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I Updating probabilities

I Joyce’s accuracy-first justification of Probabilism

I How to proceed?

I Greaves and Wallace’s justification of conditionalization
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A basic result about probabilities.

For any finite partition {Ei} of the state space and any event H,

p(H) =
∑
i

p(H | Ei )
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H

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )

Eric Pacuit 4



H

E1

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )

Eric Pacuit 4



H

E1

E2

E3 E4

E5 E6

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )

Eric Pacuit 4



H

E1

E2

E3 E4

E5 E6

p(H) = p(H ∩ E1) + · · ·+ p(H ∩ E6)

= p(E1)
p(E1)

p(H ∩ E1) + · · ·+ p(E6)
p(E6)

p(H ∩ E6)

=
∑

i p(Ei )P(H | Ei )

Eric Pacuit 4



E1

E2

E3 E4

E5 E6
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Updating probabilities

Orthodox Bayesian Policy

I accept as admissible input only propositions;

I as response to such an input the only admissible change is
conditioning the prior on the proposition in question.

Departing from a (orthodox) Bayesian policy:

1. accept as admissible a wider variety of inputs (e.g. expected
values);

2. an admissible response to such an input can be a change in
the prior that is not the result of conditioning;

3. an admissible response to such an input may be non-unique,
that is, the posterior may not be uniquely determined by the
prior + input.
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p0

E
p0(E ) > 0

p(·) = p0(· | E )

(M) p0(A | pf ) = pf (A)
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p0(·,>)

E

p(·) = p0(·,E )

(M) p0(A | pf ) = pf (A)
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p0

(E1 : q1, . . . ,Ek : qk)
{Ei} is a partition,

∑
i qi = 1

p(·) =
∑

i qi ∗ p0(· | Ei )

(M) p0(A | pf ) = pf (A)
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p0

C: set of constraints

p satisfies C

(M) pf (A)
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MAXENT

Let us start with the simplest case, where our outcome space, X ,
contains only a finite number of points, x1, x2, . . . , xn. Then the
entropy of a probability, p, on this space is:

−
∑
i

p(xi ) log p(xi )

and the information is the negative of the entropy.

The minimum information or maximum entropy probability is the
one which makes the states equiprobable: p(xi ) = 1

n .
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Consider three die x1, x2, x3 and a random variable f such that
f (xi ) = i .

E[f ] = p(x1)f (x1) + p(x2)f (x2) + p(x3)f (x3)

What probabilities maximize entropy under the constraint that
E[f ] have different values?
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MAXENT

E[f ] p(x1) p(x2) p(x3)

1 1 0 0

0.1 0.907833 0.084333 0.007834

0.2 0.826297 0.147407 0.026297
...

...
...

...

0.8 0.438371 0.323257 0.238271

0.9 0.384586 0.330829 0.284586

2.0 0.333333 0.333333 0.333333

2.1 0.284586 0.330829 0.384586

2.2 0.238372 0.323257 0.438370
...

...
...

...

2.8 0.026297 0.147407 0.826296

2.9 0.007834 0.084332 0,907834

3.0 0 0 1
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MAXENT

E[f ] p(x1) p(x2) p(x3)

1 1 0 0
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2.1 0.284586 0.330829 0.384586
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2.9 0.007834 0.084332 0.907834
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The MAXENT probabilities are not closed under mxing: A mixture
of (1, 0, 0) and (0, 0, 1) is (0.5, 0, 0.5), but this is not in the list...
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Kullback-Leibler

Suppose that we start with a prior probability, p0, and move to a
posterior p1 which satisfies certain constraints. The
Kullback-Leibler “distance” is:

I (p1, p0) =
∑
i

p1(xi ) log
p1(xi )

p0(xi )
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p0

C: set of constraints

p satisfies C
p minimizes I (p, p0)

(M) pf (A)
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p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

p0(· | Ei )p0(· | E1) p0(· | E2) p0(· | Ek−1) p0(· | Ek)

