Logic and Probabilistic Models of Belief Change

Eric Pacuit

Department of Philosophy University of Maryland, College Park pacuit.org

February 12, 2016

$K \circ \varphi$

Initial set of beliefs

Bayesian Models

Conceptions of Belief

Binary: "all-out" belief. For any statement p, the agent either does or does not believe p. It is natural to take an unqualified assertion as a statement of belief of the speaker.

Conceptions of Belief

Binary: "all-out" belief. For any statement p, the agent either does or does not believe p. It is natural to take an unqualified assertion as a statement of belief of the speaker.

Graded: beliefs come in degrees. We are more confident in some of our beliefs than in others.

Conceptions of Belief

Binary: "all-out" belief. For any statement p, the agent either does or does not believe p. It is natural to take an unqualified assertion as a statement of belief of the speaker.

Graded: beliefs come in degrees. We are more confident in some of our beliefs than in others.

Eric Schwitzgebel. Belief. In The Stanford Encyclopedia of Philosophy.

Franz Huber. Formal Theories of Belief. In The Stanford Encyclopedia of Philosophy.

Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

- rational graded beliefs should obey the laws of probability

Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

- rational graded beliefs should obey the laws of probability
- rational all-out beliefs should be consistent/deductively closed

Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

- rational graded beliefs should obey the laws of probability
- rational all-out beliefs should be consistent/deductively closed
- how should we justify these constraints?
D. Christensen. Putting Logic in its Place. Oxford University Press.

Suppose that W is a set of states (the set of outcomes).

A σ-algebra is a set $\Sigma \subseteq \wp(W)$ such that

- $W \in \Sigma$
- If $A \in \Sigma$, then $\bar{A} \in \Sigma$
- If $\left\{A_{i}\right\}$ is a countable collection of sets from Σ, then $\bigcup_{i} A_{i} \in \Sigma$

A probability function is a function $p: \Sigma \rightarrow[0,1]$ satisfying:

- $p(W)=1$
- $p(A \cup B)=p(A)+p(B)$ whenever $A \cap B=\emptyset$
(W, Σ, p) is called a probability space.

Probability

Kolmogorov Axioms:

1. For each $E, 0 \leq p(E) \leq 1$
2. $p(W)=1, p(\emptyset)=0$
3. If $E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint $\left(E_{i} \cap E_{j}=\emptyset\right.$ for $\left.i \neq j\right)$, then $p\left(\bigcup_{i} E_{i}\right)=\sum_{i} p\left(E_{i}\right)$

Probability

Kolmogorov Axioms:

1. For each $E, 0 \leq p(E) \leq 1$
2. $p(W)=1, p(\emptyset)=0$
3. If $E_{1}, \ldots, E_{n}, \ldots$ are pairwise disjoint $\left(E_{i} \cap E_{j}=\emptyset\right.$ for $\left.i \neq j\right)$, then $p\left(\bigcup_{i} E_{i}\right)=\sum_{i} p\left(E_{i}\right)$

- $p(\bar{E})=1-p(E)(\bar{E}$ is the complement of $E)$
- If $E \subseteq F$ then $p(E) \leq p(F)$
- $p(E \cup F)=p(E)+p(F)+p(E \cap F)$

Suppose that (\mathcal{L}, \models) is a logic. A probability function is a map $p: \mathcal{L} \rightarrow[0,1]$ such that

1. For each $E, 0 \leq p(\varphi) \leq 1$
2. $p(\varphi)=1$ if $\models \varphi$
3. If $p(\varphi \vee \psi)=p(\varphi)+p(\psi)$ when $\models \neg(\varphi \wedge \psi)$.
I.J. Good. 46,656 Varieties of Bayesians. Good Thinking: The Foundations of Probability and Its Applications, University of Minnesota Press (1983).

Conditional Probability

The probability of E given F, dented $p(E \mid F)$, is defined to be

$$
p(E \mid F)=\frac{p(E \cap F)}{p(F)} .
$$

provided $P(F)>0$.

Bayes Theorem

Bayes Theorem. $p(E \mid F)=p(F \mid E) \frac{p(E)}{p(F)}$

Bayes theorem is important because it expresses the quantity $p(E \mid F)$ (the probability of a hypothesis E given the evidence F) -which is something people often find hard to assess-in terms of quantities that can be drawn directly from experiential knowledge.

