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We present a general model in which agents learn by observing a stochastic
process. We show that agents not only learn in such a model but also learn
commonly. By this we mean that in the long run agents will form common beliefs
concerning important facts and in particular they will commonly believe that their
views regarding the future are similar. Journal of Economic Literature Classifica-
tion Numbers: C72, C73, D82. © 1995 Academic Press, Inc.

1. INTRODUCTION

The purpose of this paper is to bridge a gap between two types of
results concerning learning processes in which several agents gain new
information and update their beliefs according to Bayes’ rule. In the first
type the emphasis is on convergence of the learning process to common
knowledge; learning takes place by information exchange, which leads
eventually to common knowledge of certain facts. In the other, agents
are engaged in a repeated game and learn about each other’s behavior
by observing past moves. The purpose of the latter model is to show
convergence to equilibrium, but the conclusions regarding the learning
process are limited. The environment is usually stochastic and the players
gain hardly any knowledge (i.e., facts which are assigned probability one)
let alone common knowledge. We present here a general model in which
agents learn by observing a stochastic process, and we show that even
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in this general model agents not only learn but also learn commonly. By this
we mean that in the long run agents will form common beliefs concerning
important facts and in particular they will commonly believe that their
views regarding the future are similar.

A model of the first type is presented by Geanakoplos and Polemarchakis
(1982). In this model two agents inform each other repeatedly about the
probability they assign to a fixed event. After each period they update
their posterior beliefs on the basis of what they learn about each other.
The process converges after a finite time,and from then on the agents do
not change the probability they assign to the fixed event. These probabili-
ties become common knowledge and therefore by Aumann (1976) they
are equal. In a similar process discussed by Sebenius and Geanakoplos
(1983) the agents announce their consent to bet on some fixed event. Here
again, the process reaches a point at which the posterior probability of
the event becomes common knowledge and as a result one of the agents
announces his refusal to bet. More elaborate exchanges of information in
groups of more than two agents are discussed by Parikh and Krasucki
(1990).

Models of mutual learning in games which leads to equilibrium have
recently occupied the attention of several authors. (See Kalai and Lehrer
(1993) for a comprehensive reference list). In Kalai and Lehrer (1993)
learning is modeled by Bayesian updating. Each player starts with initial
erroneous beliefs regarding the strategies of all other players. The authors
show that if each player assigns a positive probability to the real strategy
played by the others,! their beliefs about the future converge in the long
run. The merging of players’ opinions in this model is related to a result
of Blackwell and Dubins (1962) concerning a single agent who learns about
the probability distribution of the future by observing a stochastic process.’

In this paper we study a general model of mutual learning in a Bayesian
model. This model includes repeated games with incomplete information
as a special case. The agents start with the same prior distribution on a
state space. In addition they have private information which is given by
finite partitions. At every stage the outcome of a stochastic process is
observed by the agents and becomes common knowledge among them.
Each player updates his beliefs according to the observed outcome. We
show that the agents’ predictions regarding the future outcomes of the
process merge in the long run. More importantly, with probability one
this merging of opinions is common belief. In other words, the similarity
of beliefs becomes almost common knowledge.

! This is the ‘‘grain of truth’’ assumption in Kalai and Lehrer (1993). In fact, they use a
weaker assumption to derive their results.

2 1t js assumed in this model that the true probability distribution is absolutely continuous
with respect to the agent’s prior probability distribution.
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To illustrate this result, imagine two stockbrokers who graduated from
the same school and have the same view of the business world (this
corresponds to the common prior assumption). The brokers are employed
by different companies and therefore acquire different information about
the world (this differential information is modeled by the individual parti-
tions of the agents—the private information). In particular they evaluate
differently the future of the stochastic process of stock prices. It turns
out that the significance of the initial differential information diminishes
in time. By observing the stock prices, which are common knowledge,
the brokers learn something about the initial information of each other
and about future stock prices. The learning process converges and in the
long run the brokers have similar assessments of the distribution of future
prices. Moreover, our result says that this similarity of assessments be-
comes common belief among the agents. By this we mean that they believe
that their assessments are similar, they believe that they believe that the
assessments are similar, etc., where “‘believe’” stands for ‘‘assign high
probability.”’

The notion of *‘common belief,”” as expressed in the previous sentence,
is similar to the notion of common knowledge. While relaxing the level
of certitude, by replacing ‘‘know’’ with ‘*believe,”’ the concept of common
belief preserves the sense of the way in which information is shared among
the agents.? This work demonstrates the ability of common belief to convey
the extent to which information is shared for cases in which common
knowledge does not exist. Other examples where common belief serves
as a good proxy to common knowledge are discussed in Monderer and
Samet (1989, 1990).

