
B R I A N  S K Y R M S  

U P D A T I N G ,  S U P P O S I N G ,  A N D  M A X E N T  

I. I N T R O D U C T I O N  

Updating subjective belief to assimilate a given bit of  information and 
supposing what the world would be like were that bit of  information true, 

are distinct mental processes for which distinct rules are appropriate.  A 
Warrenite asked to update on the piece of  information that Oswald didn' t  

kill Kennedy would come to the conclusion that  someone else did; but 

when asked to suppose what the world would be like had Oswald not 

killed Kennedy will not suppose that someone else would have. The 

difference is often marked in ordinary language by the distinction 

between indicative and subjunctive mood.  The Warrenite will assert: " I f  

Oswald didn ' t  kill Kennedy, then someone else did"  but deny: " I f  Oswald 

hadn ' t  killed Kennedy, then someone else would have" .  1 

Given an initial probabili ty measure and a constraint on possible final 
probabili ty measures one moves to a final probabili ty by the rule of  

M A X E N T  if one chooses f rom among the final probabilities which satisfy 

he constraint, the one which has minimum information (or equivalently) 
max imum entropy relative to the intitial probability. This rule was 

introduced as " the  principle of  minimum discrimination in format ion"  by 
Kullback and Leibler ~ and as the rule of  maximum entropy by Jaynes. 3 
It  has found application in a wide variety of  fields, 4 but its logical status 

remains a matter  of  controversy. 
Some supporters of  MAXENT go so far as to give it the status Qf a 

principle of  Bayesian logic, on a par with additivity of  probabili ty or 
Bayes'  rule of  conditioning.5 Some of  its detractors claim that it is almost 
inconsistent with Bayesian methodology. 6 Much of the debate appears to 

proceed on the assumption, tacit or explicit, that  M A X E N T  is an induc- 
tive rule, i.e. as a rule for updating subjective probabilities. 7 I want to 
suggest that this is the wrong way to look at MAXENT.  Properly viewed, 
M A X E N T  is a rule for stochastic hypothesizing; a rule for supposing. 
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In Section II, I will discuss dynamic coherence requirements for Bayes- 
ian updating. The framework will be broad enough to cover cases in which 

Bayes' rule of  conditionalization does not directly apply, including cases 
in which MAXENT is construed as a rule of  updating. In Section III, I 

will introduce the Stalnaker logic of  supposing and adapt it to the case 
where the possible situations are stochastic; i.e. statistical models. Section 
IV will develop a few technical facts about the relation of MAX- 

ENT, exponential families and sufficient statistics. With the stage thus 
set, the next two sections will analyze MAXENT alternatively as an 
updating rule and as a supposing rule. Section V will find it wanting as 
a generally valid rule for Bayesian updating for essentially the reasons 
put forward by Shimony and his coworkers. Section VI will argue that 

MAXENT properly applied as a Bayesian supposing or hypothesizing 

rule is perfectly legitimate. 

I I .  U P D A T I N G  S U B J E C T I V E  P R O B A B I L I T Y  

Bayesians update subjective probabilities by Bayes" Rule: Condition on 
the evidence? That is, when presented with new evidence, e, which has 
positive prior probability, revise your subjective probabilities such that: 

NEWPR (q) = OLDPR (q I e) = OLDPR (q & e) /OLDPR(e)  

Why use Bayes' Rule for such situations, rather than some other? It is 

a necessary and sufficient condition for dynamic coherence that one do 

SO. 

Thus, suppose that you have an initial probability at time tl; that there 

is a partition, E, of  your probability space each of  whose members have 
positive initial probability; that then you are to be told the true member 
of  the partition and are to move to a final probability at time t 2 by some 
epistemic rule for updating probability. A bettor who knows your rule 
can make a finite number of  bets with you at time tl according to your 
probabilities at t 2. He will be said to make an unconditional dynamic 
dutch book against you if he has a strategy which always leaves him at 
t2 with a system of  bets whose net gain to him is positive in every possible 
situation. You are not open to an unconditional dynamic dutch book if 
and only if  your epistemic rule is Bayes" rule. 
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The foregoing updating model presumes that two things are given: (1) 