Bayes theorem is important because it expresses the quantity $p(E \mid F)$ (the probability of a hypothesis E given the evidence F) -which is something people often find hard to assess-in terms of quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at the next gambling table announce "Twelve". We want to know wether he was rolling a pair of dice or a roulette wheel.

Bayes theorem is important because it expresses the quantity $p(E \mid F)$ (the probability of a hypothesis E given the evidence F) -which is something people often find hard to assess-in terms of quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at the next gambling table announce "Twelve". We want to know wether he was rolling a pair of dice or a roulette wheel. That is, compare p (Dice | Twelve) with p (Roulette | Twelve).

Bayes theorem is important because it expresses the quantity $p(E \mid F)$ (the probability of a hypothesis E given the evidence F) -which is something people often find hard to assess-in terms of quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at the next gambling table announce "Twelve". We want to know wether he was rolling a pair of dice or a roulette wheel. That is, compare p (Dice | Twelve) with p (Roulette | Twelve). Based on our background knowledge of gambling we have $p($ Twelve \mid Dice $)=1 / 36$ and $p($ Twelve \mid Roulette $)=1 / 38$.

Bayes theorem is important because it expresses the quantity $p(E \mid F)$ (the probability of a hypothesis E given the evidence F) -which is something people often find hard to assess-in terms of quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at the next gambling table announce "Twelve". We want to know wether he was rolling a pair of dice or a roulette wheel. That is, compare p (Dice | Twelve) with p (Roulette | Twelve). Based on our background knowledge of gambling we have $p($ Twelve \mid Dice $)=1 / 36$ and $p($ Twelve \mid Roulette $)=1 / 38$. Based on our observations about the casino, we can judge the prior probabilities p (Dice) and p (Roulette).

Bayes theorem is important because it expresses the quantity $p(E \mid F)$ (the probability of a hypothesis E given the evidence F) -which is something people often find hard to assess-in terms of quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at the next gambling table announce "Twelve". We want to know wether he was rolling a pair of dice or a roulette wheel. That is, compare p (Dice | Twelve) with p (Roulette | Twelve). Based on our background knowledge of gambling we have $p($ Twelve \mid Dice $)=1 / 36$ and $p($ Twelve \mid Roulette $)=1 / 38$. Based on our observations about the casino, we can judge the prior probabilities p (Dice) and p (Roulette). But this is now enough to calculate the required probabilities.

Extensions and variations

- Dempster-Shafer belief functions: Bel : $A \rightarrow[0,1]$ are super-additive, $\operatorname{Bel}(A)+\operatorname{Bel}(B) \leq \operatorname{Bel}(A \cup B)$ if $A \cap B=\emptyset$. The the number $\operatorname{Bel}(A)$ represents the strength with which A is supported by the agent's knowledge or belief base.
- Dempster-Shafer belief functions: Bel : $A \rightarrow[0,1]$ are super-additive, $\operatorname{Bel}(A)+\operatorname{Bel}(B) \leq \operatorname{Bel}(A \cup B)$ if $A \cap B=\emptyset$. The the number $\operatorname{Bel}(A)$ represents the strength with which A is supported by the agent's knowledge or belief base.
- Non-standard probability: $\mu: \Sigma \rightarrow \mathbb{R}^{*}$
- Dempster-Shafer belief functions: Bel : $A \rightarrow[0,1]$ are super-additive, $\operatorname{Bel}(A)+\operatorname{Bel}(B) \leq \operatorname{Bel}(A \cup B)$ if $A \cap B=\emptyset$. The the number $\operatorname{Bel}(A)$ represents the strength with which A is supported by the agent's knowledge or belief base.
- Non-standard probability: $\mu: \Sigma \rightarrow \mathbb{R}^{*}$
- Halpern Plausibility Functions: $\mu: \Sigma \rightarrow(D, \preceq)$.

Imprecise Probabilities

- 1. What is the probability that a fair coin will land hands?

2. What is the probability of a coin of unknown bias will land heads?

Imprecise Probabilities

- 1. What is the probability that a fair coin will land hands?