2. THE CoMMON LEARNING THEOREM

Let (Q, 2, u) be a probability space. By a partition we mean a countable
measurable partition of ). A finite set / is the set of agents. Information
of the agents in each period t = 0, 1, 2, ... is given by partitions which
we describe as follows. At time ¢ = 0 agent i has a finite* partition IT°
with M, elements. For t = 1, 2, ... let f* be a discrete’ random variable,
and let TT’ be the partition generated by f', ..., f'. The agents observe

} This special way in which information is shared, which is hinted at in the word *‘com-
mon,”’ is expressed by the infinite hierarchy of information about information. There are
also alternative ways to describe it (see Monderer and Samet (1989)).

* The finiteness of the initial information is crucial for our results. We discuss it at the
end of Section 2.

5 Our results hold without this assumption, but the proofs and notations may become
more cumbersome.
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the value of f* at each period ¢t = 1 and as a result agent i’s information
at time ¢ = 1 is given by the partition I1! which is the join® T \/ TI". We
will assume that all sets in all the involved partitions have positive proba-
bility.’

For a given event £ and 0 < p =< 1, let B7 (E) be the event that agent
i p-believes E at time t, i.e., the event that at this time he assigns a
probability of at least p to E. Thus

BY(E) = {w|w(E|TT{(w)) = p},

where 11! (w) is the element of II! which contains w. We denote by
BP(E) the event that all agents p-believe E, that is,

BI(E) = N, BY(E).
The event that E is common p-belief is
CHE) = Ny (BD(E).

For further details concerning common beliefs see Monderer and Samet
(1989).
The results of this paper are the consequence of the following principle.

Tue COMMON LEARNING THEOREM.” Let (), be a nondecreasing
sequence of events such that lim,_,, u(S,) = 1 and let 0 = p < 1. Then
for almost all o there exists time T = T(w) such that for each time t =
T, the agents commonly p-believe S,, at time t in w, i.e., ® € C/(E).
Equivalently,

w(U7= Nzt C{’(S,)) = 1.

To prove this theorem we use the following two lemmata.

LEMMA |. Let M =2, M,. Then for any event E, time t, and probabil-
ity p,

® The join of two partitions is the coarsest common refinement of the partitions. In terms
of the fields generated by the partitions, the join corresponds to the smallest field which
contains both fields.

7 Fudenberg and Tirole (1991) prove a theorem of the same nature for the case in which
the information given 1o the agents in each period is trivial. In their theorem the set § is
also fixed in time but the probability distribution changes such that the probability of §
approaches 1.
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CYE) = (BHYM(E).

Proof. Note that for t = 1 each element of 1’ is a union of elements
of I1! for all i € I. This implies that for any event E and each agent i,
BY(E) = U BV (E), where (E);=, is the partition of E induced by II".
The partition that I1' induces on B} (E) is precisely (B? (E)));»,. Therefore
for each n, (BYY(E) = U (BY)'(E), and also CY(E) = U, CH(E).

Observe that each element of I’ is a union of at most M, elements of
IT:. It is easy to see that for any event X the sequence ((BY)(X)),, is
decreasing. Thus for each j, (B)"(E)) is constant for n = M and therefore
C/(E) = (B)M(E). We conclude that

CUE) = U \CUE) = U, (BHY(E) = (BHYM(E),

as we wanted to prove. =

LEMMA 2. Let (S),., be a nondecreasing sequence of events such that
lim,_,. w(S) = 1. Then for all 0 = p < 1,

“(Ua;:l mlETBf(S[)) =1.

Equivalently, for almost all & there exists T = T(w) such that for all
t=T, w € BXS)).

Proof.® It is enough to show that the lemma holds for B, (rather than
B?) for each agent i. Denote B, = B? (S,) and let B, be the complement
of B,. It suffices to show that limz_,. u(U,.7B,) = 0. Note that for each ¢
and for each S € I1,, which is a subset of B,, u(S,|S) =1 — p, where §,
is the complement of S,. Therefore, also for T = r, u(S;|S) =1 — p,
since (S,),~, is nondecreasing.

