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Updating Subjective Probability  
PERSI DlACONlS and SANDY L. ZABELL* 

Jeffrey's rule for revising a probability P to a new prob- 
ability P *  based on new probabilities P*(Ei) on a partition 
{EiIi= is 

Jeffrey's rule is applicable if it is judged that P*(A I Ei) 
= P(A I Ei) for all A and i. This article discusses some 
of the mathematical properties of this rule, connecting 
it with sufficient partitions, and maximum entropy up- 
dating of contingency tables. The main results concern 
simultaneous revision on two partitions. 
KEY WORDS: Probability kinematics; Jeffrey condi- 
tionalization; Sufficiency; Maximum entropy; I projec-
tion; f divergence; Contingency tables; Iterated propor- 
tional fitting procedure; Coefficient of dependence. 

1, INTRODUCTION 
1.1 Belief Revision 

The most frequently discussed method of revising a 
subjective probability distribution P to obtain a new dis- 
tribution P*, based on the occurrence of an event E, is 
Bayes' rule: P*(A) = P(AE)IP(E). Richard Jeffrey (1965, 
1968) has argued persuasively that Bayes' rule is not the 
only reasonable way to update: use of Bayes' rule pre- 
supposes that both P(E) and P(AE) have been previously 
quantified. In many instances this will clearly not be the 
case (for example, the event E may not have been antic- 
ipated), and it is of interest to consider how one might 
proceed. 

Example. Suppose we are thinking about three trials 
of a new surgical procedure. Under the usual circum- 
stances a probability assignment is made on the eight 
possible outcomes R = {000,001,010,011, 100, 101, 110, 
I l l ) ,  where 1 denotes a successful outcome, 0 not. Sup- 
pose a colleague informs us that another hospital had 
performed this type of operation 100 times, with 80 suc- 
cessful outcomes. This is clearly relevant information and 
we obviously want to revise our opinion. The information 
cannot be put in terms of the occurrence of an event in 
the original eight-point space R,  and the Bayes rule is not 
directly available. Among many possible approaches, 
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60201. The authors are grateful to I.J. Good, Richard C. Jeffrey, David 
Freedman, Paul Meier, Jim Pitman, Sherry May, and Amos Tversky 
for helpful comments and suggestions. 

four methods of incorporating the information will be 
discussed: (1) complete reassessment; (2) retrospective 
conditioning; (3) exchangeability; (4) Jeffrey's Rule. 

1. Complete Reassessment. In the absence of further 
structure it is always possible to react to the new infor- 
mation by completely reassessing P*, presumably using 
the same techniques used to quantify the original distri- 
bution P .  

2. Retrospective Conditioning. Some subjectivists have 
suggested trying to analyze this kind of problem by mo- 
mentarily disregarding the new information, quantifying 
a distribution on a space O* rich enough to allow ordinary 
conditioning to be used, and then using Bayes' rule. For 
some discussion of this, see de Finetti (1972, Ch. 8) and 
Section 2.1. It is worth emphasizing that this type of 
retrospective conditioning can be an extremely difficult 
psychological task; see Fischoff (1975), Fischoff and 
Beyth (1975), Slovic and Fischoff (1977). Nor, in prin- 
ciple, is retrospective conditioning simpler than complete 
reassessment: since P*(A) = P(AE)IP(E) in this case, 
for each A assessment of P(AE) is equivalent to reas- 
sessment of P*(A). 

3. Exchangeability. The three future trials may be re- 
garded as exchangeable with the 100 trials reported by' 
our colleague. Standard Bayesian computations can then 
be used. However, given that the operations will have 
been performed at two, possibly very different, hospitals 
with possibly very different patient populations, this as- 
sumption might very well be judged unsatisfactory. 

4. Jeffrey's Rule. Suppose that the original probability 
assignment P was exchangeable. That is, P(001) = 
P(010) = P(100) and P(110) = P(101) = P(Ol1). In the 
situation described, the information provided contains no 
information about the order of the next three trials and 
thus we may well require that the new probability dis- 
tribution remain exchangeable. This is equivalent to con- 
sidering a partition {Ei)i,03 of R,  where Eo = {OOO), El 
= (001,010, loo), E2 = (110, 101, Oll), E3 = (111). Here 
Ei is the set of outcomes with i ones, and exchangeability 
implies that for any event A, and any i, P(A I Ei) = P*(A I 
Ei). To complete the probability assignment P*, we need 
a subjective assessment of P*(Ei). Then P* is determined 
by 
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The rule 

(1.1) 
is known in the philosophical literature as Jeffrey's rule 
of conditioning. It is valid whenever there is a partition 
{Ei) of the sample space such that 

P*(A I Ei) = P(A I Ei) for A and i .  (J) 
It has the practical advantage of reducing the assessment 
of P *  to the simpler task of assessing P*(Ei). 

