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R. Pettigrew. Accuracy and the Credence-Beleif Connection. Philosophers Im-
print, 15:16, 2015.
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(1) Veritism Accuracy is the sole source of epistemic value for a
doxastic state.

(2) Strict Propriety The inaccuracy of a credence function is
measured by a continuous, strictly proper scoring rule.

(3) Dominance It is irrational to adopt an option that is strictly
dominated by an alternative option that is not itself even weakly
dominated.

(4) Predd et al./de Finnetti Theorem.

Therefore, (5) Probabilism An agent is rational only if her
credence function is probabilistic.
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q : {0, 1} × [0, 1]→ [0, 1] q(i , x) = (i − x)2.

B(c ,w) :=
∑

X∈F q(w(X ), c(X ))

cCleo(X ) = 0.7, cCleo(X ) = 0.6

B(cCleo ,wX ) = (1− 0.7)2 + (0− 0.6)2 = 0.45

B(cCleo ,wX ) = (0− 0.7)2 + (1− 0.6)2 = 0.65

c∗Cleo(X ) = 0.55, c∗Cleo(X ) = 0.45

B(c∗Cleo ,wX ) = (1− 0.55)2 + (0− 0.45)2 = 0.405

B(c∗Cleo ,wX ) = (0− 0.55)2 + (1− 0.45)2 = 0.605
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wX wX

cCleo B(cCleo ,wX ) = 0.45 B(cCleo ,wX ) = 0.65
c∗Cleo B(c∗Cleo ,wX ) = 0.405 B(c∗Cleo ,wX ) = 0.605
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A function s : {0, 1} × [0, 1]→ [0,∞] is a proper scoring rule in
case:

1. ps(1, x) + (1− p)s(0, x) si uniquely minimized at x = p for
p ∈ [0, 1].

2. s is continuous. For i ∈ {0, 1}, limn→∞ s(i , xn) = s(i , x) for
any sequence xn from [0, 1] converging to x .
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Is(c ,w) :=
∑
X∈F

s(w(X ), c(X ))

Logarithmic Scoring Rule:

I l(1, x) = − log x ,

I l(0, x) = − log(1− x)

Spherical Scoring Rule:

I h(1, x) = − r√
r2+(1−r)2

,

I h(0, x) = − 1−r√
r2+(1−r)2
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Perfectionism The accuracy of a credence function at a world is
its proximity to the ideal credence function at that world.
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Let S be a set. A distance is a function D : S × S → R+
0 such

that

I D is non-negative: D(c , c ′) ≥ 0 with equality iff c = c ′

I D is symmetric: D(c, c ′) = D(c ′, c)

I D satisfies triangle inequality: D(c, c ′′) ≤ D(c , c ′) + D(c ′, c ′′)

We will assume that D satisfies non-negativity. I.e., D is a
divergence.
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Perfectionism If I is a legitimate inaccuracy measure, there is a
divergence D such that I (w , c) = D(iw , c). Recall: iw is the ideal
or vindicated credence function at w . We say that D generates I
(relative to that notion of vindication).
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Brier Accuracy

Alethic Vindication The ideal credence function at world w is
the omniscient credence function at w , namely, vw .

Squared Euclidean Distance Distance between credence
functions is measured by squared Euclidean distance.
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Additivity

If I is a legitimate (global) measure of inaccuracy, then there is a
local measure of inaccuracy s such that

I (w , c) =
∑
X∈F

s(iw (X ), c(X ))

where iw is the ideal credence at w .
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When we say that we represent an agent by her credence function,
it can sound as if we’re representing her as having a single, unified
doxastic state.