2. What is the probability of a coin of unknown bias will land heads?

- Ellsberg Paradox

Ellsberg Paradox

	30			60	
Lotteries	Blue		Yellow	Green	
L_{1}	$1 M$		0	0	
L_{2}	0		$1 M$	0	
L_{3}	$1 M$	0	$1 M$		
L_{4}	0	$1 M$	$1 M$		

Ellsberg Paradox

	30			60	
Lotteries	Blue		Yellow	Green	
L_{1}	$1 M$		0	0	
L_{2}	0		$1 M$	0	
L_{3}	$1 M$	0	$1 M$		
L_{4}	0		$1 M$	$1 M$	

$$
L_{1} \succeq L_{2} \quad \text { iff } \quad L_{3} \succeq L_{4}
$$

Indeterminate Probability

- Allow probability functions to take on sets of values instead of a single value
- Work with sets of probabilities rather than a single probability

Precisification Given a function $\sigma: \Sigma \rightarrow \wp([0,1])$, a probability function $p: \Sigma \rightarrow[0,1]$ of σ if and only if $p(A) \in \sigma(A)$ for each $A \in \Sigma$.

Indeterminate Probability A function $\sigma: \Sigma \rightarrow \wp([0,1])$ such that whenever $x \in \sigma(A)$ there is some precisifcation of σ, p for which $p(A)=x$.

Ambiguation If Π is a set of probability functions, the ambiguation of Π is the indeterminate probability function that assigns to each A

$$
\sigma(A)=\{x \mid p(A)=x \text { for some } p \in \Pi\}
$$

Ambiguation If Π is a set of probability functions, the ambiguation of Π is the indeterminate probability function that assigns to each A

$$
\sigma(A)=\{x \mid p(A)=x \text { for some } p \in \Pi\}
$$

Observation. The map that takes and indeterminate probability function to the class of its precisfications is clearly 1-1. However, the ambiguation of a set of probability functions can have precisfications not in the ambiguated set.

Convexity A class of probability functions Π is convex if and only if whenever $p, q \in \Pi$, every mixture of p and q is in Π as well. I.e., $\alpha p+(1-\alpha) q \in \Pi$ for all $\alpha \in(0,1)$.

Proposition. If P is convex with σ it ambiguation, then $\sigma(A)$ is an interval for each A.

Upper and Lower Probabilities

If σ is an indeterminate probability function, define

- Lower probability: $\sigma_{*}(A)=\inf \{x \mid x \in \sigma(A)\}$
- Upper probability: $\sigma^{*}(A)=\sup \{x \mid x \in \sigma(A)\}$

Signals/Knowledge/Questions/etc.

Epistemic Probability Models

$$
\mathcal{M}=\left\langle W,\left\{\Pi_{i}\right\}_{i \in \mathcal{A}}\right\rangle
$$

Π_{i} is agent i 's partition with $\Pi_{i}(w)$ the partition cell containing w.

$$
K_{i}(E)=\left\{w \mid \Pi_{i}(w) \subseteq E\right\}
$$

Epistemic Probability Models

$$
\mathcal{M}=\left\langle W,\left\{\Pi_{i}\right\}_{i \in \mathcal{A}},\left\{p_{i}\right\}_{i \in \mathcal{A}}\right\rangle
$$

for each $i, p_{i}: W \rightarrow[0,1]$ is a probability measure

$$
B_{i}^{r}(E)=\left\{w \left\lvert\, p_{i}\left(E \mid \Pi_{i}(w)\right)=\frac{p_{i}\left(E \cap \Pi_{i}(w)\right)}{p_{i}\left(\Pi_{i}(w)\right)} \geq r\right.\right\}
$$

2 Scientists Perform an Experiment

They agree the true state is one of seven different states.

2 Scientists Perform an Experiment

$$
\begin{array}{ccc}
\frac{2}{32} \stackrel{\bullet}{W_{1}} & \frac{4}{32} \stackrel{\bullet}{W_{2}} & \frac{8}{32} \stackrel{\bullet}{w_{3}}
\end{array} \quad \frac{4}{32} \stackrel{\bullet}{w_{4}}
$$

They agree on a common prior.

2 Scientists Perform an Experiment

They agree that Experiment 1 would produce the blue partition.

2 Scientists Perform an Experiment

They agree that Experiment 1 would produce the blue partition and Experiment 2 the red partition.

