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1""Introduction"

What is generally called Bayesian Conditionalization is a policy for updating probability 
assignments.  It specifies as admissible input (“evidence”) elements of the domain of the 
prior probability function, and allows as possible posteriors the conditionalizations on 
such elements (“propositions”).  Under certain ideal conditions, this is the only coherent 
policy (Teller and Fine 1975, Teller 1976, Diaconis and Zabell 1982,van Fraassen 1999).  
When those conditions are not met, other policies might be appropriate.  Putative 
examples include updating by Richard Jeffrey’s generalized conditionalization (“Jeffrey 
Conditionalization”) or Edwin T. Jaynes’ rule to maximize relative entropy 
(“MAXENT”).  This raises the question of what general constraints any such policy 
should satisfy.  We will propose an answer, guided initially by some intuitive 
considerations that also motivate the Bayesian policy. 

It is no coincidence that the probability calculus is typically introduced with examples of 
urns full of red and black, or marble and wooden, balls.  The relations between the 
statistical proportions of finite sets, with their intersections and unions, introduce the 
basic principles that are extrapolated to present probability theory, and that extrapolation 
is motivated by the insistence that a probability assignment should in principle be able to 
track, in some appropriate sense, the relevant statistics.   It is well known that the 
extrapolation goes far beyond the theory of finite proportions, and beyond the theory of 
limits of relative frequencies, but there are also far-reaching theorems to show that the 
relationship of these to probability theory remains appropriately close.3 
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That this possibility of tracking the relevant statistics should be preserved under updating 
also provides a motivation for the Bayesian policy.  If the proportions are known, and we 
are given the information that a ball drawn from the urn is marble, then the probability 
that it is red should be updated from the proportion of red balls in the urn to the 
proportion of red balls among the marble ones in the urn.  And if the proportions are not 
known, but the prior probabilities were assigned on the basis of opinion or evidence, then 
the updating should take the same form, in order to guarantee the following: 

If the prior probability assignment had the possibility that it was tracking the 
relevant statistics for draws of balls from the urn, then that possibility was not lost 
for updating to draws of balls from among the marble balls in the urn.   

"

2""Alternative"updating"policies"

Alternatives to the Bayesian policy have been discussed for two main reasons.  The first 
is that the input that triggers a change in probabilities may not be of the sort this policy 
takes into account.  Both the above examples, of Jeffrey Conditionalization and Jaynes’  
MAXENT, were introduced in this way.  In his ‘Probable Knowledge’ Richard Jeffrey 
proposed to allow for input beyond the propositional, with the following example: 

In examining a piece of cloth by candlelight one might come to attribute 
probabilities 0.6 and 0.4 to the propositions G that the cloth is green and B that it 
is blue, without there being any proposition E for which the direct effect of the 
observation is anything near changing the observer's degree of belief in E to l. 
(Jeffrey 1968: 172)  

The proper transformation of probability he offered, now known as Jeffrey 
Conditionalization, redistributes the probability over a partition whose cells are the 
affected alternatives:   

P’(A) = Σi qiP(A|Ci),  

with {Ci : i ��1, 2, …, n} the relevant partition, such as green, blue, …, red,  and {qi : i ��
1, 2, …, n} the the weights of the new posterior probabilities of those alternatives.  

Edwin T. Jaynes introduced his maximum entropy updating rule in (Jaynes 1957); a 
typical motivating example takes the following sort of input: 

We have a table which we cover with black cloth, and some dice, but … they are 
black dice with white spots.  A die is tossed onto the black table.  Above there is a 
camera [which] will record only the white spots. Now we don’t change the film in 
between, so we end up with a multiple exposure; uniform blackening of the film 
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after we have done this a few thousand times.  From the known density of the film 
and the number of tosses, we can infer the average number of spots which were 
on top, but not the frequencies with which various faces came up.  Suppose that 
the average number of spots turned out to be 4.5 instead of the 3.5 that we might 
expect from an honest die. Given only this information …  what estimates should 
[we] make of the frequencies with which n spots came up?  (Jaynes 2003: 343). 

 

Transferring this problem into one of probability updating, the prior probability 
assignment, assuming a fair die, included an expectation value of 3.5 for the number of 
dots, and the input is an new expectation value of 4.5. There is no proposition in the 
domain of the prior on which to conditionalize; this input is of a different sort.  What 
should be the posterior probability assignment?  Jaynes’ rule gives a precise answer that 
implies, for example, that the outcome with 1 spot has posterior probability 0.05 and the 
outcome with 6 spots has posterior probability 0.35. 