Really, we are just representing her as having an agglomeration of
individual doxastic states, namely, the individual credences she
assigns to the various propositions about which she has an opinion.
A credence function is simply a mathematical way of representing
this agglomeration; it is a way of collecting together these
individual credences into a single object.
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I is a legitimate inaccuracy measure, then there is a divergence D
such that

I I (w , c) = D(iw , c) (in such a case, we write I = ID)
I There is a function s : [0, 1]× [0, 1]→ [0,∞] such that

• for all x , y ∈ [0, 1], s(x , y) ≥ 0 with equality if x = y .
• D(c , c ′) =

∑
X∈F s(c(X ), c ′(X ))
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Continuity If I is a legitimate inaccuracy measure and there is a
divergence D generated by s such that

I (w , c) = ID(w , c) = D(iw , c) =
∑
X∈F

s(iw (X ), c(X ))

then s(x , y) is continuous in both its arguments.
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To demand that s is continuous in its second argument is to say
that there are no ‘jumps’ in inaccuracy as credences change - that
is, small changes in credence will give rise to small changes in
inaccuracy; there can be no small shift in credence that is
accompanied by a large jump in inaccuracy.
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Calibration

Granting that [an agent] is going to think always in the same way
about all yellow toadstools, we can ask what degree of confidence
it would be best for him to have that they are unwholesome. And
the answer is that it will in general be best for his degree of belief
that a yellow toadstool is unwholesome to be equal to the
proportion of yellow toadstools that are unwholesome. (This
follows from the meaning of degree of belief.)
adf (Ramsey, 1931, 195)
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Decomposition If I is a legitimate inaccuracy measure generated
by a divergence D, then there are α, β such that

D(vw , c) = αD(cw , c) + βD(vw , c
w )

cw is the ideally calibrated credence in w .
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Theorem (Pettigrew). Suppose Alethic Vindication, Perfectionism,
Divergence Additivity, Divergence Continuity and Decomposition.
Then, if I is a legitimate inaccuracy measure, there is an additive
Bregman divergence D such that I (w , c) = D(vw , c).
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Symmetry If I is a legitimate inaccuracy measure generated by a
divergence D, then D is symmetric: that is, D(c , c ′) = D(c ′, c) for
all c , c ′
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Theorem (Pettigrew). Suppose Alethic Vindication, Perfectionism,
Divergence Additivity, Divergence Continuity, Decomposition, and
Symmetry. Then, if I is a legitimate inaccuracy measure, then I is
the Brier score or some linear transformation of it.
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(1) Veritism Accuracy is the sole source of epistemic value for a
doxastic state.

(2) Strict Propriety The inaccuracy of a credence function is
measured by a continuous, strictly proper scoring rule.

(3) Dominance It is irrational to adopt an option that is strictly
dominated by an alternative option that is not itself even weakly
dominated.

(4) Predd et al./de Finnetti Theorem.

Therefore, (5) Probabilism An agent is rational only if her
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A Lacuna in the Argument

There might be credences that violate Probabilism of which the
following hold:

I There are alternative credences in the same propositions that
accuracy-dominate those credences.

I There is no total doxastic state - which includes categorical
attitudes as well as credal attitudes - that accuracy-dominates
the total doxastic state to which those credences belong.
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A Lacuna in the Argument

Her imagined response has three parts: the first is a claim

1. there is a connection between credal attitudes and categorical
attitudes, such as full belief, full disbelief, and suspension of
judgment.

2. the inaccuracy of an agent’s total doxastic state ought to take
into account both the credences and full beliefs.

3. Cleo’s total doxastic state, which includes her credence
function cCleo , as well as her categorical doxastic attitudes, is
not accuracy-dominated given the inaccuracy measure for
total doxastic states usesd in the second part.

Eric Pacuit 26



b : F → {B,D, S}

I b(X ) = B means the agent believes that X

I b(X ) = D means the agent disbelieves that X

I b(X ) = S means the agent suspends judgement on X

Total doxastic state (b, c)
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Bridge Principles

Probability 1: b(A) = B iff c(A) = 1

The Lockean Thesis: b(A) = B iff c(A) > t
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c(X ) > t =⇒ b(X ) = B

1− t < c(X ) < t =⇒ b(X ) = S

c(X ) > 1− t =⇒ b(X ) = D

c(X ) = t =⇒ b(X ) = B or S

c(X ) = 1− t =⇒ b(X ) = D or S
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I LT [t] (Analytic) It is analytic that LT [t].

