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Bayesian orthodoxy posits a tight relationship between conditional probability and updat-
ing. Namely, the probability of an event A after learning B should equal the conditional
probability of A given B prior to learning B. We examine whether ordinary judgment con-
forms to the orthodox view. In three experiments we found substantial differences
between the conditional probability of an event A supposing an event B compared to the
probability of A after having learned B. Specifically, supposing B appears to have less impact
on the credibility of A than learning that B is true.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let Pr; represent the beliefs of an idealized agent who is
considering at time 1 the credibilities of events over an
outcome space Q2 (finite, for simplicity). Suppose that for
some event B C Q2 with Pry(B) >0 experience intervenes
at time 2 to convince the agent that B is (definitely) true.
What new distribution Pr, should embody the agent’s re-
vised beliefs? The Bayesian response (Hacking, 2001, chap.
15) is that Pr, should be the result of conditioning Pry on B,
that is:

(1) UrpaTING FOR LEARNED EVENTS: If B C Q is learned
between times 1 and 2 (and nothing else relevant
is learned) then for all events A C Q, Pry(A)=
Pr1(A|B) (provided that Pri(B) > 0).

It is easy to check that Pr;, as defined by (1) is a genuine
probability distribution and that Pry(B)=1 (as expected).
Also, (1) is a consequence of compelling axioms on belief
change (Gdrdenfors, 1988, Section 5.2), and its violation
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exposes the agent to sure-loss betting contracts (Harman,
1999, Section 4.12).!

Such normative virtues suggest a psychological ques-
tion. One way of formulating (1) is that supposing an event
B should have the same impact on the credibility of an
event A as learning B. Is this true for typical assessments
of chance? For example, is the judged probability of a Dem-
ocratic victory in 2012 supposing that Hilary Clinton is the
vice presidential candidate the same as the judged proba-
bility of a Democratic victory in 2012 after learning that
Clinton, as a matter of fact, is the vice presidential
candidate?

The issue is orthogonal to the provenance of conditional
probability in the mind, that is, to the way such probabili-
ties are mentally computed. Thus, even if people fail to re-
spect the standard definition

def PT(A N B)

Pr(A|B) = W7

! Violation of (1) can be conceived as failure to respect the invariance of
conditional probability for the learned event B. This is because failure to
update via (1) yields: Pry(A|B) = Pry(A|Q) = Pry(A) # Pr(A|B). Hence,
Pry(A|B) # Pr1(A|B). We thank David Over and Mike Oaksford for raising
this point to us.
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it is still possible for (1) to hold.? All that matters is whether
the same degree of confidence in event A is reached when
supposing event B compared to learning it.

This question seems not to have been addressed by pre-
vious experiments on updating. For example, in the classic
studies by Edwards (1954, 1962), conditioning events
(sampled chips) are revealed to the participant; there is
no supposing counterpart. Conversely, in many studies of
base rate sensitivity (e.g., Tversky & Kahneman, 1981), con-
ditioning events are supposed rather than learned. The po-
tential divergence of learning from supposing has been
addressed in the philosophical literature, notably, by Ben-
nett (2003) but without experimental support.> Such sup-
port is provided by the three experiments reported below.

2. Experiment 1
2.1. Participants

Forty undergraduates (27 female, mean age 19.4 yrs,
SD=1.3) from Princeton University participated in ex-
change for course credit.

2.2. Materials

Five decks of cards served as stimuli, each with 20 cards.
Each card presented an animal and a colored square on one
side and was blank on the other side. The animal was
marked on the bottom half of the card and could be either
a dog or a duck. The colored square was marked on the
top half and could be either green or yellow. Thus, each
deck contained four types of cards: green dog, green duck,
yellow dog, and yellow duck. Table 1 summarizes the
respective frequencies of the types of cards for each deck.

2.3. Procedure

There were two conditions in the experiment: learn and
suppose, each with 20 participants. In both conditions, the
five decks were presented to the participant in random or-
der. For each deck, the experimenter first showed the cards
to the participant, with the animals and colors in plain view.
Cards were presented briefly (around 0.5 s apiece) to pre-
vent counting. After all cards in the deck were presented,
the participant shuffled the deck, drew one card at random,
and put it on the table blank side up. Thus, neither the par-
ticipant nor the experimenter knew what the card was.