2, 3, and are Vecial the 
requantification of approach 1; each is valid or useful 
under different assumptions. For example, retrospective 
conditioning assumes that one can do a reasonable job 
of assessing probabilities as if the data had not been ob- 
served; exchangeability assumes that future trials are 
based on the same mechanism as past ones; Jeffrey's rule 
assumes the availability of a partition and the validity of 
assumption (J). 

In this article we study the assumptions and conclu- 
sions that attend Jeffrey's rule. Our main contributions 
are technical: In Section 2 we connect Jeffrey's rule with 
sufficiency; sections 3, 4, and 5 analyze what happens 
when two or more partitions are considered. In Section 
3 we discuss commutativity of successive updating. In 
Section 4 we discuss methods for dealing with two par- 
titions s im~l taneo~sly ,  giving a necessary and sufficient 
condition for two probability measures On two algebras 
to have a common extension. In we discuss 
some other motivations for Jeffrey's rule when condition 
(J) has not been subjectively checked. Jeffrey's rule gives 
the "closest" measure to P that fixes P*(Ei), and it is 
related to the iterated proportional fitting procedure used 
in the statistical analysis of contingency tables. For ease 
of exposition, most of this article assumes a countable 
state space or a countable partition {Ei)i= 1". In Section 
6 we describe the mathematical machinery needed to ex- 
tend the previous results to abstract probability spaces. 

1.2 Bibliographical Note on Probability Revision 
From the subjectivistic perspective, the conditional 

probability P(A I E) is the probability we currently would 
attribute to an event A if in addition to our present in- 
formation we .were also to learn E. In the language of 
betting, it is "the probability that we would regard as fair 
for a bet on A to be made immediately, but to become 
operative only if E occurs" (de Finetti 1972, p. 193; com- 
pare Ramsey 193 1, p. 180). In this formulation, the equal- 
ity P(A ( E) = P(AE)IP(E) is not a definition but follows 
as a theorem derived from the assumption of coherence 
(de Finetti 1975, Ch. 4). 

If we actually learn E to be true, it is conventional to 
adopt as one's new probability 

P*(A) = P(A ( E).  (1.2) 
Several authors have discussed the limitations on or jus- 

tifications for this use of the Bayes rule (1.2). Ramsey 
put the difficulty clearly: 

[The degree of belief in p given q ]  is not the same as the degree 
to which [a subject] would believe p, if he believed q for certain; 
for knowledge of q might for psychological reasons profoundly 
alter his whole system of beliefs [Ramsey 1931, p. 180; cf. how- 
ever, p. 1921. 

For modern discussion of this and related issues, see 
Hacking (1967), de ~ i n e t t i  (1972, p. 150; 1975, p. 203)~ 
Teller (1976), Freedman and Purves (1969). A closely 
related point is that our "[subjective] probabilities can 
change in the light of calculations or of pure thought 
without any in the empirical data . . ." GOO^ 
1977, p. 140). 1.J. ~~~d terms such probabilities uevolv- 
ing9?or -dynamicH and has discussed them in a number 

papers ( ~ 1950, p. 49; 1968; 1977). ~~ d 
other reservations about the adequacy of condition-

alization as an exclusive model for belief revision center 
around its assumption about the form in which new in-
formation is received. Indeed, Jeffrey's original philo- 
sophical motivation for introducing uprobability kine-
mat ics~was his belief that u ~ tis rarely or never that 
there is a for which the direct effect of an 
observation is to change the observer's degree of belief 
in that to 1- (jeffrey 1968, p. 171). similar 
criticisms have been raised by Shafer (1979, 1981), whose 
theory of belief functions is a more radical attempt to 
deal with the problem. ~ ~ t h  hold that conditioning on an 
event requires the assignment of an initial probability for 
that event, prior (in principle at least) to its observation, 
and for many classes of sensory experiences this seems 
forced, unrealistic, or impossible. 

For example, suppose we are about to hear one of two 
recordings of Shakespeare on the radio, to be read by 
either olivier or ~ i ~ l ~ ~ d ,but are unsure of which, and 
have a prior with mass $ on Olivier, $ on Gielgud. After 
hearing the recording, one might judge it fairly likely, but 
by no means certain, to be by olivier. ~h~ change in 
belief takes place by direct recognition of the voice; all 
the integration of sensory stimuli-has already taken place 
at a subconscious level. To demand a list of objective 
vocal features that we condition on in order to affect the 
change would be a logician's parody of a complex psy- 
chological process. 

Jeffrey's rule was introduced in Jeffrey (1957) and is 
further discussed in Jeffrey (1965, Ch. 11) and Jeffrey 
(1968). Isaac Levi (1967; 1970, pp. 147-152) is a vigorous 
critic of Jeffrey's version of probability kinematics, but 
has been thoroughly rebutted by Jeffrey (1970, especially 
pp . 173- 179). Jeffrey's idea was partially anticipated by 
the Oxford astronomer Donkin (1851, p. 356); compare 
Boole (1854, pp. 251-252), Whitworth (1901, pp. 162-169, 
181-182), Keynes (1921, pp. 176-177). An independent 
proposal of Jeffrey's rule appears in Griffeath and Snell 
(1974). The last few years have seen a sudden upsurge 
of interest in Jeffrey conditionalization; papers have ap- 
peared by Teller (1976), Field (1978), Garber (1980), 
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Williams (1980), van Fraassen (1980), Armendt (1980), 
and Shafer (1981). 