I LT [t] (Metaphysical) It is metaphysically necessary that LT [t].

I LT [t] (Normative) It is normatively required that LT [t].
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i : {0, 1} × {B,D, S} → [0, 1]

I i(1,B) = i(0,D) = R

I i(0,B) = i(1,D) = W

I i(1, S) = i(0,S) = N

E.g., R = 0, W = 1 (and R < N <W )

Ii(b,w) =
∑
X∈F

i(w(X ), b(X ))
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Ii,s((b, c),w) = Ii(b,w) + Is(c ,w)
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Theorem

I Let t = 0.7. That is, the Lockean threshold for belief is 0.7
and the threshold for disbelief is 0.3.

I Let the inaccuracy of a credence be measured by the
quadratic scoring rule q; and let the inaccuracy of a credence
function be measured by the Brier score it generates B.

I Let the inaccuracy of a categorical doxastic state be measured
by i, where R = 0, N = 0.3, and W = 1; and let the
inaccuracy of a belief function be measured by the inaccuracy
measure it generates, namely, Ii.

Then there is no Lockeant state (b∗, c∗) that accuracy-dominates
(bCleo , cCleo) when accuracy is measured by Ii,q
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Is partial dominance irrational?

w1 w2

Phil $5 $5

Rachel $10 $10

Option 1

w1 w2

Phil $10 $10

Rachel $20 $2

Option 2

...it is clear that my choice of Option 1 is not irrational. The
upshot: being dominated in part is not sufficient for irrationality,
even when the option that dominates in part is not itself
dominated in part.
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Hempel, Easwaran

An agent ought to adopt a belief function b such that, for all belief
functions b′ , we have∑

w

c(w)i(b,w) ≤
∑
w

c(w)i(b′,w))

As Hempel and Easwaran have shown, if we assume that R = 0
and W = 1 and N is closer to R than to W , then b minimizes
expected inaccuracy by the lights of c iff (b, c) is a Lockean1−N
state.
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I We know that Cleo’s state (bCleo , cCleo) is dominated by
(bCleo , c

∗).

I We also know that (bCleo , c
∗) violates Lockean1−N

(Normative) when N = 0.3.

I Thus, we know that there is a belief function b∗ 6= bCleo such
that c∗ expects b to be more accurate than c∗ expects bCleo
to be.

I For dominance reasons, we ought to prefer (bCleo , c
∗) to

(bCleo , cCleo).

I For expected accuracy reasons, we ought to prefer (b∗, c∗) to
(bCleo , c

∗).

I By the transitivity of preference, we ought to prefer (b∗, c∗) to
(bCleo , cCleo). Thus, Cleo is irrational, since there is an
available option that ought to be preferred to the one she has
adopted.
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However, there is an illegitimate move in this argument.
It is true that, from the point of view of part of part of (bCleo , c

∗)
— name, the credal part c∗ — (b∗, c∗) is better than (bCleo , c

∗)).
But it does not follow from this that the same is true from the
point of view of the total state (bCleo , c

∗) After all, if we instead
ask which state is optimal from the point of view of bCleo — that
is, the other part of the total state — we would most likely receive
as an answer a state that includes bCleo as its belief function.
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What we have just encountered is an instance of a more general
problem that arises when one seeks guidance from a doxastic state
that doesn’t present a consistent attitude to the world: different
parts of such a state often give rise to different and incompatible
preference orderings.

(Ellsberg example)
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Theorem 4 For all Lockean thresholds t, there is a Lockeant state
(b, c) such that:

I c is non-probabilistic;

I There is no Lockeant state (b∗, c∗) that accuracy-dominates
(b, c) when accuracy is measured by Ii,q where i is given by
R = 0, N = 1− t and W = 1.
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I We say that a scoring rule is normalised if
s(0, 0) = s(1, 1) = 0 and s(0, 1) = s(1, 0) = 1.