a learning situation in which the input is just the information that the true 
state of  affairs is in some designated member of  the partition, E, and (2) 
a initial probability distribution which gives the relevant conditional 

probabilities: Pr(q [ e). The model may not apply in many cases of  interest 
because we do not have the nice package of  (1) and (2). What sort of 

theory is possible if these assumptions are weakened? 
Non-Bayesian statisticians (Fisher, Neyman) question (2). Suppose we 

have a statistical model with an observation space, X, with chances 

depending on a parameter, 0. In Bayes' method, we assume a prior over 
the parameter space, calculate pr (0 Ix) by Bayes' theorem, and update 
on our observation by Bayes' rule. But what if we don ' t  have a prior on 

the parameter space? Suppose we have some rule assigning probabilities 

to the parameter values after an observation. Call this rule chance 

coherent if it always assigns posterior probabilities which are immune 
from a dutch book in chance, i.e. a finite system of bets which have a 

negative chance expectation for every value of  0. Cornfield (1969) and 
Freedman and Purves (1969) show that our updating rule is chance 
coherent just in case it coincides with Bayes' method applied to some prior 
or other over the parameter space. 

Epistemologists (Austin, Sellars, Jeffrey) question 1. Various modified 
versions of  the learning situation are possible. Can we say anything 

general enough to cover them all. Suppose you have at time t~ an initial 

probability and will update it at time t2 to a probability revised in the light 
of  some sort of  learning experience. Suppose that you have at time t~ 
initial probabilities over one's possible revised probabilities. Assume for 

the moment that one has only a finite number of  possible revised proba- 
bilities, each with positive initial probability. A bettor can bet with you 

at times t~ and t2. If we give the learning situation only this much 
structure, what can we say about dynamic coherence? It is a necessary 

and sufficient condition for coherence, that your initial probability, prl, 
satisfy principle M: 8 

M: pra(q[ p r2=Pr* )=p r* (q  ) 

If  we give the learning situation additional structure, Mremains  necessary 
for coherence but may not be sufficient. Notice that in the presence of 
M t h e  move to an enlarged probability space with pr 2 as a random variable 
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formally embeds our "black box"  learning situation in a conditioning 
model. 

It appears that Bayes' rule of  conditioning has greater scope in the 
theory of  updating subjective probability than some of its critics have 

been willing to concede. Very substancial generalizations of  the setting 

for updating carry the consequence that dynamic coherence requires 
embeddability in a conditioning model. 

I I I .  S T A T I S T I C A L  S U P P O S I T I O N  

Supposing as a branch of  logic has been developed as the theory of  

subjunctive conditionals. This may seem rather remote from the subject 

matter at hand, but I urge the reader to be patient. Subjunctive condition- 
als were a problem for logical empiricists; a puzzle knot in the hands of  
Nelson Goodman; and only became a branch of  logic when Stalnaker 
(1968) cut the knot. Stalnaker's idea was to introduce a selection function, 
f ,  which maps an ordered pair (w,s)  where w is a possible world and s 

is a supposition onto a world w'. The idea is that according to that 

selection function, starting in world (or situation) w and supposing s takes 
you to w'. Then, a subjunctive conditional " I f  s were the case, q would 

be"  is true in w just in case q is true in./ '(w,s); false otherwise. Stalnaker 

required a selection function to have certain properties: (i) supposition 
s indeed holds inf(w,s); (ii) If  s holds in w, thenf(w,s)=w; (iii) If s' 
holds i n f ( w , s )  and s holds in f ( w , s ' ) ,  then f ( w , s )  = f ( w , s ' ) .  The second 
and third conditions are motivated by the idea that f ( w , s )  should be the 

most similar world to w in which s holds. (There is a fourth condition 
which requires impossible presuppositions to take one to an impossible 
world where everything is true, but the treatment of impossible presuppo- 
sitions need not concern us here.) Stalnaker then studied the logic of  
subjunctive conditionals that holds for every such selection function. 
Stalnaker's account was generalized by Lewis who challenges the as- 
sumptions of  existence and uniqueness for " the  world minimally different 
f rom W in which S holds" ,  and suggests an extension of  the Stalnaker 
semantics to the cases where these assumptions fail. 

