2 Dynamic Deliberation: Equilibria

A static theory deals with equilibria. The essential
characteristic of an equilibrium is that it has no
tendency to change, i.e. that it is not conducive to
dynamic developments. An analysis of this feature is,
of course, inconceivable without the use of certain
rudimentary dynamic concepts.

—John von Neumann and Oskar Morgenstern (1947, p. 45)

Deliberational Dynamics and Game Theory

Let us suppose that one deliberates by calculating expected utility. In
the simplest cases, deliberation is trivial; one calculates expected utility
and maximizes. But in more interesting cases, the very process of delib-
eration may generate information that is relevant to the evaluation of
the expected utilities. Then, processing costs permitting, a Bayesian
deliberator will feed back that information, modify his probabilities of
states of the world, and recalculate expected utilities in light of the new
knowledge.!

In the presence of informational feedback Bayesian deliberation
becomes a dynamical process. The decisionmaker starts in a state of
indecision; calculates expected utility; moves in the direction of maxi-
mum expected utility; feeds back the information generated by his move
and recalculates; and so forth. In this process, his probabilities of doing
the various acts evolve until, at the time of decision, his probability of
doing the selected act becomes virtually one.

The theory of dynamic deliberation carries with it an equilibrium prin-
ciple for individual decision. The decisionmaker cannot decide to do an
act that is not an equilibrium of the deliberational process.2 If he is about
to choose a nonequilibrium act, deliberation carries him away from that
decision. This sort of equilibrium requirement for individual decision
can be seen as a consequence of the expected utility principle. It is usually
neglected only because the process of informational feedback in delib-
eration is usually neglected. In cases in which there is no informational
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feedback, simple choice of the act with initial maximum expected utility
automatically fulfills the equilibrium requirement.

One sort of situation where such informational feedback is relevant is
that envisioned by von Neumann and Morgenstern in their indirect
argument for the Nash equilibrium concept. Each player calculates the
prima facie optimum act; but then there is sufficient common knowledge
for each player to work out the others’ calculations, feed back this infor-
mation, and recalculate; but then each knows that this will have hap-
pened, works out these calculations, feeds back this information, and
so forth.

We know from the discussion in Chapter 1 that sufficient common
knowledge to make sense of this story must include considerably more
than the common knowledge of rationality assumed by von Neumann
and Morgenstern. We will see in this chapter how, under suitably
strengthened assumptions of common knowledge, a joint deliberational
equilibrium on the part of all the players corresponds to a Nash equilibrium point
of the game. This is the sort of justification that von Neumann and Mor-
genstern desired, and it is based on the expected utility principle. Fur-
thermore, strengthening the assumptions slightly to make the players
qualitatively “more Bayesian” leads in a natural way to refinements of
the Nash equilibrium. There is also an important connection with cor-
related equilibria.

Deliberational Equilibria

Let us model the deliberational situation in an abstract and fairly general
way. A Bayesian has to choose between a finite number of acts: A; . . .
A,. Calculation takes time for her, although its cost is negligible. We
assume that she is certain that deliberation will end and she will choose
some act (perhaps a mixed one) at that time. Her state of indecision will
be a probability vector assigning probabilities to each of the n acts,
which sum to one. These are to be interpreted as her probabilities now
that she will do the act in question at the end of deliberation. A state of
indecision, P, carries with it an expected utility, the expectation accord-
ing to the probability vector P = (p; . . . p,) of the expected utilities of
the acts A; . . . A,. The expected utility of a state of indecision is thus
computed just as that of the corresponding mixed act. Indeed, the adop-
tion of a mixed strategy can be thought of as a way to turn the state of
indecision for its constituent pure acts to stone. We will call the mixed
act corresponding to a state of indecision the state’s default mixed act.?
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A person’s state of indecision will evolve during deliberation. In the
first place, on completing the calculation of expected utility, she will
believe more strongly that she will ultimately do that act (or one of those
acts) that are ranked more highly than her current state of indecision. If
her calculation yields one act with maximum expected utility, will she
not simply become sure that she will do that act? She will not on pain of
incoherence if she believes that she is in an informational feedback situa-
tion and if she assigns any positive probability at all to the possibility
that informational feedback may lead her ultimately to a different deci-
sion. (I will return to this topic, in more detail, in Chapter 4.) So, she
will typically in one step of the process move in the direction of the
currently perceived good, but not all the way to decision.