The second reason that has entered the discussion of alternative policies is that there may 
be conditions seen as triggering a more radical change than can be accommodated by 
conditionalization.   It may be a case, as it is often put, to “throw away the prior”, but 
even so the change would not be a choice at random; the agent could be guided by prior 
experience and theoretical presuppositions that appear phenomenologically only as 
intuition and instinct, limiting the acceptable choices.  

What we will investigate is a way to place requirements on any policy for updating that 
remains well motivated by the intuitive considerations offered above in terms of the 
possibility to track relevant statistics and of preserving that possibility.  As Jaynes’ 
example illustrates, such motivation remains salient when departures from the Bayesian 
policy are envisaged.  

3""Modeling"the"situation"for"normal"updating"

A policy for updating probabilities needs to start with a description of the sort of situation 
to which it applies.  Such a situation will be one where the subject or agent has at each 
time a state of opinion represented by a probability function on a space (representing a 
range of possibilities or possible circumstances).  Secondly, it must be specified how, in 
this sort of situation, there can be input of various sorts.  Thirdly, the policy must offer a 
prescription of what that prior probability function is allowed to be changed into, in 
response to a given input, to form a posterior probability function.   

The Bayesian policy, applicable here, starts with a prior probability, takes the inputs to  
be elements of a finite partition of the possibilities,  and, given an element of the 
partition, updates the prior to a posteriur by conditionalization.  We will not assume that 
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in general a policy must prescribe a unique posterior for each possible input, nor that that 
the posteriors correspond to cells in a partition.   

To accommodate not just the Bayesian policy but also the cases presented by, for 
example, Richard Jeffrey and Edwin Jaynes, we must not concentrate on the special case 
in which the input is an ‘evidential’ proposition in the domain of the prior probability 
assignment.  Indeed, Jeffrey’s example introduces an agent who has no way of expressing 
what triggers the change in probability assignment, hence no input to which a conscious 
policy could apply.  Nevertheless, it can be specified that this change, and the agent’s 
response when managing his overall opinion, takes a very special form. We note that in 
this case too, given a prior, the input, whether explicit or unformulated, places a 
constraint on the posterior.  An input, whatever it may be, acts as a function that takes 
any given prior into a set of possible (admissible, acceptable) posteriors.  As the most 
general form of input we must therefore count any constraint that the agent may accept as 
limiting the candidates for the posterior probability function. Whatever types of input 
there can be can therefore be represented by functions that take any element of the space 
(a prior) into a subset of that space (its set of possible posteriors).  

A little more formally: a policy for updating (whether or not in response to inputs 
representable in terms of the elements of the space of possibilities) specifies for each 
probability function p (the ‘prior’) a set R of possible ‘posteriors’ (of cardinality greater 
than 1), or equivalently, a constraint on the functions into which p can change by 
updating.  We place only one condition on how these responses are formed.   Since we 
view the process of going from p to R as normal updating, not revolutionary change, we 
assume ,: updating does not raise any probability from zero.   For succinctness, a model 
(of a doxastic situation, in the present context) is a triple M = <p, S, R >, where p is a 
probability measure on S and R is a set of probability measures on S that assign 0 
wherever p assigns 0.  As stipulated above, the number of possible posteriors, the 
members of R, is greater than 1.4 

 

4"Tracking:"a"criterion"for"updating"policies"

Following upon the intuitive motivation presented above we propose a formal criterion to 
be met by updating policies.  The motivating considerations included two main points:  
opinion represented in terms of a probability assignment should at least possibly track the 
relevant statistics, and updating the probability assignment on new input should preserve 
that possibility.  We added that under certain ideal conditions, Bayesian 
Conditionalization is precisely the policy that satisfies these requirements. 

What the ideal conditions are, and how more practical conditions could be related to the 
ideal case, is illustrated in the following (partly fictional) example.     
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In 1994 the distribution, by party and gender, in the United States Senate was as follows: 

 MEN WOMEN row total 
REPUBLICAN 42 2 44 
DEMOCRAT 51 5 56 
column total 93 7 100 

 

Suppose a fully informed ideal agent A* makes all the relevant distinctions and actually 
has the information about each individual Senator, about their gender, age, party 
affiliation, and more, like their state of health, etc.  Assume that his probabilities match 
these statistics, for example,  

P(x is a woman | x is a Republican Senator) = 2/44.   

A certain agent A, who is not a fully informed ideal agent, let us assume, has no 
information about state of health, age, or even gender; only about party affiliation in the 
Senate at that time.  Within this very limited space, his probabilities match the statistics 
too, but lack the male/female distinction:  he just has, for example, 

P’(x is a Republican | x is a Senator) = 44/100. 