· · · · · ·

(M) p0(A | pf ) = pf (A)
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p0

E1 E2 Ei· · · · · · EkEk−1

{Ei} is a partition

pip1 p2 pk−1 pk

· · · · · ·

(M) p0(A | pf ) = pf (A)
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Suppose that you are in a learning situation even more amorphous
than the kind which motivates Jeffrey’s idea. There is no nontrivial
partition that you expect with probability one to be sufficient for
your belief change....Perhaps you are in a novel situation where you
expect the unexpected observational input....You are going to just
think about some subject matter and update as a result of your
thoughts...I will consider the learning situation a kind of black box
and attempt no analysis of its internal structure.
asdd (Skyrms, pg. 96, 97)
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p0

pp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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p0

pfp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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Martingale Property

p0

pfp1 p2 · · · pn−1pn· · ·

(M) p0(A | pf ) = pf (A)
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It was suggested by Skyrms (1990) that this principle provides a
plausible way to distinguish learning situations from situations
where one expects probabilities to change for other reasons, such
as getting drunk, having a brain lesion or having a dangerously low
blood sugar level.

[Huttegger] develops an account in which the reflection principle is
a necessary condition for a black-box probability update to count
as a genuine learning experience.

Simon Huttegger. Learning Experiences and the Value of Knowledge. Philo-
sophical Studies, 2013.
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The Value of Knowledge

The expected utility of an uninformed decision cannot be greater
than the prior expectation of an informed decision.
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The Value of Knowledge

Why is it better to make a “more informed” decision?
Suppose that you can either choose know, or perform a costless
experiment and make the decision later. What should you do?

I. J. Good. On the principle of total evidence. British Journal for the Philosophy
of Science, 17, pgs. 319 - 321, 1967.

“Never decide today what you might postpone until tomorrow in
order to learn something new”
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Choose between n acts A1, . . . ,An or perform a cost-free
experiment E with possible results {ek}, then decide.

EU(A) =
∑
i

p(Ki )U(A & Ki )

Then,
U(Choose now) = max

j

∑
i

p(Ki )U(Aj & Ki )

= max
j

∑
k

∑
i

p(Ki )p(ek | Ki )U(Aj & Ki )
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The value of an informed decision conditional on e:

max
j

∑
i

p(Ki | e)U(Aj & Ki )

U(Learn, Choose ) =
∑

k p(ek) maxj
∑

i p(Ki | ek)U(Aj & Ki )

=
∑

k p(ek) maxj
∑

i (
p(ek | Ki )p(Ki )

p(ek )
)U(Aj & Ki )

=
∑

k maxj
∑

i p(ek | Ki )p(Ki )U(Aj & Ki )

Compare maxj
∑

k

∑
i p(Ki )p(ek | Ki )U(Aj & Ki ) and∑

k maxj
∑

i p(ek | Ki )p(Ki )U(Aj & Ki )∑
k maxj g(k , j) is greater than or equal to maxj

∑
k g(k , j), so the

second is greater than or equal to the first.
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(M) implies value of knowledge

Suppose that (M) holds.

Then (assuming that each p(pf ) is positive) your value for
choosing an act now is

max
j

∑
i

p(Ki )u(Aj&Ki ) = max
j

∑
i

∑
f

p(Ki | pf )p(pf )u(Aj&Ki )

= max
j

∑
f

∑
i

pf (Ki )p(pf )u(Aj&Ki )

The value of choosing after the learning experience is:∑
f

p(pf ) max
j

∑
i

pf (Ki )u(Aj&Ki )

The latter term cannot be less than the former term on general
mathematical grounds.
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I The experiment is assumed to be essentially costless;

I You know that you are an expected utility maximizer and that
you will be one after learning the true member of the partition.

I In the classical theorem you know that you will update by
conditioning; in Skyrms’ extension, you know that you will
honor the martingale principle.

I By working within Savages decision theory, the states and acts
are probabilistically independent (choosing an act does not
give any information about the state).
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I The states, acts and utilities are the same before and after the
learning experience.

I Having the learning experience does not by itself alter your
probabilities for states of the world (although the outcomes of
the experience usually do); the learning experience and the
states of the world are probabilistically independent.