2 Scientists Perform an Experiment

They are interested in the truth of $E=\left\{w_{2}, w_{3}, w_{5}, w_{6}\right\}$.

2 Scientists Perform an Experiment

So, they agree that $P(E)=\frac{24}{32}$.

2 Scientists Perform an Experiment

Also, that if the true state is w_{1}, then Experiment 1 will yield

$$
P(E \mid I)=\frac{P(E \cap I)}{P(I)}=\frac{12}{14}
$$

2 Scientists Perform an Experiment

Suppose the true state is w_{7} and the agents preform the experiments.

2 Scientists Perform an Experiment

Suppose the true state is w_{7}, then $\operatorname{Pr}_{1}(E)=\frac{12}{14}$

2 Scientists Perform an Experiment

Then $\operatorname{Pr}_{1}(E)=\frac{12}{14}$ and $\operatorname{Pr}_{2}(E)=\frac{15}{21}$

2 Scientists Perform an Experiment

Suppose they exchange emails with the new subjective probabilities: $\operatorname{Pr}_{1}(E)=\frac{12}{14}$ and $\operatorname{Pr}_{2}(E)=\frac{15}{21}$

2 Scientists Perform an Experiment

Agent 2 learns that w_{4} is NOT the true state (same for Agent 1).

2 Scientists Perform an Experiment

Agent 2 learns that w_{4} is NOT the true state (same for Agent 1).

2 Scientists Perform an Experiment

Agent 1 learns that w_{5} is NOT the true state (same for Agent 1).

2 Scientists Perform an Experiment

The new probabilities are $\operatorname{Pr}_{1}\left(E \mid I^{\prime}\right)=\frac{7}{9}$ and $\operatorname{Pr}_{2}\left(E \mid I^{\prime}\right)=\frac{15}{17}$

2 Scientists Perform an Experiment

After exchanging this information $\left(\operatorname{Pr}_{1}\left(E \mid I^{\prime}\right)=\frac{7}{9}\right.$ and $\left.\operatorname{Pr}_{2}\left(E \mid I^{\prime}\right)=\frac{15}{17}\right)$, Agent 2 learns that w_{3} is NOT the true state.

2 Scientists Perform an Experiment

No more revisions are possible and the agents agree on the posterior probabilities.

1. Belief, credence and probability: Dutch book, Lottery Paradox, Preface Paradox, Review Paradox
2. Learning vs. supposing/Naive vs. sophisticated spaces
3. Justifying conditionalization

Dutch Book Arguments

Should a rational agent's graded beliefs satisfy the laws of probability?
J. Joyce. Bayesianism. in Handbook of Rationality.

Ann: "the probability it will rain tomorrow is 0.9 " means "Ann's degree of belief is fairly high (0.9) that it will rain tomorrow. Of course whether it will actually rain, depends on objective events taking place in the external worlds."

Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent's subjective probabilities?

Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent's subjective probabilities?

Suppose we are wondering about Ann's degree of belief about whether a coin will land heads (H) or tails (T).

Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent's subjective probabilities?

Suppose we are wondering about Ann's degree of belief about whether a coin will land heads (H) or tails (T).

Why don't we just ask her?

Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent's subjective probabilities?

Suppose we are wondering about Ann's degree of belief about whether a coin will land heads (H) or tails (T).

Why don't we just ask her? reported vs. "actual" degrees of belief.

Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent's subjective probabilities?

Suppose we are wondering about Ann's degree of belief about whether a coin will land heads (H) or tails (T).

Why don't we just ask her? reported vs. "actual" degrees of belief.

What we need: systematic procedures for linking the probability calculus (graded beliefs) to claims about objectively observable behavior, such as preferences revealed by choice behavior.

Ramsey, de Finetti and Savage (2)

Suppose we are wondering about Ann's degree of belief about whether a coin will land heads (H) or tails (T).

Offer Ann two bets:
L_{1} If the coin lands heads, you win a sports car; otherwise you win nothing
L_{2} If the coin does not land heads, you win a sports car; otherwise you win nothing.

Ramsey, de Finetti and Savage (2)

Suppose we are wondering about Ann's degree of belief about whether a coin will land heads (H) or tails (T).

Offer Ann two bets:
L_{1} If the coin lands heads, you win a sports car; otherwise you win nothing
L_{2} If the coin does not land heads, you win a sports car; otherwise you win nothing.