How can these ideas apply to statistics? Let us shrink the grandiose 
philosophical notion of  a possible world to the more modest one of  a 
possible situation, and let us make that situation stochastic. Then what 
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we have is a chance distribution over some outcome space. A set of  chance 

distributions over some outcome space X, indexed by some parameter  
space W -  i.e. a statistical model - is a natural domain of  application for 

a stochastic Stalnaker selection function. Stochastic hypotheses will be 

taken as consistent constraints on the chances (which may undetermine 

the chance distribution). The game here is to find some interesting sense 

of  " the  chance distribution most  similar to w which satisfies constraint 

S,,. 
Note that in this setting the difference between supposing and updating 

is mathematically clearcut. In a typical Bayesian updating situation one 

is uncertain about  the chances, and so ones subjective probabili ty distri- 

bution on the outcome space is a mixture of  the possible chance distri- 

butions. Updating is an operation which typically takes one f rom one 

point in the interior of  the convex closure of  the chance distributions to 

another; supposing moves f rom one chance distribution to another.  

IV. MAXENT 

Let us start with the simplest case, where our outcome space, X, contains 

only a finite number  of  points, x l , x  2 .... x n. Then the entropy of  a proba- 

bility, P, on this space is: 

-- ~ i P (x i )  log P(x i )  

and the in format ion  is the negative of  the entropy. The minimum infor- 

mation or maximum entropy probabili ty is the one which makes the states 

equiprobable: P(xi) = 1/n.  

Suppose that one has some requirements about  what the probabili ty on 

this space should look like in the form of what expectations it should give 

to some random variables. These constraints might very well underdeter- 

mine the probabili ty measure. In the absence of  any further information 

or disaderata about  what the probabili ty should look like, it might seem 
natural to choose among the probabilities satisfying the constraints that  
which has the minimum information.  9 This is the rule MAXENT,  sug- 

gested by Jaynes (1957) and others. 
For a simple example, consider an outcome space with just three points, 

Xl, x2, x3. You can think of  these as the outcome of the roll of  a three 
sided die. Consider the r andom variable f ( x i )  ---- i, (the number  of  spots 
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showing on the die). The MAXENT probability gives P(x~)= 1/3, and 

E0r ) = 2. Choosing the M A X E N T  probability under the constraint that 

Elf)  have a different value has the following results (courtesy of  E. T. 

Jaynes' Basic program, MAXENT 1.16): 

E(]) P(x,) P(XE) P(x3) 

1 1 0 0 
0.1 0.907833 0.084333 0.007834 
0.2 0.826297 0.147407 0.026297 
0.3 0.751567 0.196866 0.051567 
0.4 0.681867 0.236267 0.081867 
0.5 0.616204 0.267592 0.116204 
0.6 0.553972 0.292055 0.153972 
0.7 0.494780 0,310440 0.194780 
0.8 0.438371 0.323257 0.238271 
0.9 0.384586 0,330829 0.284586 
2.0 0,333333 0.333333 0.333333 
2,1 0.284586 0.330829 0.384586 
2.2 0.238372 0.323257 0.438370 
2.3 0.194780 0.310440 0,494780 
2.4 0.153972 0.292055 0.553972 
2.5 0.116204 0.267592 0.616203 
2.6 0.081867 0.236267 0.681867 
2.7 0.051567 0.196866 0.751567 
2.8 0.026297 0.147407 0.826296 
2.9 0.007834 0.084332 0,907834 
3.0 0 0 1 

These results are plotted in Figure 1. Notice that this family of  probabil- 

ities is not closed under mixing. E.g. an equal mixture of  (1,0,0) and 

(0,0,1) is (1 /2 ,0 ,1 /2)  but that is not in the family. 
To extend these ideas to the general case, the notion of  information 

needs to be generalized to the Kullback-Leibler discrimination infor- 
mation. Suppose that we start with a prior probability, P, and move to 

a posterior Q which satisfies certain constraints. For a countable space, 

W, the discrimination information in Q with respect to P is: 

