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K ◦ ϕ

Initial set of beliefs New evidence ϕ

Change operator: ◦ : B × L → B
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Conservatism: “an ordinary rational person continues to believe
something that he or she starts out believing in the absence of a
special reason to doubt it”

G. Harman. Rationality, in An Invitation to Cognitive Science. The MIT Press,
1995, pgs. 175 - 212.
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Belief Change

Suppose that K is the current beliefs.

If you give priority to the new information ϕ:

1. Expansion: K + ϕ; ϕ is added to K giving a new belief set
K ′.

2. Contraction: K .− ϕ; ϕ is removed from K giving a new
belief set K ′

3. Revision: K ∗ ϕ; ϕ is added and other formulas are removed,
so that the resulting new belief set K ′ is consistent.
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Expansion Postulates

(E1) K + α is deductively closed

(E2) α ∈ K + α

(E3) K ⊆ K + α

(E4) If α ∈ K , then K + α = K

(E5) If K ⊆ K ′, then K + α ⊆ K ′ + α

(Minimality) For all belief sets K and all sentences α, K + α
is the smallest belief set that satisfies (E1), (E2), and (E3).
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Expansion

Theorem Let + be a function on belief sets and formulas. Then,
+ satisfies minimality of and only if K + α = Cn(K ∪ {α}).
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Contraction Postulates

(C1) K .− α is deductively closed

(C2) K .− α ⊆ K

(C3) If α 6∈ K or ` α then K .− α = K

(C4) If 6` α, then α 6∈ K .− α

(C5) If ` α↔ β, then K .− α = K .− β

(C6) K ⊆ Cn((K .− α) ∪ {α})
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Definition. An operator − is a withdrawal if and only if it
satisfies (C1-C5).

The following is a withdrawal:

K − α =

{
K if α 6∈ K

Cn(∅) if α ∈ K

Minimal Information Loss (Recovery): K ⊆ Cn((K .− α) ∪ {α})
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Levi Identity

K ∗ ϕ = (K .− ¬ϕ) + ϕ
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AGM Postulates

AGM 1: K ∗ ϕ is deductively closed

AGM 2: ϕ ∈ K ∗ ϕ

AGM 3: K ∗ ϕ ⊆ Cn(K ∪ {ϕ})

AGM 4: If ¬ϕ 6∈ K then K ∗ ϕ = Cn(K ∪ {ϕ})

AGM 5: K ∗ ϕ is inconsistent only if ϕ is inconsistent

AGM 6: If ϕ and ψ are logically equivalent then K ∗ ϕ = K ∗ ψ

AGM 7: K ∗ (ϕ ∧ ψ) ⊆ Cn(K ∗ ϕ ∪ {ψ})

AGM 8: if ¬ψ 6∈ K ∗ ϕ then Cn(K ∗ ϕ ∪ {ψ}) ⊆ K ∗ (ϕ ∧ ψ)
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Recovery?

Theorem. Let K be any theory. Then for each withdrawal
operations − on K , there is a unique contraction operation .− that
is revision equivalent to −, and this .− is the greatest element of
[−] (the equivalence class of withdrawal operations revision
equivalent to −).

D. Makinson. On the status of Recovery. Journal of Philosophical Logic, 16,
pp. 383 - 394, 1987.
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>

p ∨ q p ∨ ¬q ¬p ∨ q ¬p ∨ ¬q

q p p ↔ q p ↔ ¬q ¬q ¬p

p ∧ q ¬p ∧ q p ∧ ¬q ¬p ∧ ¬q

⊥
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Let K be a belief set and ϕ a formula.

K⊥ϕ is the remainder set of K .

A ∈ K⊥ϕ iff

1. A ⊆ K

2. ϕ 6∈ Cn(A)

3. There is no B such that A ⊂ B ⊆ K and ϕ 6∈ Cn(B).
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I K⊥α = {K} iff ¬α 6∈ Cn(K )

I K⊥α = ∅ iff α ∈ Cn(∅)
I If K ′ ⊆ K and α 6∈ Cn(K ′) then there is some T such that

K ′ ⊆ T ∈ K⊥α.
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A selection function γ for K is a function on K⊥α such that:

I If K⊥α 6= ∅, then γ(K⊥α) ⊆ K⊥α and γ(K⊥α) 6= ∅
I If K⊥α = ∅, then γ(K⊥α) = {K}
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Let K be a set of formulas. A function .− is a partial meet
contraction for K if there is a selection function γ for K such that
for all formula α:

K .− α =
⋂
γ(K⊥α)

Then K ∗ α = Cn(
⋂
γ(K⊥¬α) ∪ {α})

I γ selects exactly one element of K⊥α (maxichoice
contraction)

I γ selects the entire set K⊥α (full meet contraction)

Eric Pacuit 16



Let K be a set of formulas. A function .− is a partial meet
contraction for K if there is a selection function γ for K such that
for all formula α:

K .− α =
⋂
γ(K⊥α)

Then K ∗ α = Cn(
⋂
γ(K⊥¬α) ∪ {α})

I γ selects exactly one element of K⊥α (maxichoice
contraction)

I γ selects the entire set K⊥α (full meet contraction)

Eric Pacuit 16



Let K be a set of formulas. A function .− is a partial meet
contraction for K if there is a selection function γ for K such that
for all formula α:

K .− α =
⋂
γ(K⊥α)

Then K ∗ α = Cn(
⋂
γ(K⊥¬α) ∪ {α})

I γ selects exactly one element of K⊥α (maxichoice
contraction)

I γ selects the entire set K⊥α (full meet contraction)

Eric Pacuit 16



Theorem (AGM 1985). Let K be a belief set and let ∗ be a
function on L. Then

I The function ∗ is a partial meet revision for K if and only if it
satisfies the postulates AGM1 - AGM6

I The function ∗ is a transitively relational partial meet revision
for K if and only if it satisfies AGM1 - AGM8.
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There is a transitive relation � on K⊥α such that

γ(K⊥α) = {K ′ ∈ K⊥αK ′′ � K ′ for all K ′′ ∈ K⊥α}

K .− α =

{⋂
{K ′ ∈ K⊥α | K ′ is �-maximal} if α 6∈ Cn(∅)

K otherwise
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Epistemic Entrenchment

Even if all sentences in a knowledge set are accepted or considered
as facts (so that they are assigned maximal probability), this does
not mean that all sentences are are of equal value for planning or
problem-solving purposes. Certain pieces of our knowledge and
beliefs about the world are more important than others when
planning future actions, conducting scientific investigations, or
reasoning in general. We will say that some sentences in a
knowledge system have a higher degree of epistemic entrenchment
than others. This degree of entrenchment will, intuitively, have a
bearing on what is abandoned from a knowledge set, and what is
retained, when a contraction or a revision is carried out.

P Gärdenfors and D. Makinson. Revisions of Knowledge Systems Using Epistemic
Entrenchment. Proceedings of the Second Conference on Theoretical Aspects
of Reasoning about Knowledge, 1988, 83-95.
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Epistemic Entrenchment

≤K⊆ L× L

Note that the relation ≤ is only defined in relation to a given K —
different knowledge sets may be associated with different orderings
of epistemic entrenchment.

I ϕ ≤ ψ: ϕ is at most as entrenched as ψ

I ϕ < ψ: ϕ is less entrenched than ψ
((ϕ ≤ ψ) and not(ψ ≤ ϕ))

I ϕ ≡ ψ: ϕ and ψ are equally entrenched
((ϕ ≤ ψ) and (ψ ≤ ϕ))

Eric Pacuit 21



Epistemic Entrenchment

≤K⊆ L× L

Note that the relation ≤ is only defined in relation to a given K —
different knowledge sets may be associated with different orderings
of epistemic entrenchment.

I ϕ ≤ ψ: ϕ is at most as entrenched as ψ

I ϕ < ψ: ϕ is less entrenched than ψ
((ϕ ≤ ψ) and not(ψ ≤ ϕ))

I ϕ ≡ ψ: ϕ and ψ are equally entrenched
((ϕ ≤ ψ) and (ψ ≤ ϕ))

Eric Pacuit 21



Epistemic Entrenchment

Transitivity: If ϕ ≤ ψ and ψ ≤ χ, then ϕ ≤ χ

Dominance: If ϕ ` ψ, then ϕ ≤ ψ

Conjunctiveness: Either ϕ ≤ (ϕ ∧ ψ) or ψ ≤ (ϕ ∧ ψ).

