...not because
almost all researchers kept to these principles (quite the opposite is
true) but because so many authoritative voices proclaimed them to be
the philosophical or methodological rationale for their theories (Rott,
2000).

As a matter of fact, the philosophical motivation for the AGM ap-
proach remains unclear. Attempts to clarify the main guiding principles
allegedly used in formulating AGM contraction have ended up in many
cases in the proposal of deviant notions ((Rott and Pagnucco, 1999)
is a perfect example of this kind of attempt). Perhaps the influence
of the AGM approach is due to the fact that the AGM trio were
pioneers in providing exact axiomatic formulations of their proposals.
And in formal epistemology, like in other fields, the use of the axiomatic
method promotes progress by systematization of ideas. But the mere
use of the axiomatic method does not guarantee conceptual clarity.

Usually the AGM approach has been criticized in a piecemeal fash-
ion, by pointing out the counterintuitive consequences of some of the
postulates it proposes. For example, the so-called axiom of recovery has
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been copiously criticized, in part by the members of AGM. But this
process of criticism itself requires a certain initial level of conceptual
clarity as to what contraction is supposed to achieve. The conceptual
soundness of particular axioms can only be judged in terms of a set of
basic principles regulating contractions. We want to propose in this ar-
ticle that the two principles formulated above are indeed these guiding
principles. The principle of Economy is basically correct, except for the
fact that the main idea in contraction is not to minimize losses of infor-
mation, but to minimize informational value (Levi, 1980). As we shall
see later, the troubles encountered by the principle of entrenchment are
removed by this suggestion as well.

The principle of Cognitive Economy
Keep loss of informational value to a minimum in contraction.

We propose to use this instance of the principle of Economy together
with the principle of Entrenchment as the main foundational guid-
ance for articulating the notion of contraction. Some questions seem
pertinent even at this early stage in the analysis. For example, what
is the connection between information measured by set inclusion and
informational value? Let V be a real value index on theories. Then we
will appeal to the following principle:

Weak Monotony
If X ⊂ Y , then V (X) ≤ V (Y )

In this discussion, we consider comparisons of theories with respect
to informational value that constitute a weak ordering of the set of
theories while satisfying Weak Monotony. According to this principle
a theory Y can be a strict superset of another theory X, i.e. a theory
Y can carry strictly more information than another theory X, but the
informational value of the two theories can be the same. The extra
information might not matter. Of course, one gets more specialized
instances of the principle of Cognitive Economy by telling a more de-
tailed story about informational value. Here we will propose a specific
notion of informational value and tackle the problem of axiomatizing
the resulting notion.

The idea of using informational value as the central notion in be-
lief change is not new. Isaac Levi proposed it in his early writings
(Levi, 1980) and he has refined it progressively in more recent writ-
ings (Levi, 1991), (Levi, 2004). The axiomatic account of AGM clearly
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does not fit this approach. Our task here is to go from first principles
to axiomatization, by finding the axioms that completely character-
ize the contractions obeying appropriate instances of the principles of
Economy and Entrenchment.

Of course these axioms will not coincide with axioms for AGM con-
traction or with other versions of contraction that have been proposed.
We will focus on a particular notion of informational value, but our
account can be extended parametrically to give foundations to a rela-
tively large class of contraction and revision functions. We will therefore
point occassionally below to other permissible notions of informational
value and to their respective axiomatic encodings.

We agree with Rott (and Pagnucco) that many authors in the field
have proclaimed allegiances to instances of the two principles while at
the same time developing theories that do not obey those principles.
The AGM tradition is only one instance of this mismatch between
foundations and axiomatic proposals. We, nevertheless, do not agree
that the principles should be abandoned as dogmas. We think that,
when appropriately formulated, they are sound. The main task of this
paper is to characterize these sound principles by a complete set of
axioms.

We will proceed as follows. First we will define an operator ÷ of
informational value encoding decision theoretically the principle of Cog-
nitive Economy. That is to say K ÷ A is a theory removing A from
K with minimum loss of informational value. Then we will propose a
set of axioms characterizing what we call mild contractions (following
the notation in (Levi, 2004) – the same notion is called ‘severe with-
drawal’ in (Rott and Pagnucco, 1999)). We will prove both soundness
and completeness for these postulates. I.e. we will show that ÷ obeys
the postulates of mild contractions; and we will show that any mild
contraction operator can be represented as an operator of informational
value. Once this is done we will show that mild contractions fit the
principle of Entrenchment, while AGM contractions do not. We will
conclude by discussing the status of some axioms of mild contractions
and their role in our proposal.

2. Operators of informational value

We will assume a classical propositional language L as a representa-
tional tool. We assume that L contains the classical connectives. The
underlying logic will be identified with its Tarskian consequence oper-
ator Cn: 2L → 2L which is assumed to obey for all subsets X and Y
of L:
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(Inclusion) X ⊆ Cn(X)

(Monotony) If X ⊆ Y , then Cn(X) ⊆ Cn(Y )

(Iteration) Cn(X) = Cn(Cn(X))

(Superclassicality) If A can be derived from X by classical logic,
then A ∈ Cn(X)

We also assume that Cn obeys the deduction theorem and that Cn
is compact. A theory is any set K such that K = Cn(K). Theories can
be used advantageously in order to represent commitments to full belief
of agents. So, our investigation here will focus on the logic of theory
change.

We understand the problem of how to contract by removing A from
a theory K to be a decision problem where one is called upon to
choose a contraction removingA fromK from among all the contraction
strategies removing A from K available in the context.

Let K be a theory (representing the current commitments for full
belief) and let LK be a minimal theory such that LK ⊆ K. The basic
partition Π is a set of expansions of LK, not necessarily all of them
and not necessarily all (or some of) the maximal and consistent ones. A
necessary constraint on the admissibility of Π is that should be formed
by expanding LK with sentences that are relevant answers to questions
under investigation and that the expansions are restricted to expansions
by adding to LK elements of a set of sentences such that LK entails
that exactly one of them is true and each element of the set is consistent
with LK.