I(Q,P) = ~, w Q(w) log [Q(w)/P(w)l 

The finite sample space is a special case with P making the points 

equiprobable. 
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More generally, let ( W~X 1,1./1 ) be a probability space, with ~t i being 
our initial probability measure. Let ]-/2 and m be probability measures on 
this space such that # 1 and/~2 are both absolutely continuous with respect 
to m. Then the Radon-Nikodym derivatives P = d# 1/dm and Q = d/~E/dm 
exist and the discrimination information in/ t2 with respect to tq is: / .  

I(/t2,~l)= .t Q(w) log [Q(w)/P(w)] dm 10 

The principle of minimizing this quantity subject to constraints, was put 
forward and extensively studied by Kullback and Leibler (1951); Kullback 
(1959). 

The notion of a chance supposition or constraint in the most general 
form imaginable would be just a set of possible chance probability 
measures. I f  the constraint is a convex set, then if a MAXENT solution 
exists, it is unique since I(Q,P) is strictly convex in Q. Constraints taking 
the form of  the specification of the desired expectation of a random 
variable specify such a convex set. Topological conditions on the 
constraint set which guarantee the existence of  a MAXENT solution are 
given in Csizar (1975). 11 

Consider simple constraints consisting of the specification of  the expec- 
tation of a random variable, E ( f ) = a ;  where the MAXENT solution 
exists. For fixed f ,  letting a vary the solutions form an exponential family 
for which f is a sufficient statistic passing through the initial probability 
P. This family has m density: 

P(x) exp [k f(x)l/N(k) 

(Here P is the m density of  the initial probability. If  we let m = P ,  it is 
unity, k is adjusted to give the value of a required by the constraint. N 
is a normalizing factor.) If a member of the constraint set has this density 
it is the maxent solution. Moreover, if/~l is the initial probability and #2 
is the MAXENT solution, then for any probability, my in the constraint 
set: 

(MDI) I(m,ltl)= I(m,lt2) + I(I.t2,I.tl) 

MAXENT solves the problem of selecting a member of the constraint set 
by using the initial probability and the statistic of the constraint to 
generate in a canonical way a statistical model which contains just one 
member of the constraint set. Essentially the same thing happens in the 
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general case. 12 The exponential familY of  MAXENT solutions for the 
three sided die is graphed in Figure 2. 

v. MAXENT AS BAYESIAN UPDATING 

As we say in Section II, coherence gives a special place in the theory of 
updating subjective probability to Bayes' rule of conditioning. Bayes' rule 
is a special case of  MAXENT. Let the random variable I c be the indicator 
function which takes the value 1 in the set c and the value 0 outside c. 
Let c be a set with non-negative initial prior probability. And let the 
constraint be E(Ic) = 1. Then the MAXENT solution is the same as that 
gotten by updating by Bayes' rule, i.e. conditioning on c. This follows 
immediately from Kullback's theorem (noted in Section III) that the 
statistic of the constraint is a sufficient statistic for the exponential family 
of  MAXENT solutions. This means that probabilities conditional on c 
must be the same in all members of the family, including the initial 
probability. Sufficiency together with the fact that in the final probability 
E(Ic) = 1 determine that the final probability comes from the initial one 
by conditioning on c. 

Kullback's sufficiency theorem also leads immediately to the result that 
Richard Jeffrey's (1965) generalization of Bayes' rule is also a special case 
of MAXENT. Suppose there is a finite partition, ~oi] , each of whose 
members have positive probability. Jeffrey says that a final probability 
comes from an initial probability by probability kinematics on the par- 
tition ~Pil, just in case the probabilities conditional on members of  the 
partition remain the same during the change. The MAXENT solution for 
a finite number of constraints of the form E[Ipi ] = Finalprobability (Pi) 
is just the change by probability kinematics which results in those final 
probabilities for members of  the partition. Jeffrey's rule has a connection 
with dynamic coherence, although it is a little more delicate than that of 
Bayes' rule because of  the relativity to a partition. 13 One way of putting 
the matter is by embedding Jeffrey's rule in a conditioning model as in 
Section II. That is, take the initial " sma l l "  probability space and enlarge 
it by adding final probability as a random variable. Say that ~oil is 
subjectively sufficient for belief change if in the initial probability, 
PR [r I/ki pry ( P i )  : ai & P J] = PR [r I P J] for all r in the small space and 
all members of the partition. Then a necessary condition for dynamic 
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coherence is that it be by belief change by probability kinematics on all 
partitions subjectively sufficent for belief change.14 