Thus the probabilities that A assigns are the marginal probabilities assigned by A*, 
matching the marginal distribution in the above table with the division by gender 
removed.  

Now the fully informed ideal agent A* gets the new information that there are no more 
women Senators, they were all removed from office for such reasons as fraud, health, or 
other personal circumstances.  Being an ideally well-informed agent, one that not only 
has all the relevant statistical information for his subject matter, but is also making all the 
relevant distinctions, the Bayesian policy is not only applicable but the uniquely right 
policy to follow. Thus A* conditionalizes on this information, reclassifying those women 
as no longer in the Senate.   His posterior probabilities match: 

 MEN WOMEN row total 
REPUBLICAN 42 0 42 
DEMOCRAT 51 0 51 
column total 93 0 93 

 

Suppose now that the non-fully informed ideal agent A, who does not make all the same 
distinctions as A*, and lacks either information or opinion about at least some of the 
aspects to which A* is privy, nevertheless has a prior and posterior opinion that remain 
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correctly represented by marginals of the prior and posterior of the fully informed ideal 
agent.   This means that we see him updating (through whatever impulse or choice) to the 
corresponding marginal distribution: Republican 42, Democrat 51.  So now both A* and 
A have, for example, the probability 42/93 for a Senator being a Republican.   

Watching this subject A who is not ideally well-informed, we see that his change of 
opinion was not one done by conditionalization.  All we see is a redistribution over the 
same alternatives.  From the outside, it was just an abrupt change in the probabilities for 
party affiliation in the Senate.  However, since his posterior probability is the marginal of 
an updating by conditionalization by the fully informed ideal subject, the virtue of 
matching the actual statistics was preserved. 

So the criterion for updating policies that we propose will be that however the agent 
assigns his probabilities and updates them, there exists in principle an ideal take on his 
situation, and his own opinion is in a relevant sense ‘part of’ the evolving probability 
assignment of an ideally well-informed (hence Bayesian) agent.  Echoing the intuitive 
discussion, we shall call this criterion Tracking.   Under what conditions is this criterion 
satisfied? 

The question is reminiscent of discussions of hidden variable interpretations of quantum 
mechanics, in which unfamiliar sorts of stories, involving strange or unpredictable 
changes, are shown to be compatible with ‘larger’ stories that follow a familiar pattern. 
Specifically, conditions are investigated in which an assignment of probabilities of 
outcomes can have an ‘underlying’ classical probability model.  Taking our cue from the 
above example, we take it that for a model to satisfy the Tracking  criterion, its 
probability functions must be the marginals of probability functions in a larger 
associated model on which much stricter constraints may be imposed.5  

In what follows we shall first show that Tracking  is satisfied if and only if the prior 
probability assignment is a convex combination of the possible posterior assignments.  
Then secondly we will formulate a distinct criterion, Spanning, to govern evolving 
expectation values, and show that it is equivalent to Tracking.  With those results in 
hand we will then show the diversity of updating policies that can satisfy those criteria, 
but also that there are policies which violate them. 

5""Tracking:"precise"formulation"and"relation"to"convexity"

In our example, we were looking at a single possible updating.  For the fully informed 
ideal subject there were many possible posteriors, each of them a conditionalization on 
some proposition that changes one of the four numbers for his four ‘cells’.  And the 
intuitive Tracking criterion requires that the non-fully informed ideal subject’s prior and 
possible posteriors should be the marginals of some such (imaginary) fully informed ideal 
subject’s prior and possible posteriors. 
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We can concentrate on a representative simple form for such a case.  Throughout we will 
take the set of possible posteriors to be finite.  But as will be clear in retrospect, the 
updating policy could allow for all the convex combinations of a given finite set as the set 
of possible posteriors. 

Definition.  A model M* = <p*, S*, R*> is an associate of model M = <p, S, R > iff 
there is an integer n such that: 

i. R = { p1,  … , pn};  
ii. S* = S  = {1, …, n}; 

iii. p is the marginal of p*  on S,  i. e.,   p(E) = p*(E ⊗ {1, …, n}) for each 
measurable subset E of S; 

iv. R* = { p1*, … , pn* } defined by: 
a. pj*(S ⊗ {j}) = 1   [for j = 1, …, n]; 
b. for each p’ in R there is a single member p’* of R* such that p’ is 

the marginal of p’*,   i.e. p’(E) = p’*(E ⊗ {1, … ,n}). 

At this point, we have assumed nothing about the relation between p* and the family 
{p1*, … , pn*} beyond the fact that the latter are absolutely continuous with respect to the 
former. This implies that p*(S ⊗ {j}) > 0 for j =  1, …, n.  