The ultimate partition is the subset ΠK of partition cells of Π whose
intersection is exactly K. In addition Π - ΠK is the dual ultimate
partition ∆.

Call M the set of maximal and consistent theories definable in L.
For every A ∈ L, [A] = {w ∈M : A ∈ w}. By the same token for every
theory T definable in L, [T ] = {w ∈ M: K ⊆ w}. When T is a theory
obtained by intersecting a set of cells of ∆, we will use the notation
|T | to denote the set of partition cells (of the basic partition) whose
intersection determines T . Also if the theory T in question is finitely
axiomatizable via a sentence A ∈ L, |A| = |T |. Finally let L ⊆ L =
{A ∈ L: |A| 6= ∅ and |¬A| 6= ∅}.

Every potential contraction removing A ∈ L from K is the intersec-
tion with K of a nonempty subset R of ¬A-entailing cells of ∆ and a
subset R* of A-entailing cells of ∆ that may or may not be empty. A
maxichoice contraction of K relative to ∆ is the intersection of K with
a single element of ∆. A maxichoice contraction of K removing A ∈ L
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relative to ∆ is the intersection of K with a single element of ∆ that
entails ¬A. A saturatable contraction of K removing A ∈ L relative
to ∆ is the intersection of a maxichoice contraction of K removing A
relative to ∆ with the intersection of a set of elements of ∆ none of
which entail ¬A.

DEFINITION 2.1. Let S(K,A) be the family of A-saturatable sets of
K. I.e. if K is a theory, X ∈ S(K,A) if and only if X ⊆ K, X is
closed, and Cn(X ∪ {¬A}) is an element of the partition ∆.

Φ = {X : X = ∩Y , with Y ∈ 2∆ ∪ [K]}. With these preliminary
elements we can now introduce now a measure of informational value
V : Φ→ [0,1]. V is not just any value function. As the terminology indi-
cates V is supposed to deliver a measure of the value of information. As
such we assume that it inherits some basic properties of classical mea-
sures of information which are probability-based. A classical manner of
utilizing probability in order to measure the content of information is to
utilize the measure Cont(.) = 1 - Prob(.) - see for example (Levi, 1980)
for an account of how this measure can be used in order to construct a
decision-theoretically motivated theory of expansion.

There are two basic properties that probability-based measures of
information satisfy. First they respect entailment in the following sense:

(Weak Monotony) For any two sets X,Y , that are elements of Φ, such
that X ⊂ Y , V (X) ≤ V (Y ).

The second important postulate is the following one:

(Extended Weak Monotonicity) Let X,Y ⊆ Φ. If S is incompatible
with both X and Y , and if V (X) ≤ V (Y ), then V (X ∩S) ≤ V (Y ∩S).

Unfortunately one cannot preserve all the properties of Cont in
characterizing a notion of information value useful in contraction. The
trouble with Cont is that it cannot rationalize (in terms of optimality)
moving to a position of suspense when there is a tie in optimality.
In fact, the Cont-value of the intersection of two optimal saturatable
contractions need not and, in general, will not carry maximum Cont-
value. So we propose to preserve the first two postulates while adding
a third that permits rationalizing suspense among optimal options as
optimal. In order to present this third postulate we need an additional
piece of notation. Any saturatable contraction S in S(K,A) has the
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canonical form K ∩TA ∩m¬A, where TA is an intersection of A-cells of
∆ and where m¬A is a single ¬A-cell of ∆.

Then we can say that two saturatable contractions removing A from
K are A-equivalent if and only if they are constituted as intersections
of K with different ¬A-cells in ∆ and the same subset TA of the subset
all of whose members entail A. A saturatable contraction S removing A
is A-equivalent to an intersection of a set T of saturatable contractions
removing A (including S) if S is constituted as the intersection of K,
a set TA of A-entailing cells and a ¬A-cell in ∆, and [(∩T ) ∩A] = TA.

(Weak Intersection Equality) For every subset T of of potential
contractions removing A from K each element of which is of equal
informational value and such that all elements in T are A-equivalent
to their intersection, for every X ∈ T , V (∩T ) = V (X).

Given a set of optimal saturatable contractions removing A from
K relative to ∆, the previous principle guarantees that its intersection
is also an optimal saturatable contraction. Consider now the following
important property entailed by these requirements.

(Weak Min) If a finite T ⊂ S(K,A), V (∩T ) = min(V (X) : X ∈ T ).

OBSERVATION 2.1. Weak monotony, extended weak monotony and
weak intersection equality imply Weak Min.

The three postulates that we just introduced are the core postulates
of the notion of damped (Levi, 2004) informational value used in con-
traction (as opposed to the notion of undamped informational value
characterized by the first two postulates - which is central in decision-
theoretical characterizations of expansion). We will assume as well here
the following stronger property.

(Strong Intersection Equality) For every subset T of Φ each element
of which is of equal informational value and for every X ∈ T , V (∩T )
= V (X).

Strong intersection equality combined with weak positive mono-
tonicity and extended weak positive monotonicity imply the following:

(Min) If X and Y are potential contractions from K in Φ, V (X ∩ Y )
= min(V (X), V (Y )).
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It is obvious that there are other forms of contraction paramet-
rically obtainable by relaxing some of the principles that entail Min
(in particular Strong Intersection Equality). Nevertheless, the form of
contraction we are studying here is salient, we would like to argue,
given its compatibility with the Principle of Entrenchment.

3. Shells of informational value

The assumption of the core postulates and the stronger Min condition
allows us to construct the following notion of rank.

DEFINITION 3.1. Let I = range(V ) be a set of indices. For x ∈ I let
Rx be the non-empty set X of partition cells in ∆ such that for every
Y ⊆ X, V ((∩Y ) ∩K) = x.

Intuitively Rx groups the partition cells of ∆ such that the intersec-
tion of any subset of the powerset of ∆ with K has value x. By Min
the intersection of any subset of them with K, has also value x. We can
extend here the notion of rank, by adjudicating ranks to sets P ⊆ 2∆.