We assume that she moves according to some simple dynamical rule
for “making up one’s mind,” as opposed to performing an elaborate
calculation at each step. This rule should, however, be “qualitatively
Bayesian” in various ways. It should reflect her knowledge that she is
an expected utility maximizer and the status of her present expected
utility values as her expectation of her final utility values.

For the moment, we will assume that we have a dynamical rule that
seeks the good,* in the following modest sense:

1. the rule raises the probability of an act only if that act has utility
greater than that of the status quo;

2. the rule raises the sum of the probabilities of all acts with utility
greater than that of the status quo (if any).

All dynamical rules that seek the good have the same fixed points: those
states in which the expected utility of the status quo is maximal.

As a concrete example of such a rule we can take the function that
Nash (1951) used to prove the existence of equilibria for finite non-zero-
sum games. Define the covetability of an act, A, to a person in a state of
indecision, P, as the difference in expected utility between the act and
the state of indecision if the act is preferable to the state of indecision,
and as zero if the state of indecision is preferable to the act, or cov (4)
= max[U(A) — U(P), 0]. Then the Nash map takes the decisionmaker
from state of indecision P to state of indecision P’, where each compo-
nent p; of P is changed to:

. _ Pit cov(A)
Pi 1+ EECOV(A,')
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Here a bold revision is hedged by averaging with the status quo.
We can get a whole family of Nash maps by allowing different weights
for the average:

. _ kpi + cov(A)
Pi= k4 Scov(A)

The constant k (k > 0) is an index of caution. The higher k is, the more
slowly the decisionmaker moves in the direction of acts that look more
attractive than the status quo. In continuous time, one has the corre-
sponding Nash flows:

dp(A) _ cov(A) = plA)Zcov(A)
b k + Zcov(A)

The Nash rules are not the only rules which seek the good,® and we
shall see later that a more refined Bayesian analysis may lead elsewhere.
But we will use the rules as a source of easily realized concrete exam-
ples. The Appendix shows how to implement the Nash dynamics on a
personal computer, and the interested reader is urged to try it out on
various games.

The decisionmaker’s calculation of expected utility and subsequent
application of the dynamical rule constitutes new information. The new
information may affect the expected utilities of the pure acts by affecting
the probabilities of the states of nature, which together with the act
determine the payoff. In the typical game-theoretical contexts, states of
nature consist of the possible actions of the opposing players. For sim-
plicity, we will assume here a finite number of states of nature.

The decisionmaker’s personal state is then, for our purposes, deter-
mined by two things: her state of indecision and the probabilities that
she assigns to states of nature. Her personal state space is the product
space of her space of indecision and her space of states of nature. Delib-
eration defines a dynamics on this space. We could model the dynamics
as either discrete or continuous, but for the moment we will focus on
discrete dynamics. We assume a dynamical function, ¢, which maps a
personal state {x,y) into a new personal state (x’,y) in one unit of time.
The dynamical function, ¢, has two associated rules: (1) the adaptive
dynamical rule,® D, which maps (x,y) onto x’ and (2) the informational
feedback process, I, which maps {x,y) onto y’ [where (x",y") = &(x,)].
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A personal state (x,y} is a deliberational equilibriunt of the dynamics, B,
if and only if dlx.y) = (v, If D and | are continuous, then ¢ is con-
tinuous and it follows from the Brower fixed point theorem that a de-
liberational equilibrium exists. Let N be the Nash dynamics for some
k = 0. Then if the informational feedback process, I, is continuous, the
dynamical function {N,I} is continuous and has a deliberational equilib-
rium. Then, since N seeks the good, for any continuous informational
feedback process, I, (N.I) has a deliberational equilibrium (x,y) whose
corresponding mixed act maximizes expected utility in state {x,i). This
is a point from which process ! does not move y and process N does not
move X.

But if process N does not move x, then no other process which seeks
the good will either (whether or not it is continuous). 50, we have—i la
Nash—a general existence result for deliberational equilibria:

If D seeks the good and I is continuous, then there is a delibera-
tional equilibrium, (x,y), for (D,1). If D" also seeks the good, then
{x,y) is also a deliberational equilibrium for (D',I}. The default
mixed act corresponding to x maximizes expected utility at {x,1).