I We say that a scoring rule generates a connected inaccuracy
measure Is if, for each credence function, the set of credence
functions that dominates it is either empty or connected (in
the topological sense).
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Theorem 5 Suppose s is a continuous, normalised strictly proper
scoring rule that generates a connected inaccuracy measure Is.
Then there is 0.5 < r ≤ 1 such that, for all Lockean thresholds
t ≥ r , there is a Lockeant state (b, c) such that

I c is non-probabilistic;

I There is no Lockeant state (b∗, c∗) that accuracy-dominates
(b, c) when accuracy is measures by Ii,s, where i is given by
R = 0, N = 1− t and W = 1.
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In sum: We have seen that, if categorical doxastic states such as
full belief, full disbelief, and suspension of judgment are distinct
existences, and if they are connected by the metaphysical or
normative versions of the Lockean Thesis, then the Accuracy
Dominance Argument for Probabilism fails: there are total doxastic
states that include non-probabilistic credence functions that are
not accuracy dominated when their total inaccuracy is considered.

On the other hand, if they are not distinct existences and are
instead connected by the analytic version of the Lockean Thesis,
then the Accuracy Dominance Argument for Probabilism succeeds.
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1. If Shakespeare had not written Hamlet, it would never have
been written.

2. If Shakespeare didn’t write Hamlet, someone else did.

1. is a causal counterfactual, and 2. is an expression of a belief
revision policy.
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1. General Smith is a shrewd judge of character—he knows
(better than I) who is brave and who is not.

2. The general sends only brave men into battle.

3. Private Jones is cowardly.

I believe that (1) Jones would run away if he were sent into battle
and (2) if Jones is sent into battle, then he won’t run away.
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1. Ann cheats — she has seen her opponent’s cards.

2. Ann has a losing hand, since I have seen both her hand and
her opponent’s.

3. Ann is rational.

So, I conclude that she will not bet. But how should I revise my
beliefs if I learn that Ann did bet?

It may be perfectly reasonable for me to be disposed to give up 2.

I believe that (1) I Ann were to bet, she would lose (since she has
a losing hand) and (2) If I were to learn that she did bet, I would
conclude she will win.
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Updating vs. Revising
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Revision vs. Update

Suppose ϕ is some incoming information that should be
incorporated into the agents beliefs (represented by a theory T ).

An important distinction:

I If ϕ describes facts about the current state of affairs

I If ϕ describes facts that have possible become true only after
the original beliefs were formed.

Revising by ¬p (K ∗ ¬p) vs. Updating by ¬p (K � ¬p)

H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision and
minimal change. Artificial Intelligence, 52, pp. 263 - 294 (1991).
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The logic of updating differs from that of revision. This can be
seen from the following example:

To begin with, the agent knows that there is either a book on the
table (p) or a magazine on the table (q), but not both.

I Case 1: The agent is told that there is a book on the table.
She concludes that there is no magazine on the table. This is
revision.

I Case 2: The agent is told that after the first information was
given, a book has been put on the table. In this case she
should not conclude that there is no magazine on the table.
This is updating.
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J. Lang. Belief Update Revisited. Proceedings of IJCAI-07.

N. Friedman and J. Halpern. Modeling Belief in Dynamics Systems Part II:
Revision and Update. Journal of Artificial Intelligence Research, 10, pp. 117 -
167 (1999).

A. Herzig. Belief Change Operations: A shorty history of nearly everything, told
in dynamic logic of propositional assignments. AAAI, 2014.
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In the literature on belief change the distinction between static and
dynamic environment has become important....

it seems right to say
that belief change due to new information in an unchanging
environment has come to be called belief revision (the static case,
in the sense that the “world” remains unchanged), while it is fairly
generally accepted to use the term belief update for belief change
that is due to reported changes in the environment itself (the
dynamic case, in the sense that the “world” changes; compare our
analysis in the last subsection). It has been held for some time that
these cases support different logics (...) The established tradition
notwithstanding, it would be interesting to see a really convincing
argument for tying AGM revision to static environments.