ρ+(P ) = max(y: Ry ∩P 6= ∅)

So, for P ⊆ 2∆, such that there is A ∈ L, with |A| = P , we have
that ρ+(|A|) = y, where Ry is the set of partition cells of ∆ of largest
rank intersecting |A|. Of course, we have then that ρ+({w}) = y when
w ∈ Ry and for every Y ⊆ Ry, ρ+(Y ) = y.

We can now introduce the notion of m-shell of informational value.
The idea of a m-shell is to group together all the ranks Rx where x is
greater or equal than the index m.

DEFINITION 3.2. The x-shell of informational value Sx = ∪i≥xi∈I Ri.
The system of shells of informational value (SS) S is defined as: S =
{Sx : ∪Sx = ∆}

It should be obvious that shells of a shell system (SS) are nested.
Notice in addition that for any cell w ∈ ∆ we do not necessarily have
V (w) = ρ+(w). For, by definition, ρ+(w) = V(K ∩ w). The only con-
straint imposed by WM in this case is that ρ+(w) ≤ V ({w}). So every
cell in ∆ has a value-level which might not coincide with its rank.

A SS for a value function V determines a grading on ∆. So, none
of the maximals in ΠK appear in the SS. But of course there are some
constraints relating the value of K and the value of the sets in the SS.
One important constraint (given by WM) is that V (K) ≥ i, where Si
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is the innermost shell of S. Therefore V (K) is greater than the value
of any rank in S.

With the help of the previous definitions we can now characterize
our operator of informational value as an operation defined in systems
of shells of informational value. We only need an additional definition.
Let’s consider L ⊆ L such that L = {A ∈ L: there are cells C1, ...C1

in Π such that [∩i=1,nCi] = [A]}. Of course, for every A ∈ L there are
cells C1, ...C1 in Π such that |A| = {C1, ...C1}. Let a sentence A be
rejected in K if and only if ¬A ∈ K. Notice that as long as a sentence
¬A 6∈∪(LK) a sentence A rejected in K should also belong to L, in
such a way that |A| is well defined for it.

DEFINITION 3.3. Let A ∈ L be a sentence rejected in K. Then SA is
the union of |K| with the set X ∈ S such that X ∩ |A| 6= ∅ and for any
other Y ∈ S, such that Y ∩ |A| 6= ∅, X ⊆ Y .

SA just picks the union of |K| with the innermost shell in the SS S
for V containing A-partition-cells of ∆. Now we can define some salient
operators of informational value.

DEFINITION 3.4. ÷ is an operator of informational value for a closed
set K if and only if there is a selection function γ such that for all A
in L: (i) if A ∈ K, then K ÷ A = ∩γ(S(K,A)), where γ(S(K,A)) =
{X ∈ S(K,A): V (Y ) ≤ V (X) for all Y ∈ S(K,A)} and (ii) K ÷ A =
Cn(K) otherwise.

When the value function V is constrained by WM, the resulting
operator is called a basic operator of informational value. When it
obeys all core postulates the resulting operator is called a core op-
erator of informational value. Finally when V is constrained by all
cores postulates plus Min, the resulting operator is called the standard
operator of informational value. From now on we will mainly work with
standard operators of informational value and we will use the notation
‘÷’ to refer to them. Specific references and clarifications will be made
otherwise.

OBSERVATION 3.1. |K ÷ ¬A| = SA

Given a value function V defined on Φ it is possible to define the
following useful relation:

DEFINITION 3.5. P ≤V Q if and only if V (P ) < V (Q)
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In particular given a theory of reference K and a value function
this relation orders all the potential contractions for the theory K.
Moreover, it is immediate how to retrieve a relation ≤V from the system
of shells for V and K. This can be done as follows:

OBSERVATION 3.2. If P,Q are potential contractions of K then P ≤V
Q if and only if there is Sx and Sy, such that Sx ⊆ Sy, Rx is the min-
imum rank intersecting |P | and Ry is the minimum rank intersecting
|Q|.

This property flows from Min. Notice that if P ≤V Q this is so
independently of the ranks of |P | and |Q| in the SS for V and K.
Propositions in 2∆ are ordered by ≤V in virtue of an index different
than its rank. In fact, if P ⊆ 2∆ we can define the following index of
informational value ρ−:

ρ−(P ) = min(y: Ry ∩P 6= ∅)

Notice that for any P ⊆ 2∆ we have that V ((∩P ) ∩ K) = ρ−(P ).
Nevertheless V ((∩P ) need not coincide with ρ−(P ) – the theory ∩P
could have some value lower than ρ−(P ). The index ρ− has some ob-
vious properties. For example: ρ−(P ∪Q) = min(ρ−(P ), ρ−(Q)). And
the index of informational value can be combined with ranks to give a
simple definition of contraction. For any A ∈ L rejected in K:

COROLLARY 3.1. |K ÷¬A| = ∪{P ⊆ 2∆: ρ−(P ) = ρ+(|A|)} ∪ |K|.

In words, in order to construct |K ÷ ¬A| we take the union of |K|
with all the propositions in 2∆ such that their index of informational
value equals the ‘upper’ rank of |A|. It is quite obvious that SA is one of
these propositions. We can now go back to some additional properties
of ≤V :

OBSERVATION 3.3. (d1) Either [K÷A] ≤V [K÷B], or [K÷B] ≤V
[K ÷A]

Which, in turn, means that we can easily establish a pretty strong
property of informational value contractions, namely that: (d1) Either
[K ÷ A] ⊆ [K ÷B], or [K ÷B] ⊆ [K ÷ A]. This property will be used
later on in the proof of our main result.

Shells of informational value are structures which, at first sight at
least, might be easy to conflate with Spohn’s ranking systems (Spohn,
1988), (Spohn, 2002). A ranking function κ is a function from M to
the set of extended non-negative integers N+ = N∪ {∞}, such that
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κ(w) = 0, for some w ∈ M. For each proposition P ⊆ M the rank
κ(P ) of P is defined by κ(P ) = min {κ(w): w ∈ P} and κ(∅) = {∞}.

