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K ◦ ϕ

Initial set of beliefs New evidence ϕ

Change operator: ◦ : B × L → B
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K ◦ ϕ

Initial set of beliefs New evidence ϕ

Belief change operator: ◦ : B × L → B
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Bayesian Models
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Conceptions of Belief

Binary: “all-out” belief. For any statement p, the agent either
does or does not believe p. It is natural to take an unqualified
assertion as a statement of belief of the speaker.

Graded: beliefs come in degrees. We are more confident in some
of our beliefs than in others.

Eric Schwitzgebel. Belief. In The Stanford Encyclopedia of Philosophy.

Franz Huber. Formal Theories of Belief. In The Stanford Encyclopedia of Phi-
losophy.
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Conceptions of Beliefs: Questions

What are the formal constraints on rational belief?

I rational graded beliefs should obey the laws of probability

I rational all-out beliefs should be consistent/deductively closed

I how should we justify these constraints?

D. Christensen. Putting Logic in its Place. Oxford University Press.
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Suppose that W is a set of states (the set of outcomes).

A σ-algebra is a set Σ ⊆ ℘(W ) such that

I W ∈ Σ

I If A ∈ Σ, then A ∈ Σ

I If {Ai} is a countable collection of sets from Σ, then⋃
i Ai ∈ Σ

A probability function is a function p : Σ→ [0, 1] satisfying:

I p(W ) = 1

I p(A ∪ B) = p(A) + p(B) whenever A ∩ B = ∅

(W ,Σ, p) is called a probability space.

Eric Pacuit 6



Probability

Kolmogorov Axioms:

1. For each E , 0 ≤ p(E ) ≤ 1

2. p(W ) = 1, p(∅) = 0

3. If E1, . . . ,En, . . . are pairwise disjoint (Ei ∩ Ej = ∅ for i 6= j),
then p(

⋃
i Ei ) =

∑
i p(Ei )

I p(E ) = 1− p(E ) (E is the complement of E )

I If E ⊆ F then p(E ) ≤ p(F )

I p(E ∪ F ) = p(E ) + p(F ) + p(E ∩ F )
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Suppose that (L, |=) is a logic. A probability function is a map
p : L → [0, 1] such that

1. For each E , 0 ≤ p(ϕ) ≤ 1

2. p(ϕ) = 1 if |= ϕ

3. If p(ϕ ∨ ψ) = p(ϕ) + p(ψ) when |= ¬(ϕ ∧ ψ).

Eric Pacuit 8



I.J. Good. 46,656 Varieties of Bayesians. Good Thinking: The Foundations of
Probability and Its Applications, University of Minnesota Press (1983).
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Conditional Probability

The probability of E given F , dented p(E |F ), is defined to be

p(E |F ) =
p(E ∩ F )

p(F )
.

provided P(F ) > 0.

Eric Pacuit 10



Bayes Theorem

Bayes Theorem. p(E |F ) = p(F |E )p(E)
p(F )

Eric Pacuit 11



Bayes theorem is important because it expresses the quantity
p(E |F ) (the probability of a hypothesis E given the evidence F )
—which is something people often find hard to assess—in terms of
quantities that can be drawn directly from experiential knowledge.

Example: Suppose you are in a casino and you hear a person at
the next gambling table announce “Twelve”. We want to know
wether he was rolling a pair of dice or a roulette wheel. That is,
compare p(Dice | Twelve) with p(Roulette | Twelve). Based on
our background knowledge of gambling we have
p(Twelve | Dice) = 1/36 and p(Twelve |Roulette) = 1/38. Based
on our observations about the casino, we can judge the prior
probabilities p(Dice) and p(Roulette). But this is now enough to
calculate the required probabilities.
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Extensions and variations

Eric Pacuit 13



I Dempster-Shafer belief functions: Bel : A→ [0, 1] are
super-additive, Bel(A) + Bel(B) ≤ Bel(A ∪ B) if A ∩ B = ∅.
The the number Bel(A) represents the strength with which A
is supported by the agent’s knowledge or belief base.

I Non-standard probability: µ : Σ→ R∗

I Halpern Plausibility Functions: µ : Σ→ (D,�).
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Imprecise Probabilities

I 1. What is the probability that a fair coin will land hands?
2. What is the probability of a coin of unknown bias will land

heads?