Hannes Leitgeb and Krister Segerberg. Dynamic doxastic logic: why, how, and
where to?. Synthese, 155, pp. 167 - 190 (2007).
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dynamic case, in the sense that the “world” changes; compare our
analysis in the last subsection).

It has been held for some time that
these cases support different logics (...) The established tradition
notwithstanding, it would be interesting to see a really convincing
argument for tying AGM revision to static environments.

Hannes Leitgeb and Krister Segerberg. Dynamic doxastic logic: why, how, and
where to?. Synthese, 155, pp. 167 - 190 (2007).
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KM Postulates

KM 1: K � ϕ = Cn(K � ϕ)

KM 2: ϕ ∈ K � ϕ

KM 3: If ϕ ∈ K then K � ϕ = K

KM 4: K � ϕ is inconsistent iff ϕ is inconsistent

KM 5: If ϕ and ψ are logically equivalent then K � ϕ = K � ψ

KM 6: K � (ϕ ∧ ψ) ⊆ Cn(K � ϕ ∪ {ψ})

KM 7: If ψ ∈ K � ϕ and ϕ ∈ K � ψ then K � ϕ = K � ψ

KM 8: If K is complete then K � (ϕ ∧ ψ) ⊆ K � ϕ ∩ K � ψ

KM 9: K �ϕ =
⋂

M∈Comp(K)M �ϕ, where Comp(K ) is the class of
all complete theories containing K .
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Updating and Revising

K � ϕ =
⋂

M∈Comp(K)

M ∗ ϕ

H. Katsuno and A. O. Mendelzon. On the difference between updating a knowl-
edge base and revising it. Belief Revision, P. Gärdenfors (ed.), pp 182 - 203
(1992).
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T. Shear, J. Weisberg and B. Fitelson. Two Approaches to Belief Revision.
manuscript, 2016.
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u(B(p),w) =

{
r if p is true at w

−w if p is false at w

1 ≥ w >

(
1 +
√

5

2

)
· r > 0
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EEU(B(p), b) :=
∑
w∈W

b(w)u(B(p),w)

EEU(B, b) :=
∑
p∈B

EEU(B(p),w)
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Theorem (Dorst). An agent’s belief set B maximizes EEU from
the point of view of her credence function b if and only if, for every
p ∈ B

b(p) >
w

r + w
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B > E = {p | b(p | E ) >
w

r + w
}
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(P2) If an agent initially believes X (i.e., if X ∈ B), then updating
B on X should not change B. [More formally, X ∈ B implies that
B ′ = B ? X = B

Proposition. Suppose b(p) > w
r+w and b(q) > w

r+w (i.e., that our
deductive cogent EUT agent believes both p and q). And,
following the constraint, suppose that ϕ− 1 < w

r+w ≤ 1. Then

b(p | q) > w−r
w and b(p | q)− b(p) < r2

rw+w2
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Cogency. An agent’s belief set B should (at any given time) be
deductively cogent, i.e., B should be both deductively consistent
and closed under logic.
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Foley

...if the avoidance of recognizable inconsistency were an absolute
prerequisite of rational belief, we could not rationally believe each
member of a set of propositions and also rationally believe of this
set that at least one of its members is false. But this in turn
pressures us to be unduly cautious. It pressures us to believe only
those propositions that are certain or at least close to certain for
us, since otherwise we are likely to have reasons to believe that at
least one of these propositions is false. At first glance, the
requirement that we avoid recognizable inconsistency seems little
enough to ask in the name of rationality. It asks only that we avoid
certain error. It turns out, however, that this is far too much to
ask.
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AGM Postulates

Closure B ∗ E = Cn(B ∗ E )