Eric Pacuit 15



...the martingale principle should not be applied to belief changes
in epistemologically defective situations. In situations of memory
loss, of being brainwashed or being under the influence of drugs,
(M) should obviously not hold. If you believe that in an hour you
will think you can fly because you’re about to consume some funny
looking pills, then you should not already now have that belief.

So, the martingale principle is claimed to apply if you learn
something in the black-box, but not if you learn nothing or other
things happen besides learning.
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A genuine learning situation is partially characterized in the
following way:

Postulate. If a belief change from p to {pf } constitutes a genuine
learning situation, then∑

f

p(pf ) max
j

∑
i

pf (Ki )u(Aj&Ki ) ≥ max
∑
i

p(Ki )u(Aj&Ki )

for all utility values u(Aj&Ki ) with strict inequality unless the same
act maximizes expected utility irrespective of which of the pf
occurs.
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If a belief change leads you to foreseeably make worse choices than
you could already make now in some decision situations, then it
cannot be a pure learning experience. Perhaps you are bolder after
having taken those funny looking pills, for example. From your
current perspective, this might help you in some decision problems,
but it will be harmful in others.

Eric Pacuit 18



F. Dietrich, C. List and R. Bradley. Belief revision generalized: A joint charac-
terization of Bayes’s and Jeffrey’s rules. manuscript.
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Characterization Result

Responsiveness: The agent’s revised belief state respects the
constraint given by the input.

Conservativeness: For all belief-input pairs (p, I ), if I is “silent”
on the probability of a (relevant) event A given another B, this
conditional probability is preserved.

Eric Pacuit 20



A decision-theoretic example

Ann, an employer, must decide whether to hire Bob, a job
candidate. There is no time for a job interview, since a quick
decision is needed. Ann is uncertain about whether Bob is
competent or not; both possibilities have prior probability 1

2 . It
would help Ann to know whether Bob has previous work
experience, since this is positively correlated with competence, but
gathering this information takes time.
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p(E ) ∗max(EUE (h),EUE (h))

= 0.5 ∗ 2 + 0.5 ∗ −1 = 0.5

Nature

Ann

v(γ) 0 Ann

v(γ)− 1 −1

(γ, δ)

h h g

h h

Eric Pacuit 22



Now suppose Ann follows her rational strategy. She writes to Bob
to ask whether he has work experience. At this point, however,
something surprising happens. Bob’s answer reveals right from the
beginning that his written English is poor. Ann notices this even
before figuring out what Bob says about his work experience. In
response to this unforeseen learnt input, Ann lowers her probability
that Bob is competent from 1

2 to 1
8 .
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As she reads the rest of Bob’s letter, Ann eventually learns that he
has previous work experience, which prompts a Bayesian belief
revision...
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1. In her first decision (between h, h, and g), Ann is falsely
taken to foresee the possibilities of learning G or learning
G ...This artificially complicates her expected-utility
maximization exercise...

2. The additional conditionalization on G misrepresents Ann’s
beliefs, since the absence of linguistic errors in Bob’s letter
goes unnoticed.

3. Although it is true that the unforeseen news that Bob’s
written English is poor implies that Ann cannot uphold her
original conceptualization of the decision problem, it does not
follow that Ann re-conceptualizes her decision problem in line
with the above model.
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Nature does not reveal G or
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a surprise move by Nature:
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Topics

I Classic papers (Makinson, Diaconis & Zabel, KLM, . . . )

I Beliefs, credences and probability (Leitgeb’s stability theory of
belief, Pettigrew, Fitelson & Shear)

I Revising probabilities (List, Dietrich & Bradley, Halpern)

I Conditioning vs. learning (Osherson et al., Curpi et al.,
Skyrms)

I Context shifts (Halpern & Grünwald, Romeijn, Pettigrew)

I Lottery, Preface and Review paradox (Leitgeb, Easwaren &
Fitelson)

I Iterated belief change, long-term dynamics, convergence
results (Huttegger, EP)

I Bayesian reasoning, reasoning to the best explanation,
case-base reasoning (Gilboa et al., Douven and Shubach)
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