The set {1, …, n}  could represent a partition of a larger space (the ‘hidden parameters’), 
but what these integers represent is not relevant to the argument; in our proofs, they 
function simply as an index set.  We can think of the members of R as also indexed by 
these integers, in a corresponding fashion.  Let pj be the member of R such that pj* is the 
probability function in R* indicated in clause iii(b).  Then pj (E) = pj*(E ⊗ {j}) for each 
subset E of S.    

The only constraint on the measure p* in the definition above is given by clause (iii), so it 
is clear that each model M will have many associate models.   This allows the 
introduction of the guiding constraint [Tracking] in these terms:  

Model M = < p, S, R> satisfies [Tracking] if and only if M has an associated model 
M* = <p*, S*, R*> in which p* is a probability function on S* such that the 
members of R* are conditionalizations of p*, specifically, pj*(E ⊗ {j}) = p*(E |S ⊗ 
{j}) for j = 1, … ,n). 

Let us spell out precisely what this involves.6   

Suppose that M, as described, satisfies [Tracking], with M* the associate model, and that 
R is countable.  Then p* is a convex combination of the members of R*, the weights 
being the probabilities p* (S ⊗ {j})  for j = 1, … , n, each of these being positive.    
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Since p* gives positive probability to each set {n},  and N has at least two members, it 
follows that these are strict convex combinations, that is, the values of p for elements of 
S*  are neither infimum nor supremum of the corresponding values assigned by members 
of R*, unless those values are all the same.7   

The marginal p of p* on S is: 

p(E)  =  p* (E ⊗ {1, … , n})  

 = Σ j p*(E ⊗ {j}) 

            = Σ j  p*(E ⊗ {j}| S x {j}) p* (S ⊗ {j}) 

  = Σ j  pj*(E ⊗ {j}) p* (S ⊗ {j})  

            = Σ j  pj(E) p* (S ⊗ {j}).  

 

So p is that same convex combination of the members of R. Therefore: 

Theorem 1.   If M = <p, S, R>, with R countable, satisfies [Tracking], then p is a strict 
convex combination of the members of R. 

The converse to Theorem 1 also holds.  Suppose that p = Σ j  cjpj,  with the weights cj non-
negative and summing to 1.  We can then construct an associate model M* as above, 
filling in the single ‘blank’ left in the definition by setting p*  = Σ j  cjpj* taking p*(S  
⊗{j}) = cj, for j = 1, … ,n.   It is easy to see then that p is the marginal of p* on S, since 
that is how the probabilities p*(S ⊗ {j}) were chosen.  Thus: 

Theorem 2.   If in M = <p, S, R>, with R countable, the prior p is a strict convex 
combination of the members of R, then M satisfies [Tracking]. 

 

6""The"Spanning"Criterion"

It would be preferable to have a formulation of the criterion that can be applied directly to 
the relation between the prior and the possible posteriors (allowed by the policy in 
question, in the situation in question), without recourse to a study of other models.   

For this we offer the following criterion, which has some history in the literature: 

Model M = <p, S, R> satisfies  [Spanning] if and only, for each random variable 
(r.v.) g, Ep[g], the expected value of g with respect to p, lies strictly inside the 
interval spanned by Ep’[g] for p’ ϵ R.  
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Again, ‘strictly inside’ an interval means that it is neither infimum nor supremum unless 
the interval is a single point.8  

We note that [Spanning] is the same as the general reflection principle (van Fraassen 
1995, 1999), except that, in the present formulation, there is no reference to prior 
probabilities about what the future probabilities will be like.  With suitable assumptions, 
the requirement to satisfy [Spanning] implies the original Reflection Principle (van 
Fraassen 1995:  18-19) and under special conditions coincides with the Bayesian 
updating policy (van Fraassen 1999:  96).9 

Theorem 3.  If M= <p, S, R> satisfies [Tracking], and both S and R are countable, then 
M satisfies [Spanning]. 

If M satisfies [Tracking] then, by Theorem 1, p is a convex combination ΣjϵN cjpj  of the 
members of R, with all coefficients positive. Suppose that g is an r.v.; since S is 
countable, the expected value of g with respect to p is 

Ep[g] = ΣxϵS p(x)g(x)  

            = Σ xϵS, Σ j cjpj(x)g(x)  

           = Σ j cj (Σ xϵS pj(x)g(x))  

 = Σ j cjEpj[g].  

So Ep[g] is a convex combination of the expected values of g with respect to the members 
of R, and since all the coefficients are positive, lies strictly inside the interval spanned by 
the latter.    

Theorem 4.  If M = <p, S, R>, S and R are finite, and |R| > 1, satisfies [Spanning], then 
M satisfies [Tracking]. 