Spohn proposes to interpret ranks as grades of disbelief. κ(P ) = 0
says that P is not disbelieved at all. It does not say that P is believed;
this is rather expressed by κ(P c) > 0, i.e., that non-P is disbelieved
(to some degree). The set Cκ = {w: κ(w) = 0} is called the core of κ
and Cκ is the strongest proposition believed (to be true) in κ. So, if Ac

is believed to be true in κ, one way of representing the contraction of
Ac from Cκ is to take the union of Cκ with the set of least disbelieved
A points, i.e. {w: κ(w) = κ(A)}. This is a simple way of defining an
AGM contraction in this setting.

Ranking systems are different, both formally and conceptually from
shell systems. Notice first that since we are working with finite parti-
tions we can define shells also with range over N , but in our case the
domain is restricted to Φ = {X : X = ∩Y , with Y ∈ 2∆}. Moreover in
the case of rankings one proceeds by assigning first natural numbers to
points (maximal and consistent theories in this case) and then ranks are
assigned to propositions in an unproblematic manner. In our case an
assignment of values to maximal and consistent theories does not fully
determine the ranks of contractions for a theory of reference K even
when the cells of the basic partition are constituted only by maximal
and consistent theories in L . In fact, notice that in this limit case
we can also define both κ−(P ) = min {V (w): w ∈ P} and κ+(P )
= max {V (w): w ∈ P}. The second notion is not usually defined in
Spohn’s systems. But even if we were to use it notice that, given any
proposition P in 2∆, nothing guarantees that κ+(P ) = ρ+(P ) or that
κ−(P ) = ρ−(P ). As we explained before, the partition cells w in ∆
receive a rank ρ−({w}) = ρ+({w}) = x, for Rx such that w ∈ Rx. But
this rank need not coincide with w’s value-level (measured by κ+({w})
or κ−({w})).2

In our framework the value-level of propositions is, of course, quite
useful. It puts a constraint on permissible rankings ρ and it is crucial
for determining iterated contractions (and revisions). But the value-
level of partition cells does not fully determine ranks (ρ) of sets P in

2 The ‘upper’ rank κ+ and the ‘lower’ rank κ− can be used in order to deter-
mine an epistemic ordering solely on the basis of point-value utility. The procedure,
suggested by John Collins in (Collins, 2002), consists (roughly) in stipulating that
proposition P is preferred to proposition Q if and only if the upper rank of P is
greater than the upper rank of Q and the lower rank of P is no worse than the lower
rank of Q. Or, alternatively that the lower rank of P is better than the lower rank
of Q and the upper rank of P is no worse than the upper rank of Q. The procedure
allows for incomparability of preference. This view of preference, nevertheless, does
not satisfy postulates that are typical of probability-based notions of utility, like
Weak Monotony, and therefore is quite different from the one presented here.
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2∆, and the ‘upper’ and ‘lower’ point-ranks κ do not play a significant
role in our proposal. Moreover even if we were to restrict our attention
exclusively to ranks in our sense to the detriment of value levels we
would need to use both the ‘upper’ and ‘lower’ ranks ρ+ and ρ−. So
ranking systems and systems of shells are quite different. Both induce
an indexed grading, but they induce gradings over different domains
and the algorithm for assigned grades to propositions is different in
each account. Spohn’s ranking functions assign ranks to propositions
identical to the degree of disbelief of its least disbelieved points, while in
our account the rank of a proposition P (relative to K and ∆) is iden-
tical to the degree of informational value carried by the P -maxichoice
contractions of K of maximal value. Notice that this notion of ‘upper’
rank has no operative counterpart in Spohn’s system.3

All these formal differences flow from the central fact that the in-
tended interpretation of grades in each account (Spohn’s and ours) is
fundamentally different. Spohn’s account is a purely doxastic account
where ranks can be (roughly) interpreted as the orders of magnitude
of infinitesimal probabilities. As we explain above Spohn’s main goal
is to develop a non-probabilistic articulation of degrees of disbelief. In
our account the grades are induced by a probability-based function
measuring the value of information.

In spite of the aforementioned differences with ranking functions and
Grove systems, there are also some formal connections between shell
systems and both Grove and ranking systems that we will exploit below
to present a representation result not tackled yet in the literature (in-
cluding (Levi, 2004)). These connections make possible the use of well
known techniques standardly used in the study of notions of contraction
not motivated in decision-theoretical terms. The use of shell systems
permits also the presentation of a considerably simpler soundness proof
(in terms of the axioms presented in this coming section) than the
one presented in (Hansson and Olsson, 1999) – which proceeds mostly
syntactically, and only considers a subset of the axioms studied here.

4. Mild contractions

Here we will proceed axiomatically. The axioms used here are well
known in the literature and their names are also more or less standard
(see, for example, (Hansson, 1999)). A contraction operator relative to
K and Π is a function ÷: K×L→ Φ, obeying the following postulates:

3 Such notion can, of course, be defined for Spohn’s ranking functions as well.
According to Spohn’s official interpretation the ‘upper’ rank of a proposition would
be determined by the degree of disbelief assigned to its most disbelieved points.
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(÷ 0) There are cells C1, ..., Cn and A-cells c1, ..., cn in ∆ such that
K ÷A ∩ ¬A = ∩1,nCi and K ÷A = ∩1,nCi ∩ ∩1,nci ∩K.