If Ann chooses L_{1}, she believes H is more probable than T
If Ann chooses L_{2}, she believes T is more probable than H
If Ann is indifferent, she believes H and T are equally probable
(i.e., $p_{A}(H)=p_{A}(T)=1 / 2$)

The Dutch Book Argument

But, why should a rational agent's graded beliefs satisfy the Kolmogorov axioms?

The Dutch Book Argument

But, why should a rational agent's graded beliefs satisfy the Kolmogorov axioms?

Anyone whose beliefs violate the laws of probability is practically irrational.
F. P. Ramsey. Truth and Probability. 1931.
B. de Finetti. La prévision: Ses lois logiques, ses sources subjectives. 1937.

Alan Hájek. Dutch Book Arguments. Oxford Handbook of Rational and Social Choice, 2008.

The EU-Thesis

Expected Money/Value/Utility: Given an agent's beliefs and desires, the expected utility of an action leading to a set of outcomes Out is:
$\sum_{o \in O u t}[$ how likely the act will lead to $o] \times$ [how much the agent desires o]

The EU-Thesis

Expected Money/Value/Utility: Given an agent's beliefs and desires, the expected utility of an action leading to a set of outcomes Out is:
$\sum_{o \in \text { Out }}[$ how likely the act will lead to $o] \times[$ how much the agent desires o]

1. principle of maximizing expected monetary value
2. principle of maximizing expected value
3. principle of maximizing expected utility

Betting Behavior

The $E U$-thesis entails that a person satisfying $1-3$ will reveal the strengths of her beliefs in her betting behavior.

Betting Behavior

The $E U$-thesis entails that a person satisfying 1-3 will reveal the strengths of her beliefs in her betting behavior.

A wager: $W_{X}=[a$ if X, b otherwise]: "you get a EUR if X is true and b EUR otherwise.
(X 's truth does not depend causally on W)

Betting Behavior

The $E U$-thesis entails that a person satisfying 1-3 will reveal the strengths of her beliefs in her betting behavior.

A wager: $W_{X}=[a$ if X, b otherwise]: "you get a EUR if X is true and b EUR otherwise.
(X 's truth does not depend causally on W)

The EU-thesis entails that the agent's level of confidence in X will be revealed by the monetary value she puts on W_{X}.

Betting Behavior

fair price f for W_{X} : the sum of money at which she is indifferent between receiving a payment of f EUR or having W_{X} go into effect.

Betting Behavior

fair price f for W_{X} : the sum of money at which she is indifferent between receiving a payment of f EUR or having W_{X} go into effect.
$f=\operatorname{Exp} \operatorname{Val}\left(W_{X}\right)=C(X) \cdot a+(1-C(X)) \cdot b$ implies $C(X)=\frac{f-b}{a-b}$

Betting Behavior

fair price f for W_{X} : the sum of money at which she is indifferent between receiving a payment of f EUR or having W_{X} go into effect.
$f=\operatorname{Exp} \operatorname{Val}\left(W_{X}\right)=C(X) \cdot a+(1-C(X)) \cdot b$ implies $C(X)=\frac{f-b}{a-b}$

If she is indifferent between 63,81 EUR and
[100 EUR if it rains, 0 EUR otherwise], then she believes to degree 0.6381 that it will rain.

Dutch Book

An agent will swap an (set of) wagers with the (sum of) their fair prices.

Dutch Book

Suppose that X and Y are logically incompatible $(X \cap Y=\emptyset)$

Dutch Book

Suppose that X and Y are logically incompatible $(X \cap Y=\emptyset)$

$$
\begin{aligned}
& W_{X}=[1 \text { if } X, 0 \text { else }] \\
& W_{Y}=[1 \text { if } Y, 0 \text { else }] \\
& W_{X \vee Y}=[1 \text { if } X \vee Y, 0 \text { else }]
\end{aligned}
$$

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)

$$
\begin{aligned}
& W_{X}=[1 \text { if } X, 0 \text { else }] \\
& W_{Y}=[1 \text { if } Y, 0 \text { else }] \\
& W_{X \vee Y}=[1 \text { if } X \vee Y, 0 \text { else }]
\end{aligned}
$$