In view of Theorem 2, it suffices here to prove the following:10 

Lemma.  If M satisfies [Spanning], where S and R are finite, and |R| >1, then p is a strict 
convex combination of the members of R.11    

The random variables defined on S are the functions that map S into the real numbers.  
These form a vector space (isomorphic to the familiar Rn, the vector space of n-tuples of 
real numbers)  
with addition and scalar multiplication defined point-wise: 

cg(x) = c(g(x));   (g + f)(x) = g(x) + f(x). 

The probability measures form a convex subset of this vector space, defined by  
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 q(x) ≥ 0;   ΣxϵS q(x) = 1. 

The fact that the set is convex follows from the observation that if p and q are probability 
measures on S, then so is cp + (1-c)q, for c in [0,1].   

The expected value of g with respect to a probability measure q is, in vector space terms, 
just the scalar product: 

 (g, q)  = ΣxϵS q(x)g(x). 

If R is finite, the convex hull [R] of R (i.e., the set of all probability measures that are 
convex combinations of the elements of R) is called a polytope.  The extreme points are 
those that are not convex combinations of other members; a polytope has extreme points.  
Since R has more than one member, it has at least two extreme points and also non-
extreme points.  (The simplest case is the one where R has just two members, which are 
the extreme points of [R].)   

We need to show that unless p is in [R] but not an extreme point of [R], then [Spanning] 
is violated.  The latter means that there is some r.v. g such that the scalar product (g, p) is 
not strictly in the interval spanned by the set {(g, p’):  p’ ϵ  [R]}.   

Two vectors are g, h are orthogonal iff (g, h) = 0.  In the familiar three-dimensional 
vector space, the two-dimensional subspaces are the planes, and a plane is the set of 
vectors orthogonal to a given vector. So a plane is defined by an equation of the form    
(g, q) = 0 for a fixed vector g; that is, q is in the plane iff  ΣxϵS g(x)q(x) = 0.  In our 
context, where q is a probability function, this means that the expected value of g with 
respect to q is 0.  

In general, the maximal proper subspaces of a vector space are called the hyperplanes, 
and again, any such subspace is the ortho-complement of a single vector, defined in the 
same way.  If H is the hyperplane {h: (g, h) = 0}, then it divides the space into two half-
spaces, overlapping only in H itself:  namely {h: (g, h) ≤ 0} and {h: (g, h) ≥ 0}.  A 
polytope is the intersection of a finite set of half-spaces, and equivalently, the convex hull 
of a finite set of vectors.  Its extreme points are those that are not convex combinations of 
other members.  A polytope has a finite set of extreme points, all of which are in it, and it 
is the convex hull of its set of extreme points. 

Since R is finite, [R] is a polytope.12   Let [R] thus be the intersection of a finite set of 
half-spaces H1, ..., Hm defined by the inequalities   

 (h1 , x) ≤ 0, ...,  (hm , x) ≤ 0. 

The corresponding supporting hyperplanes T1, ..., Tm, which contain the faces of [R], are 
defined by the equalities 
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(h1 , x) = 0, ...,  (hm , x) = 0. 

Now suppose that p is not a strict convex combination of members of R.  Then p is either 
outside [R] or else is an extreme point of [R].  If p is outside [R] then there is a half-space 
Hj to which p does not belong.  Hence (hj , p) is positive, and thus greater than (hj , x) for 
any member x of [R]. 

If p is an extreme point of [R], then it is the unique intersection of a sub-family of the 
hyperplanes above: 

  {p} = Ti1 ∩ ...  ∩ Tik 

(cf. Gruber 2007: 246-247).   So the random variable g = hi1 + ... + hik takes value 0 on p.  
But if x is any other point in [R], it will lie in all the corresponding half-spaces, but not on 
all of these hyperplanes, hence g(x) <0.  Hence the expected value of g with respect to p 
is not strictly in the interval spanned by the expected values of g with respect to members 
of R.  Thus, in that case, [Spanning] is violated. 

7""NonFBayesian"policies"that"satisfy"the"Spanning/Tracking"criterion"

 The close connection between [Tracking] and conditionalization may give the 
impression that the results proved here impose Bayesian conditionalization as the sole 
admissible policy.  That is not so, for a number of reasons.   

The orthodox Bayesian policy is this: 

• accept as admissible input only propositions; 
• as response to such an input the only admissible change is conditioning the prior 

on the proposition in question. 

So an updating policy can depart from the Bayesian in one or more of three ways: 

1. accept as admissible a wider variety of inputs (e.g. expected values); 
2. an admissible response to such an input can be a change in the prior that is not the 

result of  conditioning;  
3. an admissible response to such an input may be non-unique, that is, the posterior 

may not be uniquely determined by the prior + input. 