(÷ 1) K ÷A = Cn(K ÷A) [closure]

(÷ 2) K ÷A ⊆ K [inclusion]

(÷ 3) If A 6∈ K or A ∈ Cn(LK), then K ⊆ K ÷A [vacuity]

(÷ 4) If A 6∈ Cn(LK), then A 6∈ K ÷A [success]

(÷ 6) If Cn(A) = Cn(B), then K ÷A = K ÷B [extensionality]

(÷ 7) If A 6∈ Cn(LK), then K ÷A ⊆ K ÷ (A ∧B) [antitony]

(÷ 8) If A 6∈ K ÷ (A ∧ B), then K ÷ (A ∧ B) ⊆ K ÷ A [conjunctive
inclusion]

All the conditions, except antitony and the first structural condition,
are AGM properties. On the other hand there is a notorious postulate,
AGM’s axiom of recovery, which is not in the previous list and that is
not derivable from the list:

(÷ 5) K ⊆ Cn((K ÷A) ∪ {A}) [recovery]

Antitony is perhaps the most controversial postulate from the list.
For example Hansson reports in (Hansson, 1999) that antitony does
not hold ‘[...] for any sensible notion of contraction’; while Rott and
Pagnuco report in page 513 of (Rott and Pagnucco, 1999) that ‘[...]
intuitively antitony makes quite a bit of sense’.

The axiomatic base given here is exactly the one proposed in (Rott
and Pagnucco, 1999) to characterize severe withdrawals. Here we will
show that this axiomatic base is indirectly supported by the intuitive-
ness of the postulates of Economy and Entrenchment. This gives, in
turn, indirect support to Antitony.

5. A representation result for mild contractions

We will focus first on presenting some of the main lemmas that are
needed in order to have a soundness result.

LEMMA 5.1. Any standard operator of informational value satisfies
all the postulates of mild contractions.
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(Hansson and Olsson, 1999) offers a proof that any basic operator
of informational value obeys postulates (÷ 1)-(÷ 4), (÷ 6) and (÷
8) as long as the underlying partition is universal and constituted by
maximal and consistent theories of L. The proof of (÷ 8) requires some
work if only weak monotony is assumed (as a matter of fact this proof
is one of the substantial arguments presented in (Hansson and Olsson,
1999)). Things are simpler when we have an operator of informational
value which obeys the Weak Min. The use of shells of informational
value permits a more direct proof in the general case (when partitions
need not be either universal or opinionated) - we offer above a simpler
proof of (÷ 8) to illustrate this.

LEMMA 5.2. Any standard operator of informational value satisfies
all the postulates of mild contractions.

Aside from soundness we can also establish the following complete-
ness result:

THEOREM 5.1. If ‘÷’ is a mild contraction function obeying the cor-
respondent postulates, then ‘÷’ can be represented as an operator of
informational value.

6. The Principle of Entrenchment and informational value

So far nothing has been said about the Principle of Entrenchment
invoked in the introduction. Let’s first introduce a relation of entrench-
ment formally. Let ≤ be an ordering of the sentences of L. ≤ is a relation
of entrenchment for a theory K if and only if the following postulates
are satisfied

(i) If A ≤ B and B ≤ C, then A ≤ C (transitivity)

(ii) If A ∈ Cn(LK), then B ≤ A (dominance)

(iii) A ≤ A ∧B or B ≤ A ∧B (conjunctiveness)

(iv) If K 6= L, then A ≤ B for every B ∈ L if and only if A 6∈ K
(minimality)

(v) If A ≤ B for every A ∈ L, then B ∈ Cn(LK)

Now, we remind the reader that our principle of entrenchment said
that in giving up a sentence A from the current view one should preserve
the sentences better entrenched than A. This translates formally into:
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DEFINITION 6.1. If A ∈ K and A 6∈ Cn(LK), then K÷A = K∩{B :
A < B} and K otherwise.

This simple and elegant manner of characterizing contraction in
terms of entrenchment was first proposed by Rott in (Rott, 1991).
AGM cannot be characterized in terms of entrenchment in this way. The
non-equivalent bridge connecting entrenchment and AGM contractions
stipulates that: K ÷A = K ∩ {B : A < A ∨B}

OBSERVATION 6.1. (Rott and Pagnuco) If ≤ satisfies the postulates
(i) to (v) then the function ÷ obtained from ≤ by definition 5.1 is a
mild contraction.

Therefore, via the completeness result offered above, the informa-
tional value contractions can be retrieved by using the Principle of
Entrenchment. Moreover, we can also appeal to a result recently proved
by Rott and Pagnuco (and to our completeness result) in order to re-
trieve the relevant notion of entrenchment from an informational value
contraction.

DEFINITION 6.2. If A ≤ B if and only if A 6∈ K ÷ B, or B ∈
Cn(LK).

OBSERVATION 6.2. (Rott and Pagnuco) If ÷ is a mild contraction
then the relation ≤ obtained via definition 5.2 satisfies the postulates
(i) to (v) for the entrenchment relation.

So, the Principle of Entrenchment and the Principle of Economy
give exactly the same account of contraction. AGM contractions are
also mirrored by a corresponding notion of entrenchment, but this
notion does not obey the Principle of Entrenchment. One of the con-
sequences of this divergence is the fact that AGM contractions satisfy
the controversial principle of recovery, which is not satisfied by mild
contractions (alias severe withdrawals according to Rott and Pagnuco’s
terminology).

7. Conclusions

The article focuses on determining the logical commitments entailed by
our formulation of the principle of Economy (in terms of informational
value) and the principle of Entrenchment. Together they give a holistic
justification of the axioms of mild contractions. We pointed out above,
nevertheless, that the principle of Economy is more accommodating
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than the principle of Entrenchment. In fact, minimizing loses of in-
formational value under the constraints imposed by the three core
postulates of (damped) informational value is coherent with endorsing
our version of Economy. But this does not guarantee the satisfaction
of:

(÷ 7) If A 6∈ Cn(∅), then K ÷A ⊆ K ÷ (A ∧B) [antitony]

In order to satisfy Antitony we need to assume in addition the full
force of Min. One could justify Min (and therefore Antitony) by point-
ing out that this is exactly the requirement that is needed in order to
have a theory of contraction where both Economy and Entrenchment
are satisfied.