Success E ∈ B ∗ E

Inclusion B ∗ E ⊆ Cn(B ∪ {E})

Vacuity If E is consistent with B, then B ∗ E ⊇ Cn(B ∪ {E})

Consistency If E is not self-contradictory, then B ∗ E is consistent

Extensionality If X ≡ Y ∈ Cn(∅), then B ∗ X = B ∗ Y

Superexpansion B ∗ (X ∧ Y ) ⊆ Cn((B ∗ X ) ∪ {Y })

Subexpansion If Y is consistent with Cn(B ∗ X ), then
B ∗ (X ∧ Y ) ⊇ Cn((B ∗ X ) ∪ {Y })
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Claim. (P2) follows from the AGM postulates Closure, Inclusion
and Vacuity.

1. B is consistent. Assumption

2. B is closed, i.e., B = Cn(B). Assumption

3. X ∈ B. Assumption

4. X is consistent with B. (1), (3), Logic

5. B ∗ X = Cn(B ∪ {X}). (4), Vacuity, Inclusion

6. B ∗ X = Cn(B). (5), (3), Logic

7. B ∗ X = Cn(B ∗ X ) Closure

8. Cn(B ∗ X ) = Cn(B) (6), (7), Logic

9. B ∗ X = B (7), (8), (2), Logic
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Theorem. (Gärdenfors) Suppose r = 0, w = 1, B is synchronically
coherent in the EUT sense, and that for all propositions X and Y
that our agent might learn, b(X | Y ) > 0. Then > satisfies all
eight of the AGM postulates above.
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Proposition 1 EUT Revision (Generally) Satisfies Success.
Proposition 2 EUT Revision (Generally) Satisfies Inclusion.
Proposition 3 EUT Revision (Generally) Satisfies Extensionality.
Proposition 4 EUT Revision (Generally) Satisfies Superexpansion.
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Proposition 5 Non-Extremal EUT Revision Violates Consistency
and Closure.
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Proposition 6 Non-Extremal EUT Revision Violates Vacuity - even
if it is restricted to deductively cogent agents.
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TWO APPROACHES TO BELIEF REVISION 15

probability assignments depicted in Table 1 over the Boolean algebra A generated

by a propositional language containing two atomic sentences: E and X.

p b(p) b(p | E) p 2 B? p 2 Cn(B [ {E})? p 2 B ˜ E?

E ^ X

2
/10 2

/3 No Yes No ¨

E ^ ¬X

1
/10 1

/3 No No No

¬E ^ X

4
/10 0 No No No

¬E ^ ¬X

3
/10 0 No No No

E

3
/10 1 No Yes Yes

X

6
/10 2

/3 No Yes No ¨

E ⌘ X

5
/10 2

/3 No Yes No ¨

E 6⌘ X

5
/10 1

/3 No No No

¬E

7
/10 0 No No No

¬X

4
/10 1

/3 No No No

E _ X

7
/10 1 No Yes Yes

E _ ¬X

6
/10 1 No Yes Yes

¬E _ X

9
/10 2

/3 Yes Yes No ¨

¬E _ ¬X

8
/10 1

/3 No No No

Table 1. Counterexample to Vacuity for EUT Revision

It will be instructive to present an intuitive urn case that represents the agent’s

epistemic situation. Suppose we have an urn containing four types of objects:

black squares, red squares, black circles, and red circles. We are going to sample

an object from the urn at random. And, we assume the following interpretations

of the two atomic sentences E and X:

E := ‘The object sampled from the urn is red’, and

X := ‘The object sampled from the urn is a circle’.

The urn contains ten (10) objects, distributed in the following way: four (4) black

circles, three (3) black squares, one (1) red square and two (2) red circles (see Fig-

ure 2 for a graphical representation of the urn). We will assume our agent has

credences in propositions about the shapes and colors of the objects in the urn

which are calibrated to this distribution. In this case, our (EUT) agent’s prior belief

set will be the following singleton.23

B = {¬E _ X}

Upon learning that the sampled object was red (i.e. upon learning E), the agent

23We omit reference to the contradictory proposition ? and the tautological proposition >, since all
coherent EUT agents will always have the same attitudes toward those two propositions.