2. JEFFREY'S RULE OF CONDITIONING 
In this section we develop some of the mathematics 

connected with Jeffrey's rule of conditioning. Formally: 
R is a countable set, P and P *  are probability measures 
on the subsets of R, and {E,) is a partition of R. 

2.1 Bayesian Conditioning 
Jeffrey's rule of conditioning is a generalization of or- 

dinary conditioning: given the partition {E, E"), if P*(E) 
= 1 and P*(A) = 2P(A I E,) P*(E,), then P*(A) = 
P(A ( E). We therefore begin by investigating when one 
measure P *  can arise from another measure P by con- 
ditioning. To be precise, suppose P and P* are measures 
on a countable space R. We will say that P* can be 
obtained from P by conditioning if there exists a proba- 
bility space (A, d ,  Q), and events {E,),En, E, E d (to 
be thought of as "E, = o occurred"), such that Q(E,) 
= P(o),  and an event E E d such that Q(E) > 0 and 
Q(Ew I E) = P*(o).  

Theorem 2.1. P* can be obtained from P by condition- 
ing if and only if there exists a constant B ? 1 such that 

P*(o) 5 B P(o)  for all o E 52. (2.1) 

Proof. If P* can be obtained from P by conditioning, 
let (a,d ,  Q), {E,), E be given. Then for any o E R ,  

This gives (2.1) with B = llQ(E). 
Conversely, suppose (2.1) is satisfied. If B = 1, then 

P *  = P and the theorem is obvious. If B > 1, define 

Because of the condition, P** is a probability and P = 
(1IB) P *  + (1 - 1IB) P**. This suggests taking = R 
x {a, b), E, = (o, a) U (o ,  b), and E = U,(o, a) .  Let 
Q be defined by Q(o,  a) = (llB) P*(o) and Q(o, b) = 
(1 - 1IB) P**(o). 

Condition (2.1) places a restriction on P ,  P *  when both 
have countable support (but not when both have finite 
support and supp(P*) supp(P)). For example, no geo- 
metric distribution can be obtained from a Poisson dis- 
tribution by conditioning, but any Poisson distribution 
can be obtained from any geometric. If R is uncountable, 
(2.1) can be replaced by the conditions P *  <P and dP*l 
dP E L,; compare Section 6. 

2.2 Jeffrey Conditionalization and Sufficiency 
In the example discussed in Section 1, the partition 

{EL) naturally arose in the course of constructing P *  from 
P. But one might instead envisage being given another 
person's {P, P*) and then trying to reconstruct a possible 
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partition {Ei) from which the pair {P, P*) could have 
arisen via Jeffrey conditionalization. Unlike Bayesian 
conditionalization, this turns out to be always possible. 

To apply Jeffrey's rule, it is required to find a partition  
{E;) such that  . -. 

P(A ( E,) = P*(A ( E,) for all A and i .  

This is simply the problem of finding a sufficient partition 
for the two-element family B = CP, P*); see Blackwell 
and Girshick (1954, Ch. 8): This simple obervation makes 
possible the translation of the ideas of minimal sufficiency 
and likelihood ratio into the language of Jeffrey's rule. 

A partition {E,) is said to be coarser than a second {E~) 
if every Ei is a union of sets in {E~). For purposes of 
updating probability, a coarser partition has the advan- 
tage that P *  need be specified on fewer sets. A coarsest 
sufficient partition is said to be minimal sufficient. The 
following (well-known) theorem gives an alternative ver- 
sion of Jeffrey's rule and states that there is always a 
coarsest partition for which Jeffrey's rule is valid. Some 
philosophical implications of this fact are discussed by 
van Fraassen (1980). 

Theorem 2.2. Let P ,  P* be probability measures with 
common support on the countable set 52. If {Ei) is a par- 
tition of 52 such that P(E,) > 0 and P(A ( Ei) = P*(A I 
Ei) for all subsets A and elements of the partition Ei, 

then for each o E 52, 

IfR = {x:P*(o)lP(o) = x , o  E R),andEx = {o:P*(o)l  
P ( o )  = x, o E R),  then {Ex :x E R) is a minimal sufficient 
partition for {P, P*). 

Proof. The first statement is a version of the Fisher- 
Neyman factorization theorem; for the second, see 
Blackwell and Girshick (1954, p. 221). 

The following example illustrates the use of the like- 
lihood ratio form of Jeffrey's rule. 

Example 2.1. (whitworth 1901, pp. 167-168): 
Question 138. A ,  B ,  C were entered for a race, and their re- 

spective chances of winning were estimated at &, &, A. But 
circumstances come to our knowledge in favour of A ,  which raise 
his chance to 4;what are now the chances in favour of B and C 
respectively? 