I Ellsberg Paradox
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Ellsberg Paradox

30 60
Lotteries Blue Yellow Green

L1 1M 0 0

L2 0 1M 0

L3 1M 0 1M

L4 0 1M 1M

L1 � L2 iff L3 � L4
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Indeterminate Probability

I Allow probability functions to take on sets of values instead of
a single value

I Work with sets of probabilities rather than a single probability

Eric Pacuit 17



Precisification Given a function σ : Σ→ ℘([0, 1]), a probability
function p : Σ→ [0, 1] of σ if and only if p(A) ∈ σ(A) for each
A ∈ Σ.

Indeterminate Probability A function σ : Σ→ ℘([0, 1]) such that
whenever x ∈ σ(A) there is some precisifcation of σ, p for which
p(A) = x .

Eric Pacuit 18



Ambiguation If Π is a set of probability functions, the
ambiguation of Π is the indeterminate probability function that
assigns to each A

σ(A) = {x | p(A) = x for some p ∈ Π}

Observation. The map that takes and indeterminate probability
function to the class of its precisfications is clearly 1-1. However,
the ambiguation of a set of probability functions can have
precisfications not in the ambiguated set.

Eric Pacuit 19
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Convexity A class of probability functions Π is convex if and only
if whenever p, q ∈ Π, every mixture of p and q is in Π as well. I.e.,
αp + (1− α)q ∈ Π for all α ∈ (0, 1).

Proposition. If P is convex with σ it ambiguation, then σ(A) is
an interval for each A.

Eric Pacuit 20



Upper and Lower Probabilities

If σ is an indeterminate probability function, define

I Lower probability: σ∗(A) = inf{x | x ∈ σ(A)}
I Upper probability: σ∗(A) = sup{x | x ∈ σ(A)}

Eric Pacuit 21



Signals/Knowledge/Questions/etc.
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Epistemic Probability Models

w v

M = 〈W , {Πi}i∈A〉
Πi is agent i ’s partition with Πi (w) the partition cell containing w .

Ki (E ) = {w | Πi (w) ⊆ E}
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Epistemic Probability Models

w v

r1− r

M = 〈W , {Πi}i∈A, {pi}i∈A〉
for each i , pi : W → [0, 1] is a probability measure

B r
i (E ) = {w | pi (E | Πi (w)) = pi (E ∩ Πi (w))

pi (Πi (w)) ≥ r}
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HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

HT TT

HH TH

µa,w (HH) = 0.5

µb,w (HH) = 1

a’s observation b’s observation
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree the true state is one of seven different states.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

They agree on a common prior.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree that Experiment 1 would produce the blue partition.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They agree that Experiment 1 would produce the blue partition
and Experiment 2 the red partition.
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2 Scientists Perform an Experiment

w1 w2 w3 w4

w5 w6 w7

They are interested in the truth of E = {w2,w3,w5,w6}.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

So, they agree that P(E ) = 24
32 .
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Also, that if the true state is w1, then Experiment 1 will yield
P(E |I ) = P(E∩I )

P(I ) = 12
14
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose the true state is w7 and the agents preform the
experiments.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose the true state is w7, then Pr1(E ) = 12
14
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Then Pr1(E ) = 12
14 and Pr2(E ) = 15

21
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Suppose they exchange emails with the new subjective
probabilities: Pr1(E ) = 12

14 and Pr2(E ) = 15
21
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Agent 2 learns that w4 is NOT the true state (same for Agent 1).
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32 w4

4
32

w5

5
32 w6

7
32 w7

2
32

Agent 1 learns that w5 is NOT the true state (same for Agent 1).
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32

w5

5
32 w6

7
32 w7

2
32

The new probabilities are Pr1(E |I ′) = 7
9 and Pr2(E |I ′) = 15

17
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32 w3

8
32

w5

5
32 w6

7
32 w7

2
32

After exchanging this information (Pr1(E |I ′) = 7
9 and

Pr2(E |I ′) = 15
17 ), Agent 2 learns that w3 is NOT the true state.
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2 Scientists Perform an Experiment

w1

2
32 w2

4
32

w5

5
32 w6

7
32 w7

2
32

No more revisions are possible and the agents agree on the
posterior probabilities.
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1. Belief, credence and probability: Dutch book, Lottery
Paradox, Preface Paradox, Review Paradox

2. Learning vs. supposing/Naive vs. sophisticated spaces

3. Justifying conditionalization

Eric Pacuit 26



Dutch Book Arguments

Should a rational agent’s graded beliefs satisfy the laws of
probability?