16 TED SHEAR, JONATHAN WEISBERG, AND BRANDEN FITELSON

(a) Prior distribution (b) Posterior (given E)

Figure 2. Visualization of counterexample to Vacuity for EUT Revision

loses her prior belief that the next ball drawn will either be non-red or a circle

since her credence in ¬E _ X has now dropped below the threshold from 0.9 to
2
/3. Having learned E and lost belief in ¬E _ X, the only other new beliefs that

she acquires are the logical consequences of the learned proposition (because they

now are assigned maximal credence). That is, after learning E, the agent’s posterior

belief set is:

B0 = B ˜ E = {E, E _ X, E _ ¬X}.

Note, we have the following four crucial facts in this example (which can all be

verified by inspection of Table 1).

• Both the prior belief set B and the posterior belief set B ˜ E are deductively

cogent. That is, the agent in question is deductively cogent at all times.

• E is consistent with B.

• Since E � X 2 B, it follows (by modus ponens for �) that X 2 Cn(B [ {E}).

• But, X � B ˜ E.

Therefore, this is a counterexample to Vacuity for EUT revision — even for some

deductively cogent agents. ⇤

E :=‘The object sampled from the urn is red’

X := ‘The object sampled from the urn is a circle’.
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>

E ∨ X E ∨ ¬X ¬E ∨ X ¬E ∨ ¬X

X E E ↔ X E ↔ ¬X ¬X ¬E

E ∧ X ¬E ∧ X E ∧ ¬X ¬E ∧ ¬X

⊥
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>

E ∨ X E ∨ ¬X ¬E ∨ X ¬E ∨ ¬X

X E E ↔ X E ↔ ¬X ¬X ¬E

E ∧ X 2
10 ¬E ∧ X 4

10 E ∧ ¬X 1
10 ¬E ∧ ¬X 3

10

⊥
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>

E ∨ X E ∨ ¬X ¬E ∨ X ¬E ∨ ¬X

6
10X E E ↔ X E ↔ ¬X ¬X ¬E

E ∧ X 2
10 ¬E ∧ X 4

10 E ∧ ¬X 1
10 ¬E ∧ ¬X 3

10

⊥
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E ∨ X E ∨ ¬X ¬E ∨ X ¬E ∨ ¬X

6
10X

3
10E E ↔ X E ↔ ¬X ¬X ¬E

E ∧ X 2
10 ¬E ∧ X 4

10 E ∧ ¬X 1
10 ¬E ∧ ¬X 3

10

⊥
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>

7
10E ∨ X E ∨ ¬X ¬E ∨ X ¬E ∨ ¬X

6
10X

3
10E E ↔ X E ↔ ¬X ¬X ¬E

E ∧ X 2
10 ¬E ∧ X 4

10 E ∧ ¬X 1
10 ¬E ∧ ¬X 3

10

⊥
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1>

7
10E ∨ X 6

10E ∨ ¬X
9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

3
10E

5
10E ↔ X 5

10E ↔ ¬X
4
10¬X

7
10¬E

E ∧ X 2
10 ¬E ∧ X 4

10 E ∧ ¬X 1
10 ¬E ∧ ¬X 3

10

0⊥
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1>

7
10E ∨ X 6

10E ∨ ¬X
9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

3
10E

5
10E ↔ X 5

10E ↔ ¬X
4
10¬X

7
10¬E

2
10E ∧ X 4

10¬E ∧ X 1
10E ∧ ¬X

3
10¬E ∧ ¬X

0⊥
t = 0.85 = 0.17

0.17+0.03
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1>

7
10E ∨ X 6

10E ∨ ¬X
9
10¬E ∨ X 8

10¬E ∨ ¬X

6
10X

3
10E := > 5

10E ↔ X 5
10E ↔ ¬X

4
10¬X

7
10¬E

2
10E ∧ X 4

10¬E ∧ X 1
10E ∧ ¬X

3
10¬E ∧ ¬X

0⊥

t = 0.85 = 0.17
0.17+0.03

E is (assigned) true
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1>

7
10> ∨ X 6

10> ∨ ¬X
9
10¬> ∨ X 8

10¬> ∨ ¬X

6
10X

3
10E := > 5
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7
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Vacuity If E is consistent with B, then B ∗ E ⊇ Cn(B ∪ {E})