The connection between MAXENT and the updating rules of Bayes 
and Jeffrey have led to speculation that MAXENT may be a generally 
valid rule for updating subjective probability. 15 Much of the critical 
discussion of the MAXENT rule has also cast it in this role. 16 A conside- 
ration put forward in 1971 by Friedman and Shimony shows that it is 
difficult to maintain this point of view. 

Consider the case of the three sided die which we have been using as 
a simple illustrations. Suppose that you are a MAXENT updater and that 
your initial subjective probabilities are 1/3 for each side. The desired final 
expected number of spots, Ef(g) ~ [1,3], is for you information that you 
will somehow acquire before updating. Consider your initial probability 
over possible values of the desired expectation. They are tantamount to 
initial probabilities over your possible final probabilities since for you the 
MAXENT rule associates a unique final probability. It might occur to 
you to take the flat prior (with respect to Lebesque measure) on [1,3]. 
But this choice would be dynamically incoherent! The prior probability 
would not equal the expectation of posterior probability, and a dynamic 
dutch book could be made against you. All right, you needen't make that 
application of the principle of insufficient reason. What do your initial 
probabilities on the value of the desired expectation need to be in order 
to escape the dynamic dutch book? You must concentrate probability 1 
on the desired expectation being 2I This is the only way in which the initial 
expectation of the final probability of 2 spots can equal the initial 
probability of 2 spots, because the final probability of 2 spots under the 
MAXENT revision rule is a strictly concave function of the desired 
expected number of spots, taking its maximum at the initial probability 
of 2 spots, 1/3. This is easily seen in Figures 1 and 2. But this is just the 
case in which under MAXENT the initial probability is not revised. It 
appears that the MAXENT updater in this case can only be coherent if 
he believes ~with probability one that the rule will not lead to any 
substantive belief revision. This is hardly a desideratum for a rule for 
updating subjective probability. 

There have been attempts to discount the Shimony-Friedman example, 
but I do not think that they are successful. Williams (1980) claims that 
the rule does not violate static coherence: 



236 BRIAN SKYRMS 

According to the present interpretation, the probabilities emerging from the principle of 
minimum information are not conditional probabilities associated with the prior distri- 
bution but unconditional probabilities of a new and entirely different distribution, unrelated 
to the prior distribution by the normal 'synchronic' probability calculus. This is to be 
understood even in the case corresponding to Bayesian conditionalization. If this 
is accepted, objections of the type raised by Friedman and Shimony (1971) are not applica- 
ble. 

I think that the discussion of  dynamic coherence in Section II  shows that 

this response to the example is inadequate. It might be argued that you 

might not have probabilities over the possible values of  the constraint; 

but if  such values are incoming data, I see no reason why a Bayesian 

should not be able to have probabilities on them. It might be argued that 

the constraint isn' t  data, but rather something quite different. In a sense 

I think that  this is correct, but this is really to give up maintaining that 

M A X E N T  is a rule for Bayesian updating and to assert that it is a rule 

for something else. 

Notice that the Friedman-Shimony example applies to a wide range of 

"min imal  revision" rules for updating; not just MAXENT.  Any rule 

which provides a solution satisfying the constraint must agree with 

M A X E N T  for E(g)= 1 and E(g)= 3. Any rule which gives a unique 

minimal revision must agree with M AXENT on E(g) -- 2 since it takes no 

revision to satisfy this constraint. I f  in addition the rule makes a mono- 

tonic transition in final probabili ty of  2 spots f rom E ( g ) = 2  to the 

extremes, the Friedman-Shimony reasoning applies. 