Thus, forevery T = 1,

IL(ET( Ur>T§t) =1 -p,

which implies that u(S;) = (I — p)u(U,-7B)). As limp,. u(Sp = 0 the
result follows. =

Proof of the Common Learning Theorem. We prove by induction on
m that

lim N(mtzT(B‘,’)m(Sr)) =1

T—x

8 Kalaj and Lehrer (1993) proved a special case of Lemma 2. We use a similar proof.
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By Lemma 1, the case m = M is what we need to prove. The case
m = 1 is proved in Lemma 2. Suppose we proved for m. Denote

2y

ST = m,zT(B,p)m(S()-

Note tt}at since S, C B?%(S)), it follows that Bf’(f,) C (B)™(S,). Now,
since (8)),~, is nondecreasing and by the induction hypothesis it follows
that lim,_,.. u(S,) = 1. Thus by Lemma 2,

I = lim p(N=7B2(S)) = lim (=7 (BD™*1(S)).

T

which proves our claim form + 1. m

The finiteness of the initial partitions is crucial in the Common Learning
Theorem. A counterexample is easy to construct when these partition are
infinite. Suppose there are two agents, 1 and 2. Let

Q={0,1,...,n, ...}

The partition of agent 1 is {{0}, {1, 2}, {3, 4}, ..., {2n — 1, 2n} ...} and
that of agent 2 is {{0, 1}, {2, 3}, ..., {2n, 2n + 1} .. .}. Let the probability
distribution over Q be u(n) = (1 — g)q", for 0 < g < 1. Suppose the
signals the agents receive in each period are trivial, i.e., [1' =  for each
t. Thus for all ¢, B?, = Bj,. Let S, = {1, ..., t}. Consider an odd ¢. Then
for any p > /(1 + gq), t & B{,(S). Therefore also (+ — 1) &
B ,(Bf ((S). Continuing down to ¢ = 0 we see that C?(S,) = . This can
be easily shown also for even #’s and thus the Common Learning Theorem
does not hold.

Note that the Common Learning Theorem is stated for any p < I but
fails to hold for p = 1. Indeed, change in the previous example the initial
partition for both players to be {Q}. Then B} (S,) = D forallrand i =1,
2 and therefore C#(S) = .

3. CoMMON LEARNING OF THE INITIAL INFORMATION

At time 0 each of the agents has a posterior probability regarding the
initial information of the other agents. As the stochastic process unfolds,
each agent updates this posterior probability. In the long run the posteriors
converge, which means that there is not much to learn anymore. Not
much can be said in general about the limit of this converging learning.
Clearly the agents do not necessarily learn the true initial information of
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each other and their beliefs do not even have to merge in the long run.
We show in this section, however, that the fact that the agents have
already learnt whatever there was to be learnt becomes almost common
knowledge or more precisely common belief.

For agent i we will denote by u!(w) the posterior probability distribution
of [ in state w at time . That is, forall § € 3,

£H)S) = u(S | T w)).

Let II° be the join of all agents’ initial partitions, that is, [1%w) =
N;e; % w), for each w. The numbers (u!(w)(S))se0 describe agent i’s
posteriors of the initial information of all agents. By the Martingale Con-
vergence Theorem these posteriors converge almost surely. Set for each
Ssene,

xi(w)(S) = Eil’g i (@)(S).

For e > 0 and for T = 1 let F% be the event that the posteriors of the
initial information of each agent have converged by the time T to an
e-neighborhood of their limit, i.e.,

F&= N Nmr Ngept {w € Q| pli(w)(S) — x7(w)(S) |< &}

THEOREM 1. Let € > 0 and 0 = p < 1. Then for almost all « there
exists a time T = T(w) such that for all t = T it is common p-belief at t
that the posteriors of the agents, concerning their initial information,
have converged to an g-neighborhood of their limit.

Proof. Note that the sequence (w(F£)),., converges to 1 by the Martin-
gale Convergence Theorem, and apply the Common Learning Theorem
to the sequence (£F8),.,. =&

The following lemma will be used in the next section.

LEMMA 3. For almost all w and for all i,
X (@)T%w)) > 0.

Proof. As I is finite it suffices to prove the claim for a fixed agent i.
Let S € Iy and set D = {0 € Q|x(w)(S) = 0}. It is enough to show that
u(S N D) = 0. By the Martingale Convergence Theorem, x*(w)(S) = E(15|
3N w), where X7 is the o-field generated by [TYU (UZ, IT). As D €
37,
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| EQ513P@) du(0) = [ 15t0) dp (@),
D D

Because E(15|2X) = 0onD, wW(SND)=0. m

4. CoMMON LEARNING OF THE FUTURE

At each point in time each agent anticipates the future of the stochastic
process according to a probability distribution which is based on the
information he has accumulated. In the long run the distributions of the
agents become similar and moreover they are similar to the distribution
that could have been formed by the agents had they shared their informa-
tion. We show that this similarity of distributions is commonly believed
by the agents.