Answer. A could lose in two ways, viz. either by B winning or 
by C winning, and the respective chances of his losing in these 
ways were a priori A and A, and the chance of his losing at all 
was A. But after our accession of knowledge the chance of his 
losing at all becomes 1, that is, it becomes diminished in the ratio 
of 18: 11. Hence the chance of either way in which he might lose 
is diminished in the same ratio. Therefore the chance of B winning 
is now 

and of C winning 

These are therefore the required chances. 
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3. SUCCESSIVE UPDATING 
In the usual applications of subjective probability, 

information builds up by successive conditioning. In 
Bayesian conditionalization the order in which new in- 
formation is incorporated is irrelevant; in Jeffrey 
conditionalization the situation is more complex. 

3.1 The Problem 
Consider an initial probability P that is Jeffrey-updated 

to the new probability P%based on a partition 8 = 
{Ei)i, le and new probabilities P%(Ei) = pi, i = 1, 2, 
. . . ,e; clearly P*(A I Ei) = P%(AI Ei) = P(A I Ei) holds 
for our new opinion. (P* denotes our new opinion, how- 
it is obtained: by Bayes' theorem, Jeffrey's rule, 
complete requantification, or whatever. P%denotes the 
specific updated probability measure that results from 
Jeffrey conditionalization. Here, by assumption, P *  = 
P, .) Suppose we then Jeffrey-update on 9 = {&)j= 
with new probabilities {qi), and indicate this order of 
updating by P,%. To use Jeffrey's rule at the second stage 
we must, of course, accept the J-condition, so P%*(A I 
Fj) = P,(A I Fj) = PZsE(AI 5).Clearly, the order of 

updating matters, since the second opinion dominates. 
Example 3.1. Suppose % = 9 ,  that is, our belief for 

each event Ei changes first to pi and then to qi. The first 
revision and second revision differ and we currently be- 
lieve P*(Ei) = qi. If the opposite order of revision were 
employed, we would believe P*(Ei) = pi after the second 
revision. 

Example 3.2. Suppose that in a criminal case we are 
trying to decide which of four defendants, called a ,  b, c, 
d, is a thief. We initially think P(a) = P(b) = P(c) = 
P(d) = a. Evidence is then introduced to show that the 
thief was probably left-handed. The evidence does not 
demonstrate that the thief was definitely left-handed, but 
it leads us to conclude the P(thief left-handed) = .8. If 
a and b are the defendants who are left-handed, then El 
= {a, b), E2 = {c, d) and P,(El) = .8, P,(E2) = .2. If 
the only effect of the evidence was to alter the probability 
of left-handedness-in the sense that P(A I Ei) = P,(A I 
Ei)-then Pg is obtained from Jeffrey's rule as P,(a) 
= .4, P%(b) = .4, P%(c) = . I ,  P,(d) = .I .  Evidence is 
next presented that it is somewhat likely that the thief 
was a woman. If the female defendants are a and c, then 
F1 = {a, c), F2 = {b, d). If Ps%(F1) = .7 and Jeffrey- 
updating is again judged acceptable, then 

If instead the evidence (F1, .7), (F2, .3) is presented first 
and (E l ,  .8), (E2, .2) is presented second, is P,, equal 
to P,,? Example 3.1 shows that in general the order 
matters since the currently held opinion governs; in this 
example the reader may check that the order does not 
matter. We now investigate why. 

3.2 Commutativity 
There are two aspects to successive updating: The up- 

dating information at each stage, 

{Ei, ~ i } i = ~ ~ ,  (3.1){Fj, qi)j=jf; 
the J condition at each stage, 
p*(A I Ej) = P(A 1 Ei) and Pz*(A I Fj) = P.e(A I 4)  
or, if updating is being considered in the other order, 

P*(A I Fj) = P(A I &) and P%*(A 1 Ei) = P%(A 1 Ei). 
(3.2) 

The J condition is an internal or psychological condition 
that must be checked or accepted at each stage. Math- 
ematics has nothing to offer here. 

Mathematics can be used to check whether (3.1) is 
compatible with commutativity. Since Jeffrey updating 
fixes the probabilities on the partition (i.e., P,%(F,.) = 
qi and P9,(Ei) = pi), commutativity will be possible only 
if 

Pgo(Ej) = pi and PsE%(&>= %, (3.3) 
for all i and j. It turns out that this condition is sufficient. 

Theorem 3.1. If (3.3) holds, then Pg9 = PsE,. 
In other words, when P,., and P%%both incorporate 

(3.l),  they actually coincide. Theorem 3.1 is an immediate 
consequence of Csiszar (1975, Theorem 3.2) and its proof 
is omitted. Csiszar's theorem implies that the common 
measure P,% = P,, is the I projection of the original 
measure P onto the set of measures that incorporate (3.1). 
We discuss I projection further in Section 5. 