Minimality: If the belief set K is consistent, then ϕ 6∈ K if and
only if ϕ ≤ ψ for all ψ.

Maximality: If ψ ≤ ϕ for all ψ, then ϕ ∈ Cn(∅).
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K .− α =

{
K ∩ {β | α < α ∨ β} if α 6∈ Cn(∅)
K otherwise

ϕ ≤ ψ if and only if ϕ 6∈ K .− (ϕ ∧ ψ) or ` ϕ ∧ q

Eric Pacuit 23



Epistemic Entrenchment

q ∈ K .− p if and only if q ∈ K and either p < (p ∨ q) or p ∈ Cn(∅)

q ∈ K .− p if and only if q ∈ K and either q < p ∨ q or ` p.

ϕ < ψ iff ψ ∈ K .− ϕ ∧ ψ

Eric Pacuit 24



Severe Withdrawal

K .− α =

{
K ∩ {β | α < β} if α 6∈ Cn(∅)
K otherwise

Preference. Objects held in higher regard should be afforded a
more favorable treatment.

Theorem. Severe withdrawal satisfies every postulate except
recovery.

H. Rott and M. Pagnucco. Sever withdrawal (and recover). Journal of Philsoph-
ical Logic, 28, pp. 501 - 547, 1999.
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Levi Contraction
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Informational Value

V : K→ R

For theories, K1,K2, if K1 ⊆ K2, then V (K1) ≤ V (K2)

K .− α =

{⋂
δ(S(K , α)) if α ∈ Cn(∅)

K otherwise

δ(S(K , α)) = {K ′ ∈ S(K , α) | V (K ′′) ≤
V (K ′) for all K ′′ ∈ S(K , α)}

Eric Pacuit 28



Relevance

R. Parikh. Relevance sensitive belief structures. Annals of Mathematics and
Artificial Intelligence, 28, pp. 259 - 285, 2000.

G. Kourousias and D. Makinson. Parallel Interpolation, Splitting, and Relevance
in Belief Change. Journal of Symbolic Logic, 72(3), pp. 994-1002, 2007 .
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Hans Rott. Two Dogmas of Belief Revision. The Journal of Philosophy, 97:9,
pp. 503-522 (2000).
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Two Dogmas of Belief Revision

1. When accepting a new piece of information, an agent should
aim at a minimal change of his old beliefs.

2. If there are different ways to effect a belief change, the agent
should give up those beliefs that are least entrenched.

Eric Pacuit 31



Observation 1

No two distinct belief-contravening candidate revisions of a
consistent and logically closed belief set by a sentence can be
set-theoretically compared in terms of the sets of beliefs on which
they differ with the original belief set.

Eric Pacuit 32



K

K1 K2

Eric Pacuit 33



K

K1 K2

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

ψ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

ψ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

ψ

¬ϕ ∨ ψ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

ψ

¬ϕ ∨ ψ

ϕ ∧ ψ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

ψ

¬ϕ ∨ ψ

ϕ ∧ ψ

Eric Pacuit 33



K

K1 K2

¬ϕ

ϕ

ψ

¬ϕ ∨ ψ

ϕ ∧ ψ

Eric Pacuit 33



K

K1 K2

¬ϕ ∨ ψ

ϕ ∧ ψ

Eric Pacuit 33



Observation 2

Suppose we want to revise a belief set by a sentence ϕ and find two
elements of the belief set that non-redundantly entail the negation
of ϕ. Then it may well be rational, according to the standard belief
revision constructions, to restore consistency by removing the more
entrenched and retain the less entrenched belief. In fact, such a
situation can always be identified in an anamnestic revision by a
consistent and moderately surprising sentence.
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>

p ∨ q p ∨ ¬q ¬p ∨ q q → ¬p

q p p ↔ q ¬p

p ∧ q ¬p ∧ q p ∧ ¬q ¬p ∧ ¬q

⊥

q < q → ¬p
K ∗ p =
Cn({ϕ ∈ K | ¬p < ϕ} ∪ {p})
= Cn(p ∧ q)
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Sphere models
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Belief Revision: The Semantic View