Games Played by Bayesian Deliberators

Suppose that two (or more) Bayesian deliberators are deliberating about
what action to take in a noncooperative non-zero-sum matrix game. We
assume that each player has only one choice to make, and that the
choices are causally independent in that there is no way for one player’s
decision to influcnce the decisions of the other players. Then, from the
point of view of decision theory, for each player the decisions of the
other players constitute the relevant state of the world which, together
with her decision, determines the consequence in accordance with the
payoff matrix.

Suppose, in addition, that each player has an adaptive rule, D, which
seeks the good (each one need not have the same rule) and that what
kind of Bayesian deliberator each player is is common knowledge. Sup-
pose also that each player’s initial state of indecision is common knowl-
edge, and that other players take a given player’s state of indecision as
their own best estimate of what that player will ultimately do. Then
initially there is a probability assignment to all the acts for all the players
that is shared by all the players and is common knowledge.”
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Under these strong assumptions of common knowledge, an interest-
ing informational feedback process becomes available. Starting from the
initial position, player 1 calculates expected utility and moves by her
adaptive rule to a new state of indecision. She knows that the other
players are Bayesian deliberators who have just carried out a similar
process, and she knows their initial states of indecision and their updat-
ing rules. So she can simply go through their calculations to see their
new states of indecision and update her probabilities of their acts accord-
ingly. We will call this sort of informational feedback process updating
by enulation. Suppose that all th2 players update by emulation. Then, in
this ideal case, the new state is common knowledge as well and the
process can be repeated.

Since the joint state of all players is common knowledge at all times,
the von Neumann-Morgenstern reasoning applies:

In a game played by Bayesian deliberators with a common prior,
an adaptive rule that seeks the good, and a feedback process that
updates by emulation,® with common knowledge of all the fore-
going, each player is at a deliberational equilibrium at a state of
the system if and only if the assignment of the default mixed acts
to each player constitutes a Nash equilibrium of the game.

There is an alternative interpretation of the mathematics of this model,
which fits nicely with an alternative interpretation of mixed equilibria.
In this interpretation, the application of the “adaptive rule” represents
not a given player’s rule for changing beliefs in her probabilities of her
‘bwn actions, but rather the other players’ shared inductive rule for mod-
ifying predictions of her action.® Her updating by emulation then tells
her what other players have as shared probabilities for her actions. The
requirement that dynamical rules “seek the good” is then a somewhat
more modest and perhaps more credible version of “best-response” rea-
soning,.

The notion of a “default mixed act” falls away if we adopt a reinter-
pretation of mixed equilibria suggested by Aumann.'? He advocates a
point of view in which the probabilities in a player’s mixed strategy are
thought of as shared probabilities of the other players’ strategies.!!
Mixed equilibria are then thought of as equilibria in beliefs. If we adopt
this point of view together with the reinterpretation of deliberational
dynamics, we can conclude that in the situation envisioned above the
players are at a joint deliberational equilibrium just in case their beliefs
constitute an equilibrium in this sense.
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Equulibrium Sclection

It is worth taking a closer lock at the way in which dynamic deliberation,
in the sort of setting under consideration, deals with the problem of
multiple equilibria in non-zero-sum games. Consider the following
game:

Battle of the Sexes

C1 2
R1 ‘ 2,1 0,0
R2 00 1,2

A woman, Row, and a man, Column, are each deciding where to go for
an evening’s entertainment. The woman would rather go to event 1 and
the man to event 2, but each would prefer to g0 to the event where he
or she will meet the other. (Back in the 1950s, the conventional way of
telling this story made event 1 an opera and event 2 a prizefight!) This
game is a nice mixture of competitive and cooperative motivations.
There is an equilibrium at [R1, C1], which the woman prefers, one at
[R2, C2], which is favored by the man, and a mixed equilibrium with
each tossing a fair coin.