3.3 Jeffrey Independence 
A second approach to the mathematical aspects of com- 

mutativity of successive Jeffrey updating uses independ- 
ence. Two partitions 8 = {I?,), 9 = {Fj) such that P(Ei) 
> 0, P(Fj) > 0 for all i and j ,  are P independent if 

P(Ei I Fj) = P(Ei) and P(FjI Ei) = P(Fj) (3.4) 
all i, j. Independence says that conditioning on 9 does 
not change the probabilities on 8 and vice versa. 
Analogously, 

Definition: 8 and 9 are Jeffrey independent with re- 
spect to P ,  Cpi) and {%) if P,(Fj) = p(&) and PF(Ei) 
= P(Ei) holds for all i and j. (Briefly, "J independent 
with respect to {pi), {qi).") Thus Jeffrey independence 
says that Jeffrey updating on 8 with probabilities pi does 
not change the probability on % and similarly with % and 
9 interchanged. The next theorem shows the connection 
with commutativity. 

Theorem 3.2. Let P ,  {Ei, pi) and {Fj, a)be given. Then 
PZs = P%,if and only if 8 and 9are Jeffrey independent 
with respect to P ,  (pi), {a). 

Proof. Note that P,%(A) = P%,(A) for all events A 
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if and only if 
Pi% P(AEiFj)P%(Fj) P(Ei) 

-- Pi% P(AEiFj). (3.5)
P%(Ei) P(Fj) 

Choose A = EioFj,, to get 

P%(F,o) P(Ei0) = Ps(Eio) P(F,o) 

for all pairs io, jo. Keeping io fixed and summing over jo 
yields 

similarly, fixing joand summing over io yields 

P%(Fjo)= P(F,o). (3.6b) 

Thus, % and 8 are Jeffrey independent with respect to 
P ,  {pi), {e).Conversely, if (3.6) holds, then 

P%(F,) P(Ei) = P(Fj) P(Ei) = Ps(Ei) P(Fj). 
Using this equality shows that (3.5) holds and so PW 
= P,%. " 

Theorem 3.3.Two partitions % and 8are P independent 
if and only if % and 8are Jeffrey independent with respect 
to any update probabilities ip,)and 1%). 

Proof. First suppose 8 and 8are P independent. Then 
Pa(Fj) = Z P(F, I Ei)pi = C P(F,)pi = P(F,). (3a7) 

i i 

To see the converse, suppose % and 8 are not P inde-
pendent. Then there exist Eio and Fjo such that 
P(Fj,, I Ei,) # P(F,,). Pick pi0 sufficiently close to 1. Then 

hence it follows from (3.7) that P%(&) # P(Fjo). 

Example 3.3. ( J  independence # > P independence). 
Suppose P(EiFj) is given by the following table 

F1 F 2  F3 

i 
E2 t 
E3 t 

3; a t 

Then % and 8 are not P independent, but update prob- 
abilities p, q exist such that % and 8 are J independent 
with respect to them (see what follows). 

An efficient algorithm for checking J independence, in 
this and other examples, is the following. Let rij denote 
W. E. Johnson's coefficient of dependence between Ei 
and Fj Keynes 1921, pp. 150-155), that is, 

rij = P(EiFj)IP(Ei) P(Fj) ; 
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since Xi rijpi = P%(Fj)IP(F,) and Cjrij% = Ps(Ei)I 
P(Ei), it follows that % and 8 are 3 independent with 
respect to {pi), {a)if and only if 

r  i  p  1, all j  ;  1, all i. (3.8) 
i j 

Let R = (rij). In Example 3.3 
/1 1 1 1  

and hence, if 

\ L L / 

and  
1 - 4  1 - 4   

then pR = 1, Rq* = 1; thus %, 8are J independent with 
respect to p, q. 

Remark. It is not hard to show that if at least one of 
the two partitions % and 8 has only two elements, theq 
J independence for some p, q pair is equivalent to P 
independence, and hence to J independence for all p, q. 

Lest the reader think that commutativity always occurs 
when (3.1) can be incorporated, we conclude this section 
with an example that has P%,(Ei) = pi (and of course p % % ( ~ , )= %), but such that P,,(F,) # %. 

Example 3.4. Let 8 = {E, 8 = {F ,  and define 
P ~ Y  

F F 

E 8 
-i. t 

Suppose p l  = p2 = 4and q1 = A,q2 = 6.Then a simple 
computation shows that P,,(E) = a = P,,(E), but 
P,%(F) # 41. 