A. Grove. Two modelings for theory change. Journal of Philosophical Logic, 17,
pgs. 157 - 170, 1988.

EP. Dynamic Epistemic Logic II: Logics of information change. Philosophy Com-
pass, Vol. 8, Iss. 9, pgs. 815 - 833, 2013.
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“actual world”
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. . .
w

I The states consistent with what the agent knows with a
distinguished state (the “actual world”)

I Each state is associated with a propositional valuation for the
underlying propositional language
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I The agent’s beliefs (soft information—-the states consistent
with what the agent believes)

The agent’s “contingency plan”: when the stronger beliefs
fail, go with the weaker ones.
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Sphere Models

Let W be a set of states, A set F ⊆ ℘(W ) is called a system of
spheres provided:

I For each S ,S ′ ∈ F , either S ⊆ S ′ or S ′ ⊆ S

I For any P ⊆W there is a smallest S ∈ F (according to the
subset relation) such that P ∩ S 6= ∅

I The spheres are non-empty
⋂
F 6= ∅ and cover the entire

information cell
⋃
F = W
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Let F be a system of spheres on W : for w , v ∈W , let

w �F v iff for all S ∈ F , if v ∈ S then w ∈ S

Then, �F is reflexive, transitive, and well-founded.

w �F v means that no matter what the agent learns in the future,
as long as world v is still consistent with his beliefs and w is still
epistemically possible, then w is also consistent with his beliefs.
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Bayesian Models
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Rational Beliefs

Beliefs can represent the world more or less accurately....the more
accurate the better.

But we can also judge some beliefs as being more rational than
others.

Accuracy and rationality are linked, they are not the same: a fool
may hold a belief irrationally — as a result of a lucky guess or
wishful thinking — yet it might happen to be correct. Conversely,
a detective might hold a belief on the basis of a careful and
exhaustive examination of all the evidence and yet the evidence
may be misleading, and the belief may turn out to be wrong.
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Conceptions of Belief

Binary: “all-out” belief. For any statement p, the agent either
does or does not believe p. It is natural to take an unqualified
assertion as a statement of belief of the speaker.

Graded: beliefs come in degrees. We are more confident in some
of our beliefs than in others.

Eric Schwitzgebel. Belief. In The Stanford Encyclopedia of Philosophy.

Franz Huber. Formal Theories of Belief. In The Stanford Encyclopedia of Phi-
losophy.
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Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

I rational graded beliefs should obey the laws of probability

I rational all-out beliefs should be consistent/deductively closed

I how should we justify these constraints?

D. Christensen. Putting Logic in its Place. Oxford University Press.
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Probability

Kolmogorov Axioms:

1. For each E , 0 ≤ p(E ) ≤ 1

2. p(W ) = 1, p(∅) = 0

3. If E1, . . . ,En, . . . are pairwise disjoint (Ei ∩ Ej = ∅ for i 6= j),
then p(

⋃
i Ei ) =

∑
i p(Ei )

I p(E ) = 1− p(E ) (E is the complement of E )

I If E ⊆ F then p(E ) ≤ p(F )

I p(E ∪ F ) = p(E ) + p(F ) + p(E ∩ F )
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Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) =
p(E ∩ F )

p(F )
.

Bayes Theorem: p(E |F ) = p(F |E )p(E)
p(F )
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Bayes theorem is important because it expresses the quantity
p(E |F ) (the probability of a hypothesis E given the evidence F ) —
which is something people often find hard to assess — in terms of
quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at
the next gambling table announce “Twelve”. We want to know
wether he was rolling a pair of dice or a roulette wheel. That is,
compare p(Dice | Twelve) with p(Roulette | Twelve). Based on
our background knowledge of gambling we have
p(Twelve | Dice) = 1/36 and p(Twelve |Roulette) = 1/38. Based
on our observations about the casino, we can judge the prior
probabilities p(Dice) and p(Roulette). But this is now enough to
calculate the required probabilities.
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Three Prisoner’s Problem

Three prisoners A,B and C have been tried for murder and their
verdicts will told to them tomorrow morning. They know only that
one of them will be declared guilty and will be executed while the
others will be set free. The identity of the condemned prisoner is
revealed to the very reliable prison guard, but not to the prisoners
themselves. Prisoner A asks the guard “Please give this letter to
one of my friends — to the one who is to be released. We both
know that at least one of them will be released”.
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Three Prisoner’s Problem

An hour later, A asks the guard “Can you tell me which of my
friends you gave the letter to? It should give me no clue regarding
my own status because, regardless of my fate, each of my friends
had an equal chance of receiving my letter.” The guard told him
that B received his letter.