In fact, let us suppose that for whatever reason, your initial probabil-  

ities for the desired value of the constraint are concentrated on the values 

1,2,3. Why shouldn' t  they be? Then any minimal revision rule which calls 

for no revision if the constraint is actually satisfied will be subject to the 

Friedman-Shimony analysis. 
To understand what is happening, it is instructive to embed the problem 

in several alternative Bayesian settings: 

E X A M P L E  1 (Determinism). You are sure that the die is a trick die which 
will always come up the same way, but are unsure which ~s the favored 
side with probabilities I /3 ,1 /3 ,1 /3 .  A friend will conduct a large number 
of  independent trials (to all intents and purposes infinite) and report to 
you the sample mean. Your initial probabilities for E ( g ) =  1,2,3 are 
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1/3,1/3,1/3. If  he reports E(g)=2,  your final probability for two spots 
should be 1, rather than the 1/3 prescribed by MAXENT. 

EXAMPLE 2 (Determinism or No Information). As above, but there is 
a one in four chance that your friend will forget to perform the experi- 
ment, in which case he will also report E(g)=2.  Then your initial 
probabilities for E(g)= 1,2,3 are respectively 1/4,1/2,1/4. A report of 
E(g) = 2. has ambiguous significance. Upon recieving such a report you 
should change your final probability of 2 spots showing to 2/3. 

EXAMPLE 3 (Uncertain Chance). You believe that the die is a chance 
device with uncertain chance, and your initial probabilities for the 
chances are given by the measure uniform with respect to Lebesgue 
measure in Euclidian space (see Figure 3). The data is a report of the true 
chance expectation. The data E(g)= 2 should lead you to revise your 
probability upward to 1/2. 

I n  Examples 1-3 the report E(g)= 2, although compatible with your 
present probability is nevertheless grounds for Bayesian revision. MAX- 
ENT gives different results in these cases because it interprets E(g)=2 
as "no  news" and no reason for revision. In extreme case in which 
MAXENT is compatible with conditioning, i.e. where the initial probabil- 
ity of E(g) = 2 is one, the data that E(g) = 2 really is no news in the sense 
of Bayes' rule. The  probabilities conditional on it must be the same as 
the unconditional probabilities. But this is hardly the typical setting for 
Bayesian updating. MAXENT is not a generally valid updating rule. 

VI. M A X E N T  AS S U P P O S I T I O N  

Suppose we have a given chance model; for instance the equiprobable 
chance probability on the three sided die, and want to hypothesize about 
the chance probability which satisfies a certain constraint and is in some 
interesting sense most similar to our given chance model. To do this 
systematically, we would like something like a Stalnaker selection 
function for chance models. It is just this that MAXENT gives us, at least 
for certain well behaved hypotheses. 

In the general case, a constraint set of probabilities will be considered 
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a well-behaved hypothesis with respect to an initial probability if it is a 
convex, closed set of probabilities absolutely continuous with respect to 
the initial probability. For such hypotheses the MAXENT solution exists 
and is unique, so on the domain of well-behaved hypotheses, the MA- 
XENT method determines a MAXENT SELECTION FUNCTION. 

It is easy to see that the MAXENT selection function is STALNAKER, 
i.e. it satisfies Stalnaker's three conditions listed in Section III: 

(i) By definition of the MAXENT solution it is in the constraint set, 
so f ( w , s )  ~ s. 

(ii) Since the information in the initial probability with respect to itself 
is minimal and the Kullback-Leibler I(prf, pri) is strictly convex in 
pry, it follows that if pri satisfies the constraint, it is the MAXENT 
solution, i.e. If w e s  then f ( w , s )  = w. 