For example, therefore, a policy could be non-Bayesian by differing in the third way, 
even if the posterior is formed from the prior by conditionalizing.  That could be so if the 
updating involved a choice, or instead of a free choice, involved some factor in addition 
to prior and explicit ‘evidential’ input that helps to determine the posterior – a ‘hidden 
variable’, of which the agent might or might not be aware. 
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Second, we have included no initial assumption here about how the possible posterior 
opinions relate to the possible inputs.  It is not assumed that for each input there is only 
one admissible posterior opinion, nor that they are conditionalizations of the prior.  

Third, the embedding in a larger probability space (associate model) is in no way unique.  
The ‘hidden variables’ are underdetermined.  Nor is there any reason to think that there 
the same larger probability space would be pertinent for transitions over  subsequent time 
intervals (t, t + a), (t + a, t + a + b), (t, t + a + b).   

Fourth, the possible posteriors in a model that satisfies [Tracking] are in general not 
conditionalizations of the prior.  That was quite clear in our ‘Senate’ example above. For 
the marginals of conditionalizations of a probability function are only in special cases 
conditionalizations of a marginal. A special case is the one in which the ‘hidden 
variables’ over which an average is taken are actually independent of the ‘surface’ 
variables.  

Finally, the criteria can with minor modifications in phrasing be applied to policies 
governing interval-valued rather than sharp probabilities, where it is still even far from 
clear what the proper analogue to Bayesian conditionalization must be. 

It is helpful to look at some simple examples of how [Spanning/Tracking] can be 
satisfied by non-Bayesian updating policies. Our first illustration already provided a good 
example: a policy that consists in adopting as probabilities certain marginals of the 
probabilities assigned by Bayesian conditionalization in a larger space. That sort of 
example can illustrate the various differences.  But we add here two more examples of 
updating policies that involve some leeway, and are clearly not the Bayesian 
conditionalizing policy, but satisfy [Spanning/Tracking]. 

To begin, consider Jeffrey Conditionalization.  Recall Jeffrey’s example, cited above, of 
the agent who examines a piece of cloth by candlelight, and acts on an input which does 
not take the form of a proposition on which he could conditionalize his probability 
function.  In response to this input, the agent redistributes the probability over a partition 
whose cells are the affected alternatives:   

P’(A) = Σi qiP(A|Ci),  

with {Ci : i ��1, 2, …, n} the relevant partition, such as green, blue, …, red,  and the 
weights {qi : i ��1, 2, …, n} the new posterior probabilities of those alternatives.  If the 
agent’s policy in this case dictates no constraints on those new weights then [Spanning] 
is satisfied, since the prior P is itself among the possible posteriors.  Thus Jeffrey’s 
proposal, by itself, is for a policy that satisfies our criteria. 
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We can imagine that certain other factors in the policy do place constraints on the new 
weights, in which case [Spanning] could be violated.  When observing  cloth by 
candlelight this would happen, for example, if the agent could only raise his probability 
that the cloth is green, and not lower it.  

We can imagine a more complex situation in which the transformation requires not only a 
selection of new weights on a given partition, but also a choice of relevant partition.  This 
would increase the set of possible posteriors accordingly.  Jeffrey’s example would 
become something like this: 

In examining a piece of cloth by candlelight one might come to attribute 
probabilities 0.6 and 0.4 to the propositions G that the cloth is green and B that it 
is blue,  or alternatively come to attribute probabilities 0.7 and 0.3 to the 
propositions C that the cloth is cotton and L that it is linen, without there being 
any proposition E for which the direct effect of the observation is anything near 
changing the observer's degree of belief in E to l. 

The criterion that [Spanning] be satisfied applies to the policy that allows these changes 
under those epistemic circumstances, rather than to the specific or actual change of 
posterior weights in either partition.  Thusj [Spanning] is satisfied here. 

As above, violation is possible if that policy has some further features that prevent a 
change in probability in one direction, either upward or downward, while allowing a 
change in the other.  While it is on the face of it hard to see how a policy could appear 
rational while doing so, we shall see below that a well-known updating policy does 
exactly that. 