The procedure then differed between the two condi-
tions. In the learn condition, the experimenter covered the
card drawn from the deck, turned the card over while still
covered, and then revealed one half of the card to the partic-
ipant. Whether the animal or the color was thereby re-
vealed was randomly determined. If the revealed half was
an animal then the participant estimated the probability

2 An earlier study focussed on the fidelity of the standard definition
(above) to the numbers people report as conditional probabilities (Zhao,
Shah, & Osherson, 2009).

3 We thank Mike Oaksford for bringing this to our attention. See also the
discussion in Oaksford and Chater (2007).

Table 1
Number of cards used in Experiment 1.
Deck Green Green Yellow Yellow
dog duck dog duck
1 5 4 6 5
2 9 2 6 3
3 4 8 2 6
4 7 8 2 3
5 3 3 6 8

that the unrevealed half was a certain color; whether they
were asked for the probability of “green” versus “yellow”
was determined randomly. If the revealed half was a color
then the participant estimated the probability that the
unrevealed half was a certain animal; whether they were
asked for the probability of “dog” versus “duck” was deter-
mined randomly. The covered half was never revealed to
the participant. This procedure was repeated for all five
decks.

The suppose procedure was identical to the foregoing up
to placing one card from the shuffled deck face down on the
table. In the suppose procedure, neither side of the card was
revealed, and the experimenter proceeded instead to ask a
question of the form: “What is the probability that so-and-
so appears on the card supposing that such-and-such ap-
pears?” The content of the question (so-and-so and such-
and-such) was determined by yoking each suppose partic-
ipant to the immediately preceding participant, who was in
the learn condition. Specifically, if for decks 1-5 the learn
participant was asked for the probabilities of A - - - A5 upon
learning B; --- Bs then the suppose participant was asked
for the conditional probabilities Pr(A;|B;) --- Pr(As|Bs) in
the order corresponding to the presentation of the five
decks to the learn participant.

Thus, the first participant was assigned to the learn con-
dition, the second to the suppose condition (and yoked to
the first participant), and likewise for succeeding pairs of
participants. The crucial difference was that participants
in the learn condition estimated A after learning B, whereas
participants in the suppose condition estimated A while
supposing B.

2.4. Results and discussion

We computed three statistics over the five probabilities
that a given participant produced, namely, (a) the average
of the five raw responses, (b) the average absolute devia-
tion from 0.5, and (c) the average absolute deviation of a
response from the objective probability of the event under
consideration (where the objective probability was derived
from the composition of the deck employed in that trial).
Statistic (b) might quantify confidence inasmuch as ex-
treme probabilities signify presumed knowledge about an
event whereas 0.5 represents ignorance. The statistics pro-
duced by the two groups were compared via paired t-tests.
There were thus 20 pairs, defined by yoking each suppose
participant to his/her learn participant.

As seen in row (a) of Table 2, the average responses
across the 20 learn-suppose pairs were virtually identical
[t(19)=0.60, p=.56]. Row (b) shows, however, that the
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Table 2
Comparison of learn and suppose groups in Experiment 1.
Statistic Learn Suppose p
(a) Raw estimate of Pr(A|B) 0.50 0.49 0.56
(0.10) (0.12)
(b) Absolute deviation from 0.5 0.14 0.19 0.02
(0.05) (0.06)
(c) Absolute deviation from 0.09 0.16 0.00
Pr(A|B) (0.05) (0.08)

Means for the two groups, relative to various statistics. Standard devia-
tions are given in parentheses; p-values reflect paired t-tests (N = 20).

absolute deviation from 0.5 was reliably greater for the
suppose group compared to learn group [t(19)=2.61,
p <.05]. The absolute deviation from objective probability
also differed reliably between the learn and suppose condi-
tions [£{(19) =4.15, p <.001] with more accurate responses
from the learn participants; see row (c). Moreover, in 16
of the 20 pairs, learn participants were more accurate than
suppose participants (p=.01 by binomial test). For each
condition, the top row of Fig. 1 plots all 100 estimates of
Pr(A|B) as a function of the corresponding objective Pr(A|B).
The learn estimates are seen to be closer to objective prob-
abilities than is the case for suppose estimates.