Prisoner A then concluded that the probability that he will be
released is 1/2 (since the only people without a verdict are A and
C ).
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Three Prisoner’s Problem

But, A thinks to himself:

Before I talked to the guard my chance of being executed
was 1 in 3. Now that he told me B has been released,
only C and I remain, so my chances of being executed
have gone from 33.33% to 50%. What happened? I
made certain not to ask for any information relevant to
my own fate...

Explain what is wrong with A’s reasoning.
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A’s reasoning

Consider the following events:

GA: “Prisoner A will be declared guilty” (we have p(GA) = 1/3)

IB : “Prisoner B will be declared innocent” (we have p(IB) = 2/3)

We have p(IB | GA) = 1: “If A is declared guilty then B will be
declared innocent.”

Bayes Theorem:

p(GA | IB) = p(IB | GA)
p(GA)

p(IB)
= 1 · 1/3

2/3
= 1/2
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A’s reasoning, corrected

But, A did not receive the information that B will be declared
innocent, but rather that “the guard said that B will be declared
innocent.” So, A should have conditioned on the event:

I ′B : “The guard said that B will be declared innocent”

Given that p(I ′B | GA) is 1/2 (given that A is guilty, there is a
50-50 chance that the guard could have given the letter to B or
C ). This gives us the following correct calculation:

p(GA | I ′B) = p(I ′B | GA)
p(GA)

p(I ′B)
= 1/2 · 1/3

1/2
= 1/3
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When does conditioning on the “naive” space give the same results
as conditioning on the “sophisticated” space?
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Revising probabilities

I Generalized conditioning: Jeffrey conditioning, Adams
conditioning, MRE (Maximum relative entropy)

I Weakening probability measures: finite-additive measures,
plausibility measures, Dempster-Shafer belief functions, Sphon
measures

I Generalizations of probability: Lexicographic probability
measures, conditional probability measures, non-standard
probability measures
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CPS (Popper Space)

A conditional probability space (CPS) over (W ,A) is a tuple
(W ,A,B, µ) such that A is an algebra over W , B is a set of
subsets of W (not necessarily an algebra) that does not contain ∅
and µ : A×B→ [0, 1] satisfying the following conditions:

1. µ(U | U) = 1 if U ∈ B

2. µ(E1 ∪ E1 | U) = µ(E1 | U) + µ(E2 | U) if E1 ∩ E2 = ∅,
U ∈ B and E1,E2 ∈ A

3. µ(E | U) = µ(E | X ) ∗ µ(X | U) if E ⊆ X ⊆ U, U,X ∈ B
and E ∈ A.
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LPS (Lexicographic Probability Space)

A lexicographic probability space (LPS) (of length α) is a tuple
(W ,F , ~µ) where W is a set of possible worlds, F is an algebra
over W and ~µ is a sequence of (finitely/countable additive)
probability measures on (W ,F) indexed by ordinals < α.
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Fix an LPS ~µ = (µ0, . . . , µn)

I E is certain: µ0(E ) = 1

I E is absolutely certain: µi (E ) = 1 for all i = 1, . . . , n

I E is assumed: there exists k such that µi (E ) = 1 for all i ≤ k
and µi (E ) = 0 for all k < i < n.
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NPS (non-standard probability measures)

R∗ is a non-Archimedean field that includes the real numbers as a
subfield but also has infinitesimals.

For all b ∈ R∗ such that −r < b < r for some r ∈ R, there is a
unique closest real number a such that |a− b| is an infinitesimal.
Let st(b) denote the closest standard real to b.

A nonstandard probability space (NPS) is a tuple (W ,F , µ)
where W is a set of possible worlds, F is an algebra over W and µ
assigns to elements of F , nonnegative elements of R∗ such that
µ(W ) = 1, µ(E ∪ F ) = µ(E ) + µ(F ) if E and F are disjoint.
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J. Halpern. Lexicographic probability, conditional probability, and nonstandard
probability. Games and Economic Behavior, 68:1, pgs. 155 - 179, 2010.