Apparent counterexamples against Antitony are easy to concoct,
nevertheless, by considering scenarios where the sentences A and B
(in the formulation of Antitony) express propositions that in some pre-
systematic sense are irrelevant to each other. The serious study of these
apparent counterexamples requires nevertheless a minimal articulation
of the notion of relevance presupposed by the examples. Even when
formalizing a notion of relevance is a complicated problem in itself,
there are some proposals in the literature that articulate precisely
the degree of relevance that two formulas might have to each other
(Parikh, 1999). It should be pointed out here in passing, nevertheless,
that an unmodified version of our model is sensitive to considerations
of relevance. The theory of contraction we are proposing has various
contextual parameters that are useful for this problem. In particular the
space of options M is determined by the adoption of a basic partition
encoding a set of potential answers that are relevant to a problem.
So our model, like some of the existing syntactic approaches to the
problem of relevance focuses on certain relevant (syntactic) partitions
of the set of all expansions of the basic theory LK. Unlike most of the
existing theories of belief change we restrict the set of potential options
and the set of potential contractions to a set relevant to the solution
of a cognitive problem from scratch. So, counterexamples in terms of
relevance are not crucially threatening to the theory presented here.
In any case, it is important to realize that potential counterexamples
against Antitony do not seem to threaten the core postulates (i.e. the
notion of informational value) but the full force of Min.

There are some obvious extensions of our proposal and some ways
of weakening it as well. An obvious extension is the consideration of
the infinite case. In this case the density of the real interval [0, 1] is
important. Otherwise we can as well define a value function with range
over the natural numbers. In addition, it would be interesting to study
the shape of sequential change of view in this setting. It is also clear that
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more expressive languages (taking advantage of the numerical features
of the semantics in terms of system of shells) can also be studied.

Concerning weakenings of the proposed theory, when Min fails there
are a variety of possible contraction theories obeying the core postu-
lates. Their parametric study can help to identify the constraints on
value that completely characterize various withdrawal operators. Finally
it would be interesting to study the more realistic case which permits
value to be indeterminate (we conjecture that this is also a weakening
of the theory that leads to the failure of Antitony).

We would like to close this section by pointing out that recent
foundational work on the nature of contraction functions (Rott and
Pagnucco, 1999) has converged in defending exactly the same axiom
system that we presented here in section 4. Nevertheless, the founda-
tional reasons offered by Rott and Pagnucco in (Rott and Pagnucco,
1999) in defense of the same syntactic principles are quite different
form ours. Among other things they do not offer a decision-theoretic
argument and therefore the technical aspects of their models differ sub-
stantially from ours. In spite of these differences it is indeed remarkable
that the two theories can be characterized by the same axiom system
– departing from the standard AGM characterization of contraction.

Acknowledgments: We benefited from comments and observations
provided by Rohit Parikh and John Collins.

Appendix

A. Proofs

OBSERVATION 2.1: Weak monotony, extended weak monotony and
weak intersection equality imply Weak Min.

Proof.
Focus first on the set S(K,A). List all the saturatable contractions

in a finite family T ⊆ S(K,A) with Si and 1 ≤ i ≤ k. Consider then:

(P) V (∩T ) = min(V (Si) : Si ∈ T ).

(P) holds trivially for T1 = S1 and we should show that if it holds
for all non-empty subsets of Tn = {S1, ..., Sn} with n < k, then it holds
for any non-empty subset of T ′ = {S1, ..., Sn, Sn+1}. Then (P) holds
for all non-empty subsets of Tk = T ⊆ S(K,A).

So, assume (P) holds for all subsets of Tn. Consider then ∩Tn ∩ Sj
with Sj 6∈ Tn. Let M be the set of partition cells of ∆ entailing ¬A
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used in order to construct staturatable contractions in Tn. We will
consider the most general case where Sj = K ∩MA ∩X, were MA is
an intersection of partition cells of ∆ entailing A and X is a partition
cell entailing ¬A such that X 6∈ M . We will also assume that there is
a non-empty subset of elements of MA not used in order to construct
saturatable contractions in Tn. Call this subset SA. Notice that S =
K∩SA∩X is a contraction in S(K,A) which cannot be in Tn. Moreover
∩Tn ∩ Sj = ∩Tn ∩ S. Finally we can construct another potential con-
traction removing A which will be useful below: Y ′ = ∩Tn∩SA. Notice
that X is now a theory incompatible with all saturatable contractions
in Tn, a fact that will also be useful below. Weak Min holds for ∩Tn.
Let Y be a member of Tn such that V (∩Tn) = V (Y ). We need then to
show that V (∩Tn ∩ Sj) = min(S, Y ).

Consider first the case V (X) ≤ V (∩Tn) = V (Y ), where Y is a
member of Tn. Let Z be a partition cell entailing ¬A that is distinct
from X and where V (Z) = V (X). Z should also be incompatible with
the saturatable contractions in Tn. There need not be such a Z in
S(K,A). If that were the case we can always embed hypothetically ∆
into ∆′ containing a cell for Z and such that the original structure of
values remains unaltered by the partition change. In order to do so
consider the (logically finite) underlying language L and its expansion
L′ = L ∪ t, where t is a fresh atom not occurring in L. For every
theory S in L, where V (S) = x, and for every S′ over L′, such that
S′∩L = S, V (S′) = x. So, we can construct an embedding partition Π′.
For each original cell of Π which is the intersection of a set of maximal
and consistent theories of L, consider now the theory determined by
the t-counterpart of each one of these maximals. Now let Z be the ¬t-
counterpart of X. One does so by adding to Π′ a cell determined by
intersecting the ¬t-counterparts of each maximal and consistent theory
determining the cell containing X. It is obvious that Z exists and that
V (X) = V (Z).

If T ′L′ is a set of saturatable contractions expressible in L′ over Π′,
it should be clear as well that if we manage to prove that V (∩T ′L′)
= min(V (R) : R ∈ T ′L′) then the result also shows that V (∩T ′) =
min(V (Si) : Si ∈ T ′) – the reason being that V (∩T ′L′ ∩ L) = V (∩T ′).
It is important to realize for what follows that ZL′ is incompatible both
with XL′ and with YL′ . In order not to inflate terminology we will drop
from now on the sub-index L′.