(iii) Show that f ( w,s) e s' andf(w,s ' )  e s then f ( w,s) = f ( w,s'): By hypo- 
thesis and the MDI equality of Section IV, we have both: 

I(f(pri,s '),pr/) = I ( f (pr i ,s ' )  , f ( p r i , s )  ) + I~f(pri,s) ,pri)  
and 

IQf(pri,s),pri) = I( f (Pri ,s ' ) ,  f (Pri , s ' )  ) + IOr(Pri,s'),Pri). 
Since all terms are nonnegative: 

I ( f (Pri , s ) ,  f (pr i , s ' )  ) = IOe(Pri,s'), f (p r i , s )  ) = 0 
By strict convexity, f (Pr i , s )  = f(Pri ,s ' )  as required. 

Notice that it is just these properties which qualigy MAXENT as defining 
a Stalnaker selection function for well-behaved hypotheses which caused 
trouble for it as a method of Bayesian updating. (In the examples where 
the initial probability was concentrated on E(2) = 1,2,3, the trouble can 
be gotten from Conditions (i) and (ii) alone.) Any stochastic Stalnaker 
selection function will get into Friedman-Shimony difficulties if it is 
applied as a rule for updating subjective probabilities. 

This has a certain general significance, because there is a whole family 
of minimal revision rules which can be made to yield Stalnaker selection 
functions for chance models, several of which have been considered as 
possible rules for mechanical updating of  subjective probability. One can 
minimize the variational distance, the Hellinger distance, etc. 17 Each of 
these should be thought of  as defining a different selection function for 
well-behaved hypotheses or suppositions rather than as rules for updating 
subjective probability. 
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VII .  S U P P O S I N G  AS C O N D I T I O N I N G  

MAXENT gives us one selection function among many possible ones. Is 
there anything specially interesting about this one? There is a deep 
connection with the concept of sufficiency, and with conditioning after 
all in the one limiting case in which MAXENT is consistent with con- 
ditioning. 

As Jaynes (1979) notes, 18 the MAXENT solution gives us the exponen- 
tial families as the Darmois-Koopman-Pitman theorem. Consider the 
exponential family: PR(X)=P(X) exp [a T(X)]/N. Tis a sufficent statis- 
tic. Furthermore, for multiple IID trials the sum Y. i T(Xi) is a sufficient 
statistic. Darmois-Koopman-Pitman is the converse. If the sum is a 
sufficient statistic, then we have the functional equation: 

PRa[T(X1)] PRa[T(X2)]... = PRa[T(X 0 + T(X2) +...1 

which under mild regularity conditions has the exponential solution. 19 
If the members of the family are the physical probabilities, then in a 

typical case of uncertainty about the true physical probabilities, degree 
of belief will be a mixture of the members of the family. In the product 
space if the physical probabilities make the trials independent, then the 
degrees of belief will be exchangeable, deFinetti's theorem shows how to 
go the other way. An exchangeable sequence of random variables has a 
unique representation as a mixture of independent ones. If in the degree 
of belief probabilities T is a sufficient statistic such that the sum is a 
sufficient statistic for multiple trials, then Koopman-Pitman-Darmois 
can be combined with deFinetti to characterize the extreme points; the 
"physical probabilities" which are implicit in the degree of belief proba- 
bilities. They consist of exponential families of the statistic. 2~ This means 
that for a subjectivist who regards chances or physical probabilities as 
artifacts of the deFinetti representation theorem: i f  T is for  him such an 
additive sufficient statistic then M A X E N T  applied to constraints o f  the 
form Ey(T) = b is for  him a way o f  moving from one possible physical 
probability to another. 

Typically Bayesian conditioning is applied to update subjective proba- 
bility by moving from one non-trivial mixture of possible physical proba- 
bilities to another. As we saw in Section V, MAXENT fails to be 
embeddible in a conditioning model in such contexts. Suppose, however, 
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that your subjective probability is concentrated on one possible physical 
probability; e.g. you are sure that the three sided die is fair and multiple 
trials are independent. You now expect with limiting probability one that 
the average number of spots showing in a long series of trials will be 2. 
Suppose that you now get the information that this empirical average on 
a long sequence of trials including trial i was different from 2, say b. 
Conditional on the evidence, your probabilities of  outcomes on trial 1 will 
change. Taking the limit of these probabilities as the number of trials goes 
to infinity, we get the probability distribution that is given by applying 
MAXENT to the constraint Ef(T)=b.  More generally, under suitable 
regularity conditions if Tis a sufficient statistic, for an l iD sequence of 
random variables conditioning on an empirical average 1/n ~i T(Xi)= b 
gives in the limit the same result as applying MAXENT to EyT(X1)= b. 21 
Conditioning on a biased mean of a sufficient statistic can be used to give 
us a supposing or hypothesizing rule; a way of moving from one statistical 
hypothesis to another. M A X E N T  gives us a selection function with the 
remarkable property o f  agreement with the rule of  conditioning on a 
biased mean of  a sufficient statistic. 