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

- indifferent between \mathcal{W}_{1} and \mathcal{W}_{2}

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

- indifferent between \mathcal{W}_{1} and \mathcal{W}_{2}
- $\operatorname{swap} \mathcal{W}_{1}$ for \mathcal{W}_{2}

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

- indifferent between \mathcal{W}_{1} and \mathcal{W}_{2}
- $\operatorname{swap} \mathcal{W}_{1}$ for \mathcal{W}_{2}

- But \mathcal{W}_{1} is always better:

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

- indifferent between \mathcal{W}_{1} and \mathcal{W}_{2}
- $\operatorname{swap} \mathcal{W}_{1}$ for \mathcal{W}_{2}

- But \mathcal{W}_{1} is always better:
- If X is true

$$
\operatorname{payoff}\left(\mathcal{W}_{1}\right)=1.6>\operatorname{payoff}\left(\mathcal{W}_{2}\right)=1.5
$$

Dutch Book

Suppose that X and Y are logically incompatible ($X \cap Y=\emptyset$)
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else $]$
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

- indifferent between \mathcal{W}_{1} and \mathcal{W}_{2}
- $\operatorname{swap} \mathcal{W}_{1}$ for \mathcal{W}_{2}

- But \mathcal{W}_{1} is always better:
- If X is true

$$
\operatorname{payoff}\left(\mathcal{W}_{1}\right)=1.6>\operatorname{payoff}\left(\mathcal{W}_{2}\right)=1.5
$$

- If Y is true $\operatorname{payoff}\left(\mathcal{W}_{1}\right)=1.6>\operatorname{payoff}\left(\mathcal{W}_{2}\right)=1.5$

Dutch Book

Suppose that X and Y are logically incompatible $(X \cap Y=\emptyset)$
Fair price: $f=0.25$ for $W_{X}=[1$ if $X, 0$ else]
Fair price: $f=0.25$ for $W_{Y}=[1$ if $Y, 0$ else $]$
Fair price: $f=0.6$ for $W_{X \vee Y}=[1$ if $X \vee Y, 0$ else $]$
Consider $\mathcal{W}_{1}=\left\{0.6, W_{X}, W_{Y}\right\}$ and $\mathcal{W}_{2}=\left\{0.5, W_{X \vee Y}\right\}$

- indifferent between \mathcal{W}_{1} and \mathcal{W}_{2}
- $\operatorname{swap} \mathcal{W}_{1}$ for \mathcal{W}_{2}

- But \mathcal{W}_{1} is always better:
- If X is true

$$
\operatorname{payoff}\left(\mathcal{W}_{1}\right)=1.6>\operatorname{payoff}\left(\mathcal{W}_{2}\right)=1.5
$$

- If Y is true

$$
\operatorname{payoff}\left(\mathcal{W}_{1}\right)=1.6>\operatorname{payoff}\left(\mathcal{W}_{2}\right)=1.5
$$

- If neither X nor Y is true

$$
\operatorname{payoff}\left(\mathcal{W}_{1}\right)=0.6>\operatorname{payoff}\left(\mathcal{W}_{2}\right)=0.5
$$

Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a precise degree of belief for every proposition she considers. If these beliefs violate the laws of probability, then she will make Dutch Book against herself.

Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a precise degree of belief for every proposition she considers. If these beliefs violate the laws of probability, then she will make Dutch Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3

Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a precise degree of belief for every proposition she considers. If these beliefs violate the laws of probability, then she will make Dutch Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3
2. sets a fair price for every wager she considers

Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a precise degree of belief for every proposition she considers. If these beliefs violate the laws of probability, then she will make Dutch Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3
2. sets a fair price for every wager she considers
3. maximizes expected utility

Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a precise degree of belief for every proposition she considers. If these beliefs violate the laws of probability, then she will make Dutch Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3
2. sets a fair price for every wager she considers
3. maximizes expected utility
allow agents to have incomplete or imprecise preferences

Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a precise degree of belief for every proposition she considers. If these beliefs violate the laws of probability, then she will make Dutch Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3
2. sets a fair price for every wager she considers
3. maximizes expected utility
justify probabilistic coherence and EU simultaneously: Savage's Representation Theorem (discussed later in the semester)
J. Joyce. A nonpragmatic vindication of probabilism. Philosophy of Science 65, 575603 (1998).
H. Greaves. Epistemic decision theory. Mind (2013.