B = Cn({¬E ∨ X})

B 6` ¬E , B ∗ E = Cn(B ∪ {E}) = Cn({E ∧ X}) So, X ∈ B ∗ E .

B > E = Cn({E ,E ∨ X ,E ∨ ¬X}), so X 6∈ B > E .
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Leitgeb & Segerberg: Belief Update vs. Belief Revsions

...given new evidence, we find that in the case of belief revision the
agent tries to change his beliefs in a manner such that the worlds
that he subsequently believes to be in comprise the subjectively
most plausible deviation from the worlds he originally believed to
inhabit.

However, when confronted with the same evidence in belief
update, the agent tries to change his beliefs in a way such that the
worlds that he subsequently believes to be in are as objectively
similar as possible to the worlds he originally believed to be the
most plausible candidates for being the actual world.
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Leitgeb & Segerberg: Belief Update vs. Belief Revsions

It is tempting to relate these different views on belief change to
the traditional distinction of indicative and subjective conditionals.
Using the stock example: everyone considers the indicative ‘If
Oswald did not kill Kennedy somebody else did’ as acceptable, but
many regard the subjunctive ‘If Oswald had not killed Kennedy
somebody else would have’ as false.
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Note that in this setting the difference between supposing and
updating is mathematically clearcut. In a typical Bayesian
updating situation one is uncertain about the chances, and so ones
subjective probability distribution on the outcome space is a
mixture of the possible chance distributions. Updating is an
operation which typically takes one from one point in the interior
of the convex closure of the chance distributions to another;
supposing moves from one chance distribution to another.

B. Skyrms. Updating, Supposing and MAXENT. Theory and Decision, 22, pp.
225 - 246, 1987.
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Such normative virtues suggest a psychological question. One way
of formulating (1) is that supposing an event B should have the
same impact on the credibility of an event A as learning B. Is this
true for typical assessments of chance? For example, is the judged
probability of a Democratic victory in 2012 supposing that Hilary
Clinton is the vice presidential candidate the same as the judged
probability of a Democratic victory in 2012 after learning that
Clinton, as a matter of fact, is the vice presidential candidate?

Jiaying Zhao, Vincenzo Crupi, Katya Tentori, Branden Fitelson, and Daniel Os-
herson. Updating: Learning versus supposing. Cognition 124 (2012) 373378.
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Non-Extremal EUT revision is more conservative than AGM
revision (when the two approaches interestingly) diverge:

Theorem EUT violates Vacuity (wrt B, E ) if and only if E is
consistent with B and B > E ⊂ B ∗ E

In other words, when EUT and AGM (interestingly) diverge, AGM
will be more demanding on an agents beliefs (insofar as they are
maintained via revision). Since AGM will require agents to
maintain beliefs in the face of counter-evidence (such as in our
counter-example to Vacuity), it may be seen as an epistemically
risk-seeking policy for belief revision. On the other hand, EUT will
recommend that agents suspend belief in many cases and so it may
be seen as epistemically risk-averse.
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Proposition 8. If an EUT/Lockean agent is deductively cogent (at
all times), then they can only violate Vacuity (via learning some E
that they do not already believe) if their Lockean threshold is on
the half-open interval [ϕ− 1, 1).
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I Accuracy, credences and full beliefs

I Two important distinctions

I AGM, credences and full beliefs

I More on credences and full beliefs
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