Eric Pacuit 61



Indeterminate Probability

I Allow probability functions to take on sets of values instead of
a single value

I Work with sets of probabilities rather than a single probability
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Precisification Given a function σ : F → ℘([0, 1]), a probability
function p : F → [0, 1] of σ if and only if p(A) ∈ σ(A) for each
A ∈ F .

Indeterminate Probability A function σ : F → ℘([0, 1]) such
that whenever x ∈ σ(A) there is some precisifcation of σ, p for
which p(A) = x .
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Ambiguation If Π is a set of probability functions, the
ambiguation of Π is the indeterminate probability function that
assigns to each A

σ(A) = {x | p(A) = x for some p ∈ Π}

Observation. The map that takes and indeterminate probability
function to the class of its precisfications is clearly 1-1. However,
the ambiguation of a set of probability functions can have
precisfications not in the ambiguated set.
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Convexity A class of probability functions Π is convex if and only
if whenever p, q ∈ Π, every mixture of p and q is in Π as well. I.e.,
αp + (1− α)q ∈ Π for all α ∈ (0, 1).

Proposition. If P is convex with σ it ambiguation, then σ(A) is
an interval for each A.
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Upper and Lower Probabilities

If σ is an indeterminate probability function, define

I Lower probability: σ∗(A) = inf{x | x ∈ σ(A)}
I Upper probability: σ∗(A) = sup{x | x ∈ σ(A)}
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How do qualitative and quantitative belief relate to each other?

H. Leitgeb. Reducing belief simpliciter to degrees of belief. Annals of Pure and
Applied Logic, 16:4, pgs. 1338 - 1380, 2013.

In view of the fact that we have a reasonably clear picture of what
the logics of qualitative and quantitative belief are like, what
conclusions can we draw form this on how qualitative and
quantitative belief ought to relate to each other, assuming that
they satisfy their respective logics? How do they relate to each
other in the case of an agent who is a perfect reasoner?
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Bridge Principles

Probability 1: Bel(A) iff P(A) = 1

The Lockean Thesis: Bel(A) iff P(A) > r

Decision-theoretic accounts: Bel(A) iff∑
w∈W P({w}) · u(bel A,w) has such-and-such property

The Nihilistic proposal: “...no explication of belief is possible
within the confines of the probability model.”
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Topics

I Classic papers (Makinson, Diaconis & Zabel, KLM, . . . )

I Beliefs, credences and probability (Leitgeb’s stability theory of
belief, Pettigrew, Fitelson & Shear)

I Revising probabilities (List, Dietrich & Bradley, Halpern)

I Conditioning vs. learning (Osherson et al., Curpi et al.)

I Context shifts (Halpern & Grünwald, Romeijn, Pettigrew)

I Lottery, Preface and Review paradox (Leitgeb, Easerwen &
Fitelson)

I Iterated belief change, long-term dynamics, convergence
results (Huttegger, EP)

I Bayesian reasoning, reasoning to the best explanation,
case-base reasoning (Gilboa et al., Douven and Shubach)
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Preface Paradox

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.
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Preface Paradox

Suppose that in the course of his book an author makes a great
many assertions: s1, s2, . . . , sn.

Given each one of these, he believes that it is true (for each i ,
BA(si ))

If he has already written other books, and received corrections
from readers and reviewers, he may also believe that not everything
he has written in his latest book is true.

BA(¬(s1 ∧ s2 ∧ · · · ∧ sn))

But {s1, . . . , sn,¬(s1 ∧ · · · ∧ sn)} is logically inconsistent.
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Preface Paradox

A philosopher who asserts “all of my present philosophical
positions are correct” would be regarded as rash and over-confident

A philosopher who asserts “at least some of my present
philosophical beliefs will turn out to be incorrect” is simply being
sensible and honest.
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Preface Paradox

1. each belief from the set {s1, . . . , sn, sn+1} is rational

2. the set {s1, . . . , sn, sn+1} of beliefs is rational.

1. does not necessarily imply 2.
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Preface Paradox: The Problem

“The author of the book is being rational even though
inconsistent. More than this: he is being rational even though he
believes each of a certain collection of statements, which he knows
are logically incompatible....this appears to present a living and
everyday example of a situation which philosophers have commonly
dismissed as absurd; that it is sometimes rational to hold
incompatible beliefs.”