4. COMBINING SEVERAL BODIES OF EVIDENCE 
Suppose we undergo a complex of experiences that 

result in our simultaneously adopting new degrees of be- 
lief P *  on two partitions % = {Ei) and 8 = { F j ) ,  say 

P*(Ei) = pi and P*(Fj) = qi. (4.1) 
How should we revise our subjective probabilities so as 
to incorporate these new beliefs? In general, the theory 
put forth by de Finetti has no neat mathematical answer 
lo this question-you just have to think about things and 
quantify your opinion as best you can. In this section we 
discuss two reasonable routes through this quantification 
procedure. The routes are reasonable in the same sense 
that exchangeability is a reasonable thing to consider 
when attempting to quantify probabilities on repeated 
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events-the circumstances that make them subjectively 
acceptable occur frequently. We first discuss whether 
measures satisfying (4.1) exist and then if so, how to 
uniquely select one. 

4.1 Coherence of P* 
If we are to adopt the degrees of belief P *  in (4. I), they 

must at least be coherent; that is, P *  must be extendable 
to a probability measure (which we also denote by P*). 
Theorem 4.1 provides a simple necessary and sufficient 
condition for the existence of such extensions. 

Theorem 4.1. Let R be a countable set, 5% = {E,) and 
9 = {Fj) two partitions of R, and P ,  Q two probability 
measures on 5% and 9 respectively. There exists a prob- 
ability measure P *  on R such that (4.1) holds if and only 
if whenever disjoint sets A and B are given, with A a 
union of elements of %, B a union of elements of 3, 

Proof. Consider the set F = U {Ei x Fj: EiFj # +). 
This is a closed set in the discrete space 5% x %. Theorem 
11 of Strass'en (1965) gives a necessary and sufficient 
condition for the existence of a probability measure P *  
on F with margins P and Q. Strassen's condition is easily 
seen to be equivalent to (4.2), and P *  may be regarded 
as the required measure on the partition {EiFj); within a 
set of this partition P *  may be defined arbitrarily. 

Remark. Condition (4.2) is necessary but not sufficient 
for Theorem 4.1 to hold if is uncountable. See Diaconis 
and Zabell (1978) and Shortt (1982) for counterexamples 
and discussion. 

4.2 Extending P* 
If (4.1) is coherent, it remains to 
1. choose a probability P *  on the partition {EiFj) that 

agrees with (4.1); 
2. extend P *  to all of R. 
If judged valid, the easiest way of accomplishing step 

1 is to use independence: P*(EiFj) = P*(Ei)P*(Fj) = 
pi%; step 2 might then be achieved by Jeffrey updating 
on {EiFj). 

Richard Jeffrey (1957, Ch. 4) has advdcated another 
route from (4.1) to a final probability assignment: suc- 
cessive Jeffrey updating on % and 9.This raises two 
issues: 

1. When does successive updating satisfy (4. I)? 
2. When is successive updating reasonable? 
Question 1 arises because Pzs need not equal P%%. 

Indeed, Example 3.4 provides a situation where (4.1) is 
coherent (because Pgs satisfies (4.1)), but P%%# Pgg 
and Psi does not satisfy (4.1). Since matters are simpli- 
fied when Pg3 = PSg, we note that the results of Section 
3 imply that the following three conditions are equivalent: 
Pg%(A)= Psg(A) for all sets A. (4.3a) 

p o 3 ( ~ i )= pso(Ei) and Ps%(F,) = P o s ( 4 )  

for all i and j .  (4.3b) 
Ps(Ei) = P(Ei) and Po(&) = P(F,) 

for all i and j. (4 .3~)  
Even when the order does not matter, we still have the 

responsibility of justifying the resort to successive up- 
dating, that is, question 2. One approach to this is via 
checking the Jeffrey condition at each stage of updating. 
This is a somewhat unorthodox mental exercise, given 
that we currently believe (4. I), a condition involving both 
partitions. If we update first on %, then we must check 
P(A I Ei) = P*(A I E,), which amounts to thinking as if 
we don't know about 8 and are only thinking about %. 
At the second stage, one then checks Pg(A I Fj) = 
P%*(AI Fj), comparing one's opinion not knowing % to 
one's opinion knowing %. Examples such as Example 3.4 
show that this can be tricky. It is a possible route, how- 
ever, one more general than the route using independence 
suggested before. 

Remark 1. There is no reason to require Pgs = Pso 
for successive updating to be useful and valid. If each of 
the ( J )  conditions is judged valid in forming Po%and if 
PZssatisfies (4. I), then Po%is a consistent quantification 
of current belief. 

Remark 2. Condition (4.3) implies that PZsand P%% 
cannot both incorporate (4.1) and both be judged ac-
ceptable updates (in the sense that the ( J )  conditions have 
been checked) without Pgs = Po%. Thus noncommu- 
tativity is not a real problem for successive Jeffrey 
updating. 

Remark 3. The approach outlined in this section is an 
approach to the combination of evidence within the Baye- 
sian framework. See Shafer (1976) for a related, nonad- 
ditive approach. 

5. MECHANICAL UPDATING 
The approach we have taken thus far to justifying Jef- 

frey's rule is subjective-through checking condition (J). 
Several authors-Griffeath and Snell (1974), May and 
Harper (1976), Williams (1980), and van Fraassen (1980)- 
have pursued a different justification. Given a prior P ,  
partition {E,),  and a new measure P* on {Ei), find the 
"closest" measure to P that agrees with P *  on the par- 
tition and take this as defining P *  on the whole space. 
Since this way of proceeding does not attempt to quantify 
one's new degrees of belief via introspection, we call this 
approach mechanical updating. 