Notice first that weak intersection equality and extended weak monotony
yield that V (K ∩X) = V ((K ∩X)∩ (K ∩Z)) – it is clear that the two
contractions in the RHS of the last equality are A-equivalent. By WM
we have that V ((K ∩ X) ∩ (K ∩ Z)) ≤ V (Z ∩ X). In addition EWM
yields that V (Z ∩X) ≤ V (Y ∩Z) = V (Y ∩X). Therefore we have that
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V (K∩X) ≤ V (Y ∩K∩X). Finally by one more application of WIE we
have that V (K ∩X ∩SA) ≤ V (Y ∩K ∩X ∩SA). So, V (S) ≤ V (S ∩Y ).
The converse holds trivially by WM. This completes the proof of the
first case.

For the second case consider V (∩Tn) = V (Y ) < V (X). Replace Y in
Tn with X. Since the result contains only n contractions, the min-rule
applies. Moreover, since the result must carry informational value no
less than the original, it carries informational value at least as great as
Y . In effect, case 2 has been converted into the first case•

OBSERVATION 3.1: |K ÷ ¬A| = SA

Proof.
Consider w ∈ SA ∩ |A|. Let C(A) = SA − (SA ∩ |A|). Notice that

Mw = ∩C(A) ∩ w is a saturatable contraction removing ¬A from K.
Mw is one of the contractions of maximal value in S(K,¬A)).

In general these contractions have the form K ∩ Ci ∩ (∩S) where
Ci ∈ SA ∩ |A| is a partition cell in ∆, and S ⊆ C(A). In fact, it is easy
to see that if either of these conditions fails the resulting saturatable
contraction is not maximal. Say that we consider (K ∩ Ci ∩ (∩S)) =
C where Ci is an A-partition cell in ∆, but Ci 6∈ SA ∩ |A|. Then
the contraction can be represented as (K ∩ Ci) ∩ (K ∩ (∩S)) where
V (K ∩ Ci) < V (K ∩ (∩S)). The Min rule requires therefore that
V (C) < V (Mw). The reasoning is similar when S 6⊆ C(A) (in this
case one has to focus on the intersection of S with the lowest rank
intersecting S). It is then clear that the result of intersecting all the
maximal contractions in S(K,¬A)) (i.e. K ÷ ¬A) can be represented
by just taking the intersection of all the saturatable contractions of
the form Mw, with w ∈ SA ∩ [A] – the value of this intersection is
also maximal by WIE. But then it is obvious that |K ÷ ¬A|= SA, as
desired•

LEMMA 5.2: Any standard operator of informational value satisfies
all the postulates of mild contractions.

Proof.
We will exhibit the proofs of two key postulates. All other proofs

proceed in a similar manner.
Let’s first focus on Conjunctive Inclusion. Assume that A 6∈ K÷(A∧

B). We need to show that K÷ (A∧B) ⊆ K÷A. We have that |K÷A|
= S¬A, i.e. we know that |K ÷ A| is identical to the smallest m-shell
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of informational value intersecting |¬A|. And by the same token we
have that |K ÷ (A∧B)| = S¬(A∧B). Given the assumption of the proof
we have that S(¬A∨¬B) ∩ |¬A| 6= ∅. This is enough to guarantee that
S(¬A) ⊆ S(¬A∨¬B). Therefore |K÷A| ⊆ |K÷ (A∧B)|, and K÷ (A∧B)
⊆ K ÷A, as desired.

Considering Antitony, we have to show that when A 6∈ Cn(∅), K÷A
⊆ K ÷ (A ∧ B). So, assume that A 6∈ Cn(LK). We need to show
that K ÷ A ⊆ K ÷ (A ∧ B). In other words, we need to show that
|K÷ (A∧B)| ⊆ |K÷A|. So, we need to show that S¬(A∧B) ⊆ S¬A, or,
equivalently that S(¬A∨¬B) ⊆ S¬A. By the assumptions we know that
(A∧B) 6∈ Cn(LK). So, since both ¬A and ¬A∨¬B are in L and |¬A|
⊆ |¬A∨¬B|, we have that S¬(A∧B) ⊆ S¬A, as desired. Of course, as we
showed in a previous observation, the appeal to the identity |K÷¬A| =
SA in the proof presupposes that our operator of informational value
obeys not only all the core postulates but also Min, i.e. that it is a
standard operator•

THEOREM 5.1: If ‘÷’ is a mild contraction function obeying the
correspondent postulates, then ‘÷’ can be represented as an operator
of informational value.

Proof.
We need to show that starting with an operator ÷ obeying the

postulates of mild contractions we can explicitly construct a system of
shells of informational value. We have to show as well that the operator
÷′ obtained from the defined system of shells of informational value by
requiring [K ÷′ A] = S¬A, where S¬A is the smallest m-shell of infor-
mational value intersecting ¬A, is identical to ÷. The proof proceeds
in three stages. First we follow what now is a standard procedure in
order to construct a Grove system in terms of the operator ’÷’ (Grove,
1988). Then we show how to build a system of shells of informational
value in terms of the constructed Grove system. In order to do so we
show how to build a shell of informational value for the constructed
Grove system. Finally we have to show that the operation ÷′ obtained
from the defined system of shells of informational value by requiring
[K ÷′ A] = S¬A, is identical to ÷.

Let’s first focus on how to construct a Grove system in terms of
the operation ÷. As we explained above, the method for constructing
a Grove system from a contraction operation is well-known. We will
introduce some minor modifications in the standard proof, while trying
to skip unnecessary details. The proof sketched here follows also a
suitable modification of Grove’s original proof as presented in (Rott
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and Pagnucco, 1999). The central idea is quite simple: a Grove system
of spheres S centered on |X|, is determined by identifying a sphere in
S with the collection |X ÷A| for some A ∈ L. More precisely:

(d) XA = |X ÷A|.

We can define now the system of spheres S as follows;

S = {XA: A ∈ L} ∪Π, when K 6= L, and S = {XA: A ∈ L} ∪Π ∪ ∅
otherwise.

The gist of this first part of the proof consists on showing that the
system S is indeed a Grove system of spheres centered on |X|. Since this
is important for the rest of the result we are showing, we will remind
the reader immediately of the definition of a Grove system of spheres
centered on |X|.