J. Joyce. Bayesianism. in Handbook of Rationality.

Ann: “the probability it will rain tomorrow is 0.9” means “Ann’s
degree of belief is fairly high (0.9) that it will rain tomorrow. Of
course whether it will actually rain, depends on objective events
taking place in the external worlds.”

Eric Pacuit 27



Ramsey, de Finetti and Savage (1)

How do we measure a (rational) agent’s subjective probabilities?

Suppose we are wondering about Ann’s degree of belief about
whether a coin will land heads (H) or tails (T ).

Why don’t we just ask her? reported vs. “actual” degrees of belief.

What we need: systematic procedures for linking the probability
calculus (graded beliefs) to claims about objectively observable
behavior, such as preferences revealed by choice behavior.

Eric Pacuit 28
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Ramsey, de Finetti and Savage (2)

Suppose we are wondering about Ann’s degree of belief about
whether a coin will land heads (H) or tails (T ).

Offer Ann two bets:

L1 If the coin lands heads, you win a sports car;
otherwise you win nothing

L2 If the coin does not land heads, you win a sports car;
otherwise you win nothing.

If Ann chooses L1, she believes H is more probable than T
If Ann chooses L2, she believes T is more probable than H
If Ann is indifferent, she believes H and T are equally probable
(i.e., pA(H) = pA(T ) = 1/2)
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The Dutch Book Argument

But, why should a rational agent’s graded beliefs satisfy the
Kolmogorov axioms?

Anyone whose beliefs violate the laws of probability is practically
irrational.

F. P. Ramsey. Truth and Probability. 1931.

B. de Finetti. La prévision: Ses lois logiques, ses sources subjectives. 1937.

Alan Hájek. Dutch Book Arguments. Oxford Handbook of Rational and Social
Choice, 2008.
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The EU-Thesis

Expected Money/Value/Utility: Given an agent’s beliefs and
desires, the expected utility of an action leading to a set of
outcomes Out is:

∑
o∈Out

[how likely the act will lead to o]×[how much the agent desires o]

1. principle of maximizing expected monetary value

2. principle of maximizing expected value

3. principle of maximizing expected utility
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Betting Behavior

The EU-thesis entails that a person satisfying 1-3 will reveal the
strengths of her beliefs in her betting behavior.

A wager: WX = [ a if X , b otherwise]: “you get a EUR if X is
true and b EUR otherwise.
(X ’s truth does not depend causally on W )

The EU-thesis entails that the agent’s level of confidence in X will
be revealed by the monetary value she puts on WX .

Eric Pacuit 32
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Betting Behavior

fair price f for WX : the sum of money at which she is indifferent
between receiving a payment of f EUR or having WX go into
effect.

f = ExpVal(WX ) = C (X ) · a + (1− C (X )) · b implies C (X ) = f−b
a−b

If she is indifferent between 63, 81 EUR and
[100 EUR if it rains, 0 EUR otherwise], then she believes to degree
0.6381 that it will rain.
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Dutch Book

An agent will swap an (set of) wagers with the (sum of) their fair
prices.
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Dutch Book
Suppose that X and Y are logically incompatible (X ∩ Y = ∅)

Fair price: f = 0.25 for WX = [1 if X , 0 else]

Fair price: f = 0.25 for WY = [1 if Y , 0 else]

Fair price: f = 0.6 for WX∨Y = [1 if X ∨ Y , 0 else]

Consider W1 = {0.6,WX ,WY } and W2 = {0.5,WX∨Y }

X Y

indifferent between W1 and W2

will swap W2 for W1

But W2 is always better:

If X is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If Y is true
payoff(W1) = 1.6 > payoff(W2)=1.5
If neither X nor Y is true
payoff(W1) = 0.6 > payoff(W2)=0.5
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Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a
precise degree of belief for every proposition she considers. If these
beliefs violate the laws of probability, then she will make Dutch
Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3

2. sets a fair price for every wager she considers

3. maximizes expected utility

allow agents to have incomplete or imprecise preferences
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Dutch Book Theorem

Theorem. Imagine and EU-maximizer who satisfies 1-3 and has a
precise degree of belief for every proposition she considers. If these
beliefs violate the laws of probability, then she will make Dutch
Book against herself.

This assumes there is an agent who

1. Meets conditions 1-3

2. sets a fair price for every wager she considers

3. maximizes expected utility

justify probabilistic coherence and EU simultaneously: Savage’s
Representation Theorem (discussed later in the semester)
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