5.1 Minimum Distance Properties 
If "close" is defined in any of several common ways, 

the closest measure is that given by Jeffrey's rule. We 
illustrate this with three common notions of closeness 
between measures P and Q on the countable set R: (1) 
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The variation distance 

Two measures are close in variation distance if they are 
uniformly close on all subsets. (2) The Hellinger distance 

(3) The Kullback-Leibler number of Q with respect to P 

The variation and Hellinger distances are actual met- 
r i c ~on the space of probability distributions, the Kull- 
back-Leibler number is not, being asymmetric in its ar- 
guments. Kailath (1967) and Csiszar (1977) are good 
surveys, with bibliographies, of the properties of (5.1), 
(5.2), and (5.3). 

Theorem 5.1. Let R be a countable set, P a probability 
on R ,  and {Ei) a partition of R .  Suppose P*(Ei) 2 0 are 
given numbers such that P*(Ei) = 1. Let Q be a prob- 
ability on 0 such that Q(Ei) = = P*(Ei). Then 

In (5.5) and (5.6) equality holds if and only if Q(A) = 
C P(A I Ei) P*(Ei). 

Remarks. (a) Although the probability measure given 
by Jeffrey's rule minimizes the variation distance, it does 
not do so uniquely; see May (1976). (b) In Theorem 5.1, 
the minimum distance between P and Q is the distance 
between P and Q viewed as measures on the partition 
{Ei). (c) A result like Theorem 5.1 holds for several other 
notions of distance; see Section 6, where a generalization 
of Theorem 5.1 is given (Theorem 6.1): 

5.2 1 Projections and the IPFP 
Mechanical updating allows the possibility of updating 

on collections of sets more general than partitions. Sup- 
pose we want to adopt new degrees of belief P*(Ei) = 
pi, 1 r i 5 n, where '& = {El ,  E2, . . . , En) is not 
necessarily a partition of R. This situation is closely re- 
lated to Jeffrey's proposal of updating simultaneously on 
several partitions, mentioned in Section 4, inasmuch as 
updating simultaneously on partitions 8,,g 2 ,  . . . , Cek 
is the same as updating on % = u!= g i .  Conversely, 
updating on 8 = {El, . . . ,En) can be viewed as updating 
simultaneously on the partitions 8 = {El, Elc), 8 2  = 
{E2, E2'), . . . , 8,, = {En, Enc). In general, the set C 
= {Q: Q(Ei) = pi for all i) is a convex set of probability 
measures on 0 that can be empty, contain a single ele- 
ment, or contain many elements. In the first case P *  is 
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incoherent, in the second P* is uniquely determined. 
When the third case holds, we can use the Kullback- 
Leibler number as a notion of "distance" to pick a unique 
member of C closest to P .  

Theorem 5.2. Let S(P,  =) = {Q: I(Q, P )  < 00). If S(P,  
=) n C # I$, then there exists a unique element Qj  E C 
such that Z(Qj, P) = inf{Z(Q, P):Q E C). 

Proof. This is an immediate consequence of Csiszar 
(1975, Theorem 2.1), C being convex and closed with 
respect to the variation distance. 

In Csiszar's terminology, Q j  is the I projection of P 
onto C. (The term is meant to suggest the projection of 
a vector in Rnonto a subspace.) The Iprojection is closely 
related to a technique widely used in the statistical anal- 
ysis of contingency tables. 

A standard method of adjusting an r x c contingency 
table so that it has the desired marginal totals is the it- 
erated proportional fitting procedure (IPFP). In this, one 
first adjusts the table to have specified row sums, say 
(by dividing the numbers of a given row by the appropri- 
ate factor), next adjusts the new table to have the correct 
column sums, and then continues iteratively. It follows. 
from Csiszar (1975, Theorem 3.2) that this procedure con- 
verges to the I projection of the initial table onto the set 
of tables with the specified row and column sums (pro- 
vided, of course, this set is nonempty). That is, the IPFP 
finds the "closest" table to the original table with the 
prescribed margins. This is essentially the same as finding 
the closest measure to an initial probability with pre- 
scribed values on two partitions. 

The IPFP can be used to compute Q j  of Theorem 5.2 
by treating the problem as an n-dimensional contingency 
table with given margins P*(Ei), 1 - P*(EI), . . . . 

5.3 Comparing Different Metrlcs 
Theorem 5.1 suggests that Jeffrey's rule is an uncon- 

troversial form of mechanical updating in the sense that 
it agrees with virtually every minimum-distance rule. As 
noted earlier, in the case of two or more partitions, the 
I projection or maximum-entropy solution can be viewed 
as a limiting form of successive Jeffrey updating. This is 
perhaps of sofie interest inasmuch as mechanical updating 
via the other minimum-distance methods need not, in 
general, yield the same answer as the Z projection. 