Let S be a collection of subsets of ∆. S is a system of spheres,
centered on X = |K| ⊆ Π and satisfying:

(1) S is totally ordered by ⊆.

(2) X is the ⊆-minimum of S.

(3) Π is the ⊆-maximum of S.

(4) If A ∈ L and ∅ 6= [A] ∈ 2∆, then there is a smallest sphere SA in S
intersecting the set |A|.

Condition (1) is directly satisfied in virtue of (d) above and the fact
that the following property can be deduced from the axioms of mild
contractions:

(d1) Either K ÷A ⊆ K ÷B or K ÷B ⊆ K ÷A.

Conditions (÷ 2) and (÷ 3) guarantee that K ÷ true = K. This
and (d) are enough to show that X = |K| is a sphere. That this is the
innermost sphere follows immediately from (÷ 2) and (d). This takes
care of condition (2). Condition (3) is automatically satisfied by the
given definition of S.

Condition (4) is slightly harder. Let A be such that ∅ 6= [A] ∈ 2∆.
Now we need to show that there is a sphere U ∈ S, such that U∩|A| 6= ∅
and for every other V ∈ S, such that V ∩ |A| 6= ∅, we have U ⊆ V . The
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basic idea of the proof, which we skip here, is to show that |K ÷ ¬A|
= X¬A satisfies this constraint.

The proof of condition (4) establishes that (when A is not a tau-
tology) S¬A = |K ÷ A| = XA, where S¬A denotes the smallest sphere
intersecting |¬A| - we used basically the same notation S. for shells
above, indicating the smallest m-shell intersecting |.|. This fact will be
useful below.

Now we should focus on the second step of the proof, namely the con-
struction of a system of shells of informational value for the constructed
system of spheres. Here is the recipe in order to do so.

First construct a system of ranks out of the given system of spheres
as follows: index spheres with natural numbers starting with 0 assigned
to the innermost core in such a way that Si denotes the set of partition
cells in the sphere indexed by i. This is done via an indexing function
mapping propositions to natural numbers. Then define a function δ
from the range of the indexing function to propositions, such that δ(k)
= Sk+1 - Sk.

As a second step assign an arbitrary uniform V -value x to the parti-
tion cells in the innermost sphere of S, |K| as long as x is greater than
k, where k is the index of the outermost sphere Sk.

As a third step we need to give a value to each partition cell in ∆.
In order to do so assign a uniform value y > x to each partition cell
in δ(0) and, in general, for every δ(i + 1), for i ≥ 0, assign a uniform
value z > z′ to the maximals in δ(i+ 1), where z′ is the uniform value
of maximals in δ(i).

As a fourth step we need to define ranks and m-shells of informa-
tional value. In order to do so we need to re-index the ranks we just
defined from the Grove system. Assign to δ(0) a positive index x′ < x
and, in general, for every δ(i+1), with i ≥ 0, assign to δ(i+1) a positive
index z, where z < z′ and z′ is the value of δ(i). So, for an arbitrary δ(i),
we have a positive number m assigned to it such that m < x. Create
then the ranks of informational value Rmi and the corresponding shells
Smi as follows: Rmi = δ(i) and Smi = Si

The last definition allows us to complete the definition of the V -
measure, by requiring that (i) for every Y ⊆ Rxi , V ((∩Y )∩K) = x; (ii)
that for every Y ⊆ Sxi , such that Rxi is the outermost rank such that
Rxi ∩ Y 6= ∅, V ((∩Y ) ∩K) = x.

It is obvious that V , as defined, is a function from Φ to the natural
numbers (it could be easily normalized to [0, 1]). In fact, for every
member T of Φ there is, by construction, an outermost rank overlaping
|T |. It is also clear that the function satisfies WM. In order to verify it
we need to check that for any two contractions of K, X,Y , such that
X ⊂ Y , then V (X) ≤ V (Y ). Let RX = Rmi be the outermost rank
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intersecting |X|. Then it is clear that the outermost rank intersecting
|Y |, RY = Rm

′
i′ is such that i′ ≤ i and m′ ≥ m. Since |Y | is a subset

of Sm
′

i′ Y receives value m′, and since |X| is a subset of Rmi X receives
value m. And since m′ ≥ m, weak monotony is satisfied.

Consider now Y = ∩X, where X is a family of maxichoice contrac-
tions of K, and its associated set |Y |. Consider again the outermost
rank intersecting |Y |, RY = Rmi . Then according to the proposed ex-
plicit definition of V , V (Y ) = m. Take now an arbitrary Z ∈ X such
that |Z| does not intersect RY . Then, by construction, V (Y ) < V (Z).
And if |Z| intersects RY , V (Z) = m. So, clearly we do have that V (Y )
= min{V (Z) : Z ∈ X}.

Finally we need to check that an operation of contraction ÷′ defined
from the explicitly constructed system of shells of informational value,
coincides with the operator ÷ characterized by the postulates of mild
contractions. We will define:

|K ÷′ ¬A| = SA

where SA is the smallest m-shell of informational value intersecting
|A| union |K|. The non-trivial case to consider is when A is not in LK.
We will work under this assumption. Assume first that B ∈ K ÷ ¬A,
B ∈ L This entails that |K÷¬A| ⊆ |B|. The proof of condition (4) for
Grove systems above tell us that |K ÷¬A| is a sphere Si, and since in
our construction an m-shell is obtained from it by taking Smi ; then we
have that |K ÷¬A| is also a m-shell of informational value. Moreover,
the proof of (4) also tells us that the smallest sphere overlapping [A] is
identical to |K ÷ ¬A|. Therefore the smallest m-shell of informational
value overlapping |A| is identical with |K ÷ ¬A|. Therefore we have
that |K ÷′ ¬A| ⊆ |B|, and B ∈ K ÷′ ¬A, as desired. Proving that
K ÷′ ¬A ⊆ K ÷ ¬A only requires reversing the strategy used for the
RTL inclusion•
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