The results of Experiment 1 thus suggest limitations to
the Bayesian model of updating at the descriptive level. To

Exp.1: Learn condition
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check the robustness of our findings, we repeated Experi-
ment 1 with new decks, involving different frequencies of
the four events.

3. Experiment 2

A new group of forty undergraduates (26 female, mean
age 19.5 yrs, SD =1.8) from Princeton University partici-
pated in exchange for course credit. The procedure was
identical to Experiment 1 except for the use of the five
decks shown in Table 3. We computed the same statistics
as in Experiment 1; see Table 4. As before, there was virtu-
ally no difference in the average responses of the suppose
versus learn groups. And once again, suppose participants
were less accurate than learn participants in terms of abso-
lute deviation from the objective value (see the bottom
row of Fig. 1, and row (c) of Table 4); 16 of the 20 learn/
suppose pairs showed such a pattern. This time, however,
learn rather than suppose participants issued more ex-
treme probabilities as shown in row (b) of Table 4.

Why did suppose participants issue more extreme
probabilities than learn participants in Experiment 1 while
the reverse is true in Experiment 2? Tables 1 and 3 report
the objective distributions of the cards in the two experi-
ments, and reveal greater extremeness for the second
experiment compared to the first. So, the switch in
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Fig. 1. Estimates of Pr(A|B) are here plotted as a function of the corresponding objective Pr(A|B) for both learn and suppose conditions in Experiments 1 and
2. In each condition, there were 100 estimates (20 participants, each providing 5 estimates). Some of the circles represent more than one estimate. The blue
line indicates perfect performance. Note that the objective probabilities in Experiment 2 were more extreme compared to Experiment 1. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Table 3
Number of cards used in Experiment 2.
Deck Green Green Yellow Yellow
dog duck dog duck
1 9 2 1 8
2 2 8 9 1
3 7 1 3 9
4 3 8 7 2
5 8 3 2 7
Table 4
Comparison of learn and suppose groups in Experiment 2.
Statistic Learn Suppose p
(a) Raw estimate of Pr(A|B) 0.50 0.48 0.53
(0.14) (0.10)
(b) Absolute deviation from 0.5 0.23 0.18 0.00
(0.05) (0.06)
(c) Absolute deviation from 0.13 0.21 0.00
Pr(A|B) (0.04) (0.08)

Means for the two groups, relative to various statistics. Standard devia-
tions are given in parentheses; p-values reflect paired t-tests (N = 20).

extremeness might be a corollary to the greater accuracy of
the learn compared to suppose groups.

In sum, the results of Experiment 2 reveal once again a
gap between learning and supposing that is not foreseen
by Bayesian updating.

4. Experiment 3

In Experiments 1 and 2, probabilities were grounded in
frequencies and therefore extensional. The third experiment
was designed to evaluate the impact of learning versus sup-
posing in an intensional setting involving probabilities of
non-repeatable events. In particular, participants in the
third experiment specified their confidence (as a probabil-
ity) that Bill Clinton won/lost a specified state given that
he won/lost another state in the 1992 presidential election.

4.1. Participants

A new group of sixty undergraduates (41 female, mean
age 20.4 yrs, SD=1.9) from Princeton University partici-
pated in exchange for course credit.

4.2. Materials

A deck of 50 cards served as stimuli. One side of a given
card was marked with a US state, the other side left blank.