D. Makinson. The Paradox of the Preface. Analysis, 25, 205 - 207, 1965.
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H. Leitgeb. The Review Paradox: On the Diachronic Costs of Not Closing
Rational Belief Under Conjunction. Nous, 2013.
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Belt is the set of propositions believed at time t

Pt is the agent’s degree of belief function at time t

t ′ > t
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P1 If the degrees of belief that the agents assigns to two
propositions are identical then either the agent believes both of
them or neither of them.

For all X ,Y : if Pt(X ) = Pt(Y ), then Belt(X ) iff Belt(Y ).
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P2 If the agent already believes X , then updating on the piece
of evidence X does not change her system of (all-or-nothing)
beliefs at all.

For all X : if the evidence that the agent obtains between t and
t ′ > t is the proposition X , but it holds already that Belt(X ), then
for all Y :

Belt′(Y ) iff Belt(Y )
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P3 WHen the agent learns, this is captured probabilistically by
conditionalization.

For all X (with Pt(X ) > 0): if the evidence that the agent obtains
between t and t ′ > t is the proposition X , but it holds already that
Belt(X ), then for all Y :

Pt′(Y ) = Pt(Y | X )
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Assume Belt(A),Belt(B) but not Belt(A ∩ B)

I Suppose that the agent receive A as evidence.

I Pt′(B) = Pt(B | A) = Pt(A ∩ B | A) = Pt′(A ∩ B).

I By P1, the agent must have the same doxastic attitude
towards B and A ∩ B.

I By P2, the agent’s attitude towards B and A ∩ B must be the
same at t ′ as at t.

I But, Belt(B) and not Belt(A ∩ B)
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t t ′Receives evidence A

Belt(A),Belt(B)

¬Belt(A ∩ B)

0 < Pt(A) < 1

Pt′(B) = Pt(B | A)

Pt′(A ∩ B) = Pt(A ∩ B | A) = Pt(B | A)

Belt′(B) iff Belt′(A ∩ B)

Belt(A) iff Belt′(A)

Belt(B) iff Belt′(B)

Belt(A ∩ B) iff Belt′(A ∩ B)

Assumption

Belt(B) iff Belt′(B) iff Belt′(A ∩ B) iff Belt(A ∩ B)

Eric Pacuit 81



t t ′Receives evidence A
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t t ′Receives evidence A

Belt(A),Belt(B)

¬Belt(A ∩ B)

0 < Pt(A) < 1
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Lottery Paradox

H. Kyburg. Probability and the Logic of Rational Belief. Wesleyan University
Press, 1961.

I. Douven and T. Williamson. Generalizing the Lottery Paradox. British Journal
of the Philosophy of Science, 57, 755 - 779, 2006.

G. Wheeler. A Review of the Lottery Paradox. Probability and Inference: Essays
in honor of Henry E. Kyburg, Jr., College Publications, 2007.
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Lottery Paradox

Consider a fair lottery with 1,000,000 tickets and one prize.

The probability that a given ticket will win is 0.000001
(1/1, 000, 000) and the probability that it will not win is 0.999999.

“Surely if a sheer probability is ever sufficient to warrant the
acceptance of a hypothesis, this is a case”

For each lottery ticket ti (i = 1, . . . , 1000000), the agent believes
that ti will loose BA(¬‘ti will win’)
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Lottery Paradox

A rule of acceptance: If S and T are acceptable statements,
their conjunction is also acceptable.

So, the conjunction
∧1000000

i=1 ‘ti will not win’ should be accepted.
That is, the agent should rationally accept that no lottery ticket
will win.

But, this is a fair lottery, so at least one ticket is guaranteed to win!
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The Lottery Paradox

Kyburg: The following are inconsistent,

1. It is rational to accept a proposition that is very likely true,

2. It is not rational to accept a propositional that you are aware
is inconsistent

3. It is rational to accept a proposition P and it is rational to
accept another proposition P ′ then it is rational to accept
P ∧ P ′
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Subjective Probabilities

Should a rational agent’s graded beliefs satisfy the laws of
probability?

J. Joyce. Bayesianism. in Handbook of Rationality.

Ann: “the probability it will rain tomorrow is 0.9” means “Ann’s
degree of belief is fairly high (0.9) that it will rain tomorrow. Of
course whether it will actually rain, depends on objective events
taking place in the external worlds.”
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Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent’s subjective probabilities?