Example 5.1. (Iprojection # minimum variation dis- 
tance.) Consider passing from an initial table 

a new table with the specified margins, which is otherwise 
as "close" to the original table as possible, according to 
some notion of closeness. 
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1. The independent table P' given by p l  = 6 ,  p3 = p3 
= 3, p4 = % minimizes Z(P, Po), since Po is independent 
and Z projections preserve the association factor of a 2 
x 2 table (see, e.g., Mosteller 1968, p. 3). The variation 
distance for this table is 

1I I P ' - P O I I = - E  l p i - a 1
2 ,,I 

= $ I ; - $ ( +  l Z - l I4 2 9 49 + l l 4 - l I  

- -7 - 3 6 .  

2. To find the table P v  with minimum variation dis- 
tance from Po, subject to the margin constraints, note 
that given p , ,  one has p2 = p3 = 4 - p l  and p4 = p1+ Q. Hence 

I I P - P O I I = + C . ( p i - a 1  

= + { ( a  - P I  I + 2 ( h- PI I + 1 -h - P I  1 ) 
which is minimized by p l  = A, the median of { -&, A, 
A ,  a). Hence P V  = (A, 4, 4, A) and 11 P v  - Po 11 = Q. 

There has been considerable interest recently in max- 
imum entropy methods, especially in the philosophical 
literature (Rosenkrantz 1977; Williams 1980; van Fraas- 
sen 1980). Example 5.1 suggests that any claims to the 
effect that maximum-entropy revision is the only correct 
route to probability revision should be viewed with con- 
siderable caution because of its strong dependence on the 
measure of closeness being used. 

6. ABSTRACT PROBABILITY KINEMATICS 
In this section we briefly discuss the generalization of 

Jeffrey's rule of conditioning from the countable setting 
to general spaces. 

Consider a probability space ( 0 ,  d ,  P), thought of as 
describing our current subjective beliefs about the a al-
gebra of events d .  Let P *  be a new probability measure 
on d and doC d a sub-a-algebra of d. Let C be an 
do-measurable set such that P(C) = 0 and P < P* on 
0 - C, where P, P* are the restrictions of P ,  P* to do. 
The appropriate version of Jeffrey's condition (J) is 

do is sufficient for {P, P*). (J ') 
When condition ( J t )  holds, Jeffrey's rule of conditioning 
becomes: 

P*(A) = n-c P(A I P*(do) + c), (6.1) 

where P(A I 910) is the conditional probability of A given 
d o .  I f P *  < P ,  we can take C = 4. 

Much of the mathematical machinery for dealing with 
Jeffrey conditionalization in this generality has been de- 
veloped (for a different purpose) by Csiszar (1967). His 
Lemma 2.2 translates into a likelihood-ratio version of 

(cbm~are(2'2)): Let A be a measure 
that dominates P ,  P*. Let X, p, P* be the restrictions to 
do.Assume ); is a finite. Let p(x), p*(x) be the densities 

of P ,  P *  with respect to );, and p* the density of P *  with 
respect to A. If condition (J ' )  holds, then 

p * (x) = p * (x)lp(x) if p(x > 0 
= P*(x> if p(x) =O.  (6.2) 

Identity (6.2) is a version of the Fisher-Neyman factori- 
zation theorem (see Halmos and Savage 1949). 

Csiszar's results allow us to give a single theorem that 
includes Theorem 5.1, showing that the closest measure 
to P that agrees with P *  on dois the measure given by 
(6.1). Csisiar introduced the notion of f "divergence, 
where f is a convex function defined on the interval (0, 
w). If p1 and p2 are two measures on ( 0 ,  d ) ,  the f 
divergence of pl and p2 is 

where pi e A and pi = dkildA, i = 1, 2. Taking f(u) 
= u log u gives the Kullback-Leibler number, f(u) = 
(uV2- the Hellinger distance, f(u) = I u - 1 (12 the 
variation distance. Csiszar shows that several other no- 
tions of distance are also f divergences for an appropriate 
f .  

Theorem 6.1. Let C be the set of probability measures 
on (R, d )  that agree with P *  on d o ,  and let f be a convex 
function on (0, w). Then under condition (J'),  

zf(p*,  p )  = zf(p*,  p), = inf{Zf(Q, p ) :  Q E c). (6.3) 
I f f  is strictly convex, than P *  is the unique probability 
measure on d that minimizes the right side of (6.3). 

Proof. The first equality follows from the sufficiency 
of dofor {P, P*), the second from Csiszar's (1967, Sec. 
3) version of the minimum information discrimination 
theorem of Kullback and Leibler: Zf(Q, P )  2 zf(Q, P). 
Since zf (Q, P) = zf (P* ,P), (6.3) follows. If f is strictly 
convex, then I f ( . ,  P )  is also, and the theorem follows. 
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