4.3. Procedure

As in the previous experiments, there was a learn and a
suppose condition, each with 20 participants. In both con-
ditions, the participant examined the deck then shuffled it
and placed two cards face down on the table (without look-
ing at them). Despite the appearance of randomness, the
experimenter examined but then ignored the contents of
the cards, and instead asked about two states from a pre-se-
lected list. The list consisted of 20 swing states (electoral

outcome not easily predictable); the two swing states figur-
ing in a given trial were drawn randomly from the list.*

In the learn condition the experimenter picked up one of
the two drawn cards and looked at its underside
(preventing the participant from seeing the content). The
state was announced (actually, the announced state was
preselected from the list of 20 swing states), and then the
electoral outcome for that state was determined by consult-
ing a website. Specifically, with the participant watching,
the experimenter discovered the outcome for that state
via http://uselectionatlas.org/RESULTS/, and showed the re-
sult to the participant. Note that the participant was only
shown whether Clinton won or lost the specified state;
information about other states was masked. The experi-
menter then examined the underside of the remaining card,
announced this second state (actually, preselected from the
list of swing states), and asked the participant to estimate
the probability of Clinton winning or losing that state. The
framing of the question in terms of winning or losing was
consistent with the outcome for the first state. For example,
if Clinton won the first state then the participant estimated
the probability of Clinton winning the second state, and
likewise for losing. The two cards were then put aside, never
revealed to the participant. This procedure was performed
five times per participant.

In the suppose condition, each participant was yoked to
the immediately preceding learn participant. To start the
trial, the experimenter announced that it was a winning
(or losing) round, meaning that the participants were to
estimate the probability that Clinton won (or lost) the sec-
ond state, supposing that he won (or lost) the first state.
The choice of framing (win/lose) appeared to be random,
but in fact matched the questions in the learn condition.
To finish the trial, the participant shuffled the deck and
placed two cards face down on the table (without looking).
The experimenter pretended to look at the undersides of
the two cards and asked the participant to estimate the
probability of Clinton winning (or losing) the second state
supposing that he won (or lost) the first state. The two
states were yoked to those in the learn condition. The
two cards were then set aside, never revealed to the partic-
ipant. This procedure was performed five times (yoked to
the preceding learn participant).

A third group (N = 20) served as a control condition in
which just Pr(A) was estimated (no conditioning event B
was evoked). In this condition, each participant was yoked
to the preceding suppose and learn participants, and gave
probabilities to the five states that were target events A.
For each trial, the experimenter announced that it was a
winning (or losing) round, meaning that the probability
to be estimated was that Clinton won (or lost) the state
in question. The framing was yoked to the questions in
the suppose and learn conditions. The participant then
shuffled the deck and placed one card face down on the ta-
ble. The experimenter pretended to look at the card and
asked the participant to estimate the probability of Clinton

4 The swing states were taken to be AL, AZ, GA, ID, IN, KS, KY, LA, MI, MN,
MO, MS, MT, NC, ND, NM, OH, TN, VA, WV.
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winning (or losing) the state. The procedure was per-
formed for each of the five states.

4.4. Results and discussion

As seen in row (a) of Table 5, the average responses of
the learn participants were reliably higher than those of
the suppose participants [t(19)=4.41, p <.001]. Row (b)
shows that the learn group offered more extreme probabil-
ities than the suppose group [t(19) =3.11, p <.01].

To quantify the accuracy of the probability assigned to
event A upon learning or supposing B, we computed the
quadratic penalty for Pr(A). We use Pr(A) rather than Pr(A|B)
since the conditioning event B was true in every case. To
illustrate, the quadratic penalty for Pr(wins Virginia) is
(1 — Pr(wins Virginia))? in the event that Clinton won Vir-
ginia, and it is (0 — Pr(wins Virginia))? in case he lost. Thus,
low penalty signifies accuracy of a stochastic forecast
whereas high penalty signifies inaccuracy; assigning the
noncommittal probability 0.5 guarantees a penalty of
0.25, indicating ignorance. The quadratic penalty was
introduced by Brier (1950); see Predd et al. (2009) for a
justification of its use in measuring accuracy. For every
participant, we computed her average quadratic penalty
over the five trials. Row (c) of Table 5 shows that learners
were closer to the truth than supposers were [t(19) = 2.57,
p <.05]. This holds for 17 of the 20 pairs of participants
(p =.01 by binomial test). It is striking that the mean qua-
dratic penalty for the suppose group is almost exactly 0.25,
the accuracy level guaranteed by issuing 0.5 probabilities.