We start by defining similarity of distributions. Let &, and &, be two
probability measures on (£, 3). We say that £, and &, are 8-close (with
respect to the stochastic process f', f2, .. .,) if there exists an event B in
the o-algebra generated by the process such that the following two condi-
tions are satisfied:

(@A) &B)=1-8fori=1,2, and
(b) foralmostallu € B, forall ¢t = 1,

5 SdTwW) _
e <§2(H’(u))<e .

The last condition can also be written in a way that reveals the symmetry
of ¢, and &,, as

[log &,(IT"(u)) — log &(I1'(w)) |< 6.

Denote by Aj the set of all states « for which for all ¢ = T the posterior
probability distributions (u!(u)),c, are pairwise §-close. That is,

A% = Ny N {u| piu) and p!(u) are 8-close}.

THEOREM 2. Let 0 < p < 1 and 8 > 0. Then for almost all o there is
a time T = T(w), such that for all t = T the following holds:

(@) ui(w) and pj(w) are 8-close for all i, j € I, and
(b) it is common p-believed in w at time t that from time t, the
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posterior probability distributions of all agents will be pairwise §-close
forever. That is,

#’(U;E] (AaT N (mr?TCf(Af)))) = 1.

Proof. Since (A?),., is nondecreasing, it suffices to show, by the Com-
mon Learning Theorem, that lim;_,.. u(4%) = 1.

Let Bf, be the g-belief operator of the join of all agents in I. That is,
for each event §,

B#,(S) = {w| w(S|1T"(w) N T%w)) = g}.
Also, set
D,= Nigs{o : xX(w)T1%w)) > n}.

Note that by Lemma 3, lim,_,, u(D,) = 1.
We will show that forall T=1and n = 0,

for sufficiently small £ and big g. As by Lemma 2,

lim F§N (N, B(FD)) =1,

T—=

by (1),

w(D,) < lim p(AD.

Since lim,_,, u(D,) = 1, the result will follow.

To prove (1) consider w € D, N F5N(N 1B, (F})). We proceed to
show that if £ is close enough to 0 and g close enough to 1 then for
t = T, and for all i, j € I, uj(w) and pf(w) are 8-close.

Set

A = TT'w) N T%w) N F¢,

and for every s = | denote
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B, = U, c 1)
and
B =N, B,.
The set B, includes each point in Q which shares the same history of the
stochastic process, until time ¢ + s, with some point in A. We complete

the proof by showing that for appropriate € and g, for all v € B and for
alls = 1,

s M@
i (@)(I17(s))

2
and
ww)B)=1-8. 3)

To evaluate the middle term in (2) we consider the ratio

_ wH)IT"(v))
()W)

As v € B, there is u € A with II""*(«) = I1'**(v). Since also 4 € IT}(w) it
follows that u!(w) = wi(u). Substituting u for both v and v in (2) and
developing the numerator and denominator of Z; we find that

_ pT20) N ITw)) (7 5G0) 0 TT)TT ()

z,

pdiw)) I O T (w)
_ p(1%) NIw) pdl @) N 1%u))
p(liG) w17 (u))
_ #i)I1°w)
S )IT1%w))

Since u € F° it follows that | w!(u)(I1%w)) — ™ *(u)I1°w))| = 2. Since
w € F; N D,, we have pH(w)(I1%w)) = n — &. Remembering that u{(u) =
1! (w) we conclude that wf™*(I %w)) = n — 3e, which is positive for small
enough &. Thus, | Z; — 1| < 2&/(n — 3¢). This, for small ¢, guarantees that
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e < 7, < o2, (4)
If we repeat the argument with j instead of i it yields
e—vS/Z <Z:,< 6’5/2.

Taking the ratio of Z; and Z; we prove (2). To show (3) we note that B, D
F;and w € B,(F!) and therefore uj(w)(B,) = g. In addition by (4),
wia)IT5(0)) = e ¥ ui(w)IT'*4(v)), for each v € B,. Thus, u/(w)(B,) =
ge ¥ = 1 — &, if q is close enough to 1. As (B,),., is decreasing, (2) is
proved. ®
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