VIII .  C O N C L U S I O N  

The philosophical controversy concerning the logical status of MAXENT 
may be in large measure due to the conflation of  two distinct logical roles: 
(1) A general inductive principle for updating subjective probabilities (2) 
a supposing rule for moving from one chance probability to another. 
When judged under standards of dynamic coherence appropriate to (1), 
MAXENT is found wanting. When judged in terms of the logic appro- 
priate to (2) MAXENT yields for convex closed constraint sets a reason- 
able selection function with interesting connections with sufficiency and 
conditioning. Indeed it is just the features of  MAXENT which make it 
appropriate for (2) which make it inappropriate for (1). MAXENT can 
be thought of as part of Bayesian logic. But it is part of the logic of 
supposition rather than the logic of  induction. 22 

NOTES 

J The example is due to Adams (1970). See also the discussion in Lewis (1976). 
z Kullback and Leibler (1951); The rule is extensively studied in Kullback (1959). 
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3 Jaynes (1957, 1963, 1967, 1974, and 1980). 
4 E.g. statistical mechanics (Jaynes, 1957; image enhancement Frieden, 1972). 
5 Jaynes, Shore and Johnson (1980), Williams (1980), Cheesman. 
6 Friedman and Shimony (1971), Shimony (1073), Dias and Shimony (1981), Shimony 
(1985), Seidenfeld (198-). 
7 At least insofar as one can tell from the discussion. 
s The dutch book is constructed in Goldstein (1983) and van Fraassen (1984). For further 
discussion of principle M and its generalizations see Gaifman (forthcoming) and Skyrms 
(1987a,b). 
9 Uniqueness is guaranteed by strict convexity of the entropy as a function of P. 
1o Or, letting m =P ,  Jw Q log Q dP. 
11 The constraint set being a convex set closed in the topology of variational distance 
guarantees the existence of a MAXENT solution. 
12 See Kullback (1959); Csizar (1975). In particular the minimum discrimination infor- 
mation equation, (MDI) holds in general for the maxent solution it exists. We will use this 
fact in Section VI. 
13 There is an extensive discussion in Skyrms (1987). 
14 See Skyrms (1980a,b) and Good (1981). 
is E.g. Williams (1980) " the purpose of the principle is to assist in the rational modification 
of beliefs." (p. 132, ftnt 1). See also Shore and Johnson (1980); Domotor (1980); Cheesman 
(1983). 
16 van Fraassen (1980, 1981); Shimony (1973); Dias and Shimony (1981); Friedman and 
Shimony (1971). 
~7 For a quick survey see Diaconis and Zabell (1982) Sections 5 and 6. The point applies 
generally to minimization of any f-divergence in the sense of Csizar (1967). Diaconis and 
Zabell show that the variational distance and Hellinger distances are both f-divergences. 
See also May and Harper (1976). 
t8 "An  interesting fact which may have some deep significance as not yet seen, is that the 
class of maximum entropy functions is, by the Pitman-Koopman theorem, identical with 
the class of functions admitting sufficient statistics." Jaynes (1979), p. 87. 
19 There is a whole family of theorems of this nature. One can consider multidimensional 
sufficient statistics, and one can consider refinements of the regularity conditions. See 
Koopman (1936), Hipp (1974). 
z0 See Freedman (1962) and Diaconis and Freedman (1981). 
21 See van Campenhout and Cover (1981); Tjur (1974); Zabell (1974). 
zz Research partially supported by N.S.F. grant SES-8605122. 
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