For the next two examples, staying rather close to the Bayesian format, we consider the 
case where the agent is going to make an observation and knows that the event to be 
observed is a member of the partition {Ej : j ϵ J}.   The first policy dictates 
conditionalizing the prior  p on event Ek  if the agent witnesses that event.  But if the 
agent is not sure whether the event witnessed was, say, Ek or Em, then the policy dictates 
that he Jeffrey conditionalizes, that is, adopt as posterior a convex combination of  p | Ek  
and p | Em .  But the policy does not dictate the weights in that convex combination, 
which can be chosen spontaneously from some given finite set.   Hence R consists of 
certain convex combinations of the result of conditioning p on members of the partition, 
so [Spanning] is satisfied.  This example already involves all three of the departures 
from the orthodox Bayesian mold:  the input is not a proposition but something involving 
two propositions (with the agent’s attitude not belief but ambivalence) and a choice of 
weights, so that the posterior is not uniquely determined by the input and prior. 

A still different policy links posteriors to both the event witnessed and the agent’s frame 
of mind, which is not determined by either the prior or the witnessed events.  Suppose 
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that pj is the probability that the agent uses when in frame of mind j, for j in some index 
set J. That is, the probability he assigns to events depends on his mood or on the context, 
as characterized by his frame of mind.  As long as he stays in that frame of mind j, he 
updates by conditionalizing, but if his frame of mind changes from frame j to frame k, he 
updates by conditioning on pk.  The agent might not even be aware that he assigns 
different probabilities in different frames of mind.    

Does this last policy satisfy [Spanning]?  It does.  Suppose that the prior is p1 and the 
agent is about to begin an experiment with outcomes that yield the mutually exclusive 
propositions Em for m ϵ M.    It is possible that the agent stays in frame of mind 1, but it is 
also possible that he will shift into some frame j  in J before conditioning.   The set of 
possible posteriors is {p1(  |Em): m ϵ M}, of which p1 is a convex combination.   

8""Policies"that"violate"the"Tracking/Spanning"criterion"

We turn now to the limits set by the Tracking criterion.  

A simple example will show that a violation of our criteria may be quite salient in an 
ordinary, easily imaginable situation.  Imagine a doctor who announces to a patient that 
the probability that he has a certain virus is x.  He prescribes a blood test that he says has, 
no adverse effects of any sort.  Then he announces that if the test outcome is positive he 
will conclude that probability is at least twice as high, but if the outcome is negative they 
won’t know any more than before, his current opinion will not change, and they will need 
more tests.  (Various acquaintances of ours readily imagined that their doctors might 
announce something of this form.) 

Only a little reflection shows that the doctor’s probabilities, as they can evolve over this 
interval of time, cannot possibly be in accordance with the actual statistics throughout. If 
his prior probability, before the test is given, matches the statistics, so that x% of the 
population has the virus, how could the proportions in the three sub-populations (test 
positive, test negative, not tested) be 2x%, x%, and x%?  It is clear that to satisfy the 
Spanning criterion, the prior value needs to fall strictly inside the interval spanned by the 
posterior values. 

Orthodox Bayesians would have the same complaint against the doctor, for this test 
situation, with its ‘definite’ propositional outcomes, is their paradigm example, and he is 
supposed to conditionalize (and to know beforehand that his possible posteriors will be 
conditionalizations on the outcomes).  Thus the orthodox Bayesian policy of 
conditionalizing on new ‘evidence’ propositions satisfies [Spanning].    Currently, 
Objective Bayesians recognize a wider array of possible input forms, and follow the 
policy of maximizing relative entropy (MAXENT) originally proposed by Jaynes (cf. 
Williamson 2011). The debate between orthodox and objective Bayesians goes back to 
the 1970s.   Specifically, Myron Tribus and Hector Motroni (1972) and Kenneth 
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Friedman (1973) debated an example in statistical physics where MAXENT  violates 
[Spanning].   

Friedman insists on the criterion, though without naming it as a specific criterion, or 
elaboration, viewing it as corollary to the Bayesian policy: 

 According to a Bayesian account that a prior probability cannot be revised 
upward  … but will with probability p [> 0] be revised downward, implies that …  
the prior probability must be too high. (Friedman 1973: 266) 

The currently more familiar, and simpler, ‘Judy Benjamin’ problem illustrates the same 
difficulty [van Fraassen 1981; Grove and Halpern 1997; Hartmann and Rad 2012].   

In such examples, where the input is a new value for a conditional probability of a given 
event A on assumption B, there will be an element C disjoint from A   B whose 
probability MAXENT will definitely raise or keep equal, regardless of what that new 
input value is (cf. van Fraassen 1981; the point is generalized by Seidenfeld 1987, 
Corollary 1, p. 283).  If those probabilities are the relevant possible posteriors then 
[Spanning] is violated; therefore, by Theorem 3, [Tracking] is violated as well.   