We note that a majority (60%) of the pairs figuring in
the experiment had consistent outcomes in the election
(Clinton winning both or losing both). For the learn condi-
tion, the average probabilities assigned to consistent and
inconsistent pairs were 0.72 and 0.50, respectively,
whereas they were 0.55 and 0.48 for the suppose condi-
tion. A two-way ANOVA reveals a reliable interaction, the
difference between the learn probabilities exceeding that
for the suppose probabilities [F(1,19)=17.7, p<.001].
Since a majority of pairs were consistent (as noted above),
these facts explain the lower quadratic penalty for learn
participants, and highlight their greater sensitivity to the
conditioning event B.

Finally, in the control condition, the average raw esti-
mate of Pr(A) was 0.51 (SD = 0.13). This is close to the 0.53
estimate of Pr(A|B) in the suppose group [t(19)=0.51,
p =.61] but reliably different from the 0.64 estimate of the
learn group [t(19)=4.09, p <.001]. The quadratic penalty
for the control condition was 0.29 (SD = 0.09), reliably dif-
ferent from learn [t(19)=4.18, p <.001] but not suppose
[t(19)=1.50, p =.15]. These results indicate once again that

Table 5
Comparison of learn and suppose groups in Experiment 3.

Statistic Learn Suppose p

(a) Raw estimate of Pr(A|B) 0.64 (0.09) 0.53(0.10) 0.00
(b) Absolute deviation from 0.5 0.21 (0.06) 0.15 (0.06) 0.00
(c) Quadratic penalty 0.18 (0.08) 0.25(0.08) 0.02

Means for the two groups are presented, relative to various statistics.
Standard deviations are given in parentheses; p-values reflect paired t-
tests (N =20).

the conditioning event B had greater impact on the judge-
ments of the learn participants compared to suppose.

5. General discussion

Bayesian updating (1) seems not to describe the relation
between the probability distribution that arises from
learning an event B compared to merely supposing it.
For, in our three experiments, the probabilities that issue
from learning B are more accurate than those resulting
from conditioning, and they also differ in their deviation
from 0.5. In Experiment 3, moreover, the average probabil-
ities in the two groups differed significantly.

In the latter experiment, learn participants seem to
have made greater use of the conditioning event B than
did suppose participants. This is revealed by the greater
difference in updated compared to prior probabilities for
A in the learn compared to the suppose conditions. Specif-
ically, learn estimates were reliably higher than the prior,
suggesting that learn participants interpreted a win [loss]
of one swing state to increase the chance of a win [loss]
of another. In contrast, suppose participants’ estimates of
Pr(A|B) were almost identical to the control group’s Pr(A).

Insensitivity to B may reflect a deficit of imagination,
the suppose participants being unable to simulate the
effect of genuinely believing B. In fact, Bayesian updating
imposes a heavy burden on the reasoner’s ability to foresee
the impact of experience. Suppose that lions are discovered
roaming your neighborhood; can you anticipate the prob-
abilities you would attach to other events if such startling
circumstances actually came to pass? Analogous difficul-
ties arise when attempting to predict future affective states
(Wilson & Gilbert, 2003, chap. 8). For the impact of event
vivacity on probability estimates more generally, see
Koehler (1991), Levi & Pryor (1987), and Tversky &
Kahneman (1973).

At the normative level, the Bayesian doctrine (1) is
supported by the considerations mentioned in the introduc-
tion, yet it remains contentious (see, e.g., Bacchus, Kyburg, &
Thalos, 1990). The doctrine may also prove to be unsuited to
situations in which the agent, albeit rational, loses track of
her position in time or space (Arntzenius, 2003). But the
debate about (1) might be of limited relevance to the typical
transition from one probability distribution to another.
Such transitions need not depend on adding an event B to
one’s beliefs without probabilistic qualification. Rather,
experience might lead us to revise our confidence in B
without driving it to zero or one. The rule proposed by
Jeffrey (1983) is suited to this kind of case. Recent work
has begun to examine Jeffrey’s rule from the psychological
point of view (Over & Hadjichristidis, 2009; Zhao & Osher-
son, 2010). The connection between supposing, learning
and Jeffrey conditionalization remains a topic for further
investigation.
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