Suppose we are wondering about Ann’s degree of belief about
whether a coin will land heads (H) or tails (T ).

Why don’t we just ask her? reported vs. “actual” degrees of belief.

What we need: systematic procedures for linking the probability
calculus (graded beliefs) to claims about objectively observable
behavior, such as preferences revealed by choice behavior.
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Ramsey, de Finetti and Savage (2)

Suppose we are wondering about Ann’s degree of belief about
whether a coin will land heads (H) or tails (T ).

Offer Ann two bets:

L1 If the coin lands heads, you win a sports car;
otherwise you win nothing

L2 If the coin does not land heads, you win a sports car;
otherwise you win nothing.

If Ann chooses L1, she believes H is more probable than T
If Ann chooses L2, she believes T is more probable than H
If Ann is indifferent, she believes H and T are equally probable
(i.e., pA(H) = pA(T ) = 1/2)
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The Dutch Book Argument

But, why should a rational agent’s graded beliefs satisfy the
Kolmogorov axioms?

Anyone whose beliefs violate the laws of probability is practically
irrational.

F. P. Ramsey. Truth and Probability. 1931.

B. de Finetti. La prévision: Ses lois logiques, ses sources subjectives. 1937.

Alan Hájek. Dutch Book Arguments. Oxford Handbook of Rational and Social
Choice, 2008.

Eric Pacuit 89



The Dutch Book Argument

But, why should a rational agent’s graded beliefs satisfy the
Kolmogorov axioms?

Anyone whose beliefs violate the laws of probability is practically
irrational.

F. P. Ramsey. Truth and Probability. 1931.
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The EU-Thesis

Expected Money/Value/Utility: Given an agent’s beliefs and
desires, the expected utility of an action leading to a set of
outcomes Out is:

∑
o∈Out

[how likely the act will lead to o]×[how much the agent desires o]

1. principle of maximizing expected monetary value

2. principle of maximizing expected value

3. principle of maximizing expected utility
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Betting Behavior

The EU-thesis entails that a person satisfying 1-3 will reveal the
strengths of her beliefs in her betting behavior.

A wager: WX = [ a if X , b otherwise]: “you get a EUR if X is
true and b EUR otherwise.
(X ’s truth does not depend causally on W )

The EU-thesis entails that the agent’s level of confidence in X will
be revealed by the monetary value she puts on WX .
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Betting Behavior

fair price f for WX : the sum of money at which she is indifferent
between receiving a payment of f EUR or having WX go into
effect.

f = ExpVal(WX ) = C (X ) · a + (1− C (X )) · b implies C (X ) = f−b
a−b

If she is indifferent between 63, 81 EUR and
[100 EUR if it rains, 0 EUR otherwise], then she believes to degree
0.6381 that it will rain.
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Dutch Book

An agent will swap an (set of) wagers with the (sum of) their fair
prices.
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Dutch Book
Suppose that X and Y are logically incompatible (X ∩ Y = ∅)

Fair price: f = 0.25 for WX = [1 if X , 0 else]

Fair price: f = 0.25 for WY = [1 if Y , 0 else]

Fair price: f = 0.6 for WX∨Y = [1 if X ∨ Y , 0 else]

Consider W1 = {0.6,WX ,WY } and W2 = {0.5,WX∨Y }

X Y

indifferent between W1 and W2

will swap W2 for W1

But W2 is always better:

If X is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If Y is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If neither X nor Y is true
payoff(W1) = 0.6 > payoff(W2)=0.5
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I But W1 is always better:

If X is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If Y is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If neither X nor Y is true
payoff(W1) = 0.6 > payoff(W2)=0.5
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Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a
precise degree of belief for every proposition she considers. If these
beliefs violate the laws of probability, then she will make Dutch
Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3

2. sets a fair price for every wager she considers

3. maximizes expected utility

allow agents to have incomplete or imprecise preferences
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Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a
precise degree of belief for every proposition she considers. If these
beliefs violate the laws of probability, then she will make Dutch
Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3

2. sets a fair price for every wager she considers

3. maximizes expected utility

justify probabilistic coherence and EU simultaneously: Savage’s
Representation Theorem (discussed later in the semester)
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Thank you!
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