Many discussions have shown how this difficulty can disappear if the situation is 
described differently, either by adding information to the input, or constraining the range 
of possible inputs not ruled out by the prior, or constraining the range of possible 
posteriors allowed by the policy. Each of these alters the situation; Jaynes’ prescription 
was specifically for the case in which there is nothing else to go on.  Even today 
MAXENT remains controversial (see e.g. Grünwald and Halpern 2003).  On the one 
hand, there is an explicit defense of MAXENT’s violation of [Spanning] by Jon Williamson 
[2011: 68, 72, 80-81]; on the other hand, Brian Skyrms concluded on the basis of his results 
about the relation between MAXENT and conditionalization that ‘MAXENT escapes 
dynamic incoherence by a hair's breadth’ (Skyrms 2013: 82; see also his 1985, 1987).   

APPENDIX.""Generalizing"to"the"countably"infinite"case"

In the proof of Theorem 4, the underlying space S was assumed finite, so that the set of 
random variables formed a finite-,dimensional vector space. In the case where S is 
countable it becomes less clear how the criterion of possibly tracking real statistics is to 
be understood.  Presumably, ‘tracking the real statistics’ would need to be cashed out in 
terms of matching limits of relative frequencies in countable sequences of samplings or 
events.  

However, the proof of Theorem 4 can be generalized to include the case of S countable.  
In that case the vector space whose elements are the random variables defined on S, 
including the probability functions, must be chosen such that the scalar products (hence, 
the expected values) are well defined. 

∪
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Let S  = {xj :   j = 1, 2, 3, ...}. We restrict to well-behaved random variables, that is, the 
functions g such that Σj|g(xj)|2  is finite (‘square integrable functions’).  Then the random 
variables form a separable Hilbert space familiar from quantum mechanics, standardly 
called l2.  This includes the probability functions defined on S, in the same way as before, 
and the scalar product is well defined.  

The definitions we gave above for the finite case carry over naturally. A hyperplane is a 
set of vectors orthogonal to a given vector, and equivalently, the set of vectors x such that 
for a certain vector y, (x,y) = 0.  A hyperplane H divides the space into two halfspaces, 
H+ = {x: (x,y) ≥ 0} and H- = {x: (x,y) ≤ 0}.   

Although S is now allowed to be countably infinite, we continue to require that R be 
finite, so its convex hull is a polytope with the members of R its vertices.  Since a 
subspace of l2 is convex, all of this hull, together with the prior p, is a subset of finite-
dimensional subspace.  Nothing in the argument in Theorem 4 required reference to the 
properties of the ambient space, so it applies entirely, without change, to p and R in this:   
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ENDNOTES"

                                                
1 Department of Philosophy, San Francisco State University, San Francisco, CA 94132; 
fraassen@princeton.edu. 
 
2 Department of Computer Science, Cornell University, Ithaca, NY 14850; 
halpern@cs.cornell.edu 
 
3 For example, the strong law of large numbers implies that if G is a finitely generated 
field of subsets of S, and p a probability function defined on G, then there exists a 
countable sequence s of members of S such that for each element E of G, p(E) equals the 
limit of the relative frequency of E in s.  
 
4 If there is only one possible posterior we take it that this would correspond to something 
like a test of which the outcome is certain beforehand.  In that case the prior should not 
change, and the posterior must be the same as the prior. 
 
5 For prior results concerning the conditions under which a single prior to posterior shift 
as involving a ‘hidden’ conditionalization see Diaconis and Zabell 1982; Skyrms 1980.   
 
6 The policy of conditionalization satisfies this criterion.  But our focus here is on the 
more interesting question of how the criterion applies to updating policies allowing for a 
larger variety of inputs, and a less restrictive specification of allowable posteriors in 
response.  

7 We include here infinite (countable) combinations as convex, when the coefficients are 
real, positive, and sum to 1. 
 
8 This is deliberately formulated in such a way that it would apply also to interval-valued 
probability, but here we focus solely on the sharp probability case.  
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9 For the special case in which the possible posteriors each assign 1 to distinct cells of a 
single partition, the result on conglomerability in Theorem 1 of Dubins 1975 is closely 
related to the following theorems. (Thanks to Teddy Seidenfeld for this reference.) 
  
10 We would have a much simpler proof, using the Separating Hyperplane Theorem 
(Gruber [2007]), p. 59; Luenberger [1969], pp. 133-4) if we did not required the 
probability p to lie strictly insider the interval spanned by  Ep’[g] for p’ in R.  Our proof is 
for the case where S and R are finite; we do not know if the result continues to hold if R 
is infinite (but see the Appendix). 
 
11 For the special case in which the posteriors have disjoint support, that was proved in 
[van Fraassen 1999].  The argument there does not apply to the general case.  

12 In fact, since [R] is part of the convex set of all probability functions on this space, it is 
bounded (all members have norm ≤ 1). 
 