Suppose that they start deliberating with a commonly known proba-
bility of 0.8 that the woman will choose R1 and 0.6 that the man will
choose C2. Notice that if each were simply to maximize expected utilities
on these probabilities, without informational feedback, the woman
would choose R2 and the man Cl, with the result that they will both
end up with a payoff of zero. Now suppose that it is common knowl-
edge that they are Nash deliberators (with a fairly high index of caution,
which is also common knowledge). Then deliberation will carry them
along the orbit indicated in Figure 2.1 to [R1, C1]. Equilibrium selection
is effected by the dynamics in virtue of the strong assumptions of com-
mon knowledge in force. That strong assumptions are required to over-
come the difficulties of classical non-zero-sum game theory should not
come as a surprise. We will be interested in subsequent chapters in
investigating the results of weakening these assumptions in various
ways, but in this chapter we will be interested in principled Bayesian
reasons for slight modifications and strengthenings of the condition that
the dynamics “seeks the good.”
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The Bayes Dynamics

A Bayesian updates by Bayes’ rule. Thus, if the new information that a
player gets by emulating other players’ calculations, updating his prob-
abilities on their actions, and recalculating his expected utilities is ¢, then
his new probabilities that he will in the end do an act A, p2(A), in terms
of his old probabilities, p;(A), should be:

pleA)
B:  pA) =p I(A)W

where {A} is a partition of alternative acts.12

Our story has been that the deliberator does not have the appropriate
proposition, ¢, in a large probability space that defines the likelihood,
plelA). Instead, our “bounded Bayesian” deliberator uses a simple
dynamical rule at this stage of deliberation. But such a simple dynamical

Figure 2.1.  Battle of the Sexes: orbit of [0.2,0.6] goes to [0,0}



36  Tie Dynamics of Rational Deliberation

rule can still, in a sense, be more or less Bayesian according to which
qualitative features of a full Bayesian analysis it retains.

For instance, one can argue that updating by Bayes’ rule (on evidence
with positive prior probability) cannot raise zero probabilities. In this
respect, the Nash dynamics is un-Bayesian because it can and does raise
zero probabilities. Thus, no hypothesis one could make about the like-
lihoods, p(e]A), could embed the Nash dynamics in a larger setting in
which it coincided with Bayes’ rule. In a way, the Nash dynamics tries
too hard. If a deliberator starts out with probability one that he will do
an act that has utility less than that of the status quo, Nash dynamics
will pull that probability down and raise the zero probabilities of com-
peting acts (as will every rule which “seeks the good”). From the stand-
point of adaptive behavior this effort seems laudable, but with respect
to coherent updating it may leave something to be desired.!?

Indeed, one can argue that if a deliberator is absolutely sure which act
he is going to do he needn't deliberate, and if he is absolutely sure he
won’t do one of a set of alternative acts his deliberations should concern
only the others. Putting it the other way around, if a decisionmaker
thinks that there is any chance that deliberation might change his prob-
abilities of an act, he should have given the act a probability different
from zero or one. According to this account, deliberation should start at
some point in the interior of the space of indecision, and the desideratum
that a dynamic rule should seek the good should be restricted to moving
probabilities that are properly movable. Notice that when deliberation
originates in the interior of the space of indecision, the Nash dynamics
stays in the interior so it will never get a chance to display unruly behav-
ior with respect to probabilities of zero and one.

The Nash dynamics can lead to un-Bayesian updating in another,
more subtle way when there are more than two possible acts under con-
sideration. If two or more acts have utility less than that of the status
quo, (5Q), they all get the same covetability—namely, zero—even if
their expected utilities are quite different. (Remember that the cov(A) =
max[0, t(A) — U(5Q)].} This does not square well with the Bayesian
story we give to motivate dynamic rules seeking the good on the interior
of the space of indecision.

Our deliberator supposes that her calculations yielding new expected
utilities give new information about what she will finally do because she
believes that she will move in the direction of the apparent good until
the moment of truth. It is possible—perhaps likely—that deliberation
will have reached an equilibrium by the moment of truth, in which case
her decision will be a best response. On the other hand, in the absence
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of special knowledge, it is no more likely if the moment of truth arrives
before equilibrium that she will make a worse response rather than a
better one. The present expected utilities just calculated may not be the |
ones which will obtain at the moment of truth, but they are in a sense
the decisionmaker’s best estimate of them. Y
On the basis of such general considerations, the decisionmaker acts
as if the likelihood, p(c]A), is an increasing function of the newly calcu-
lated expected utility of A. We could call this the assumption of a ten-
deney toward better response. The reasoning deserves to be looked at in
more detail, and we will do so later. For the moment, | just want to
point out that to the extent the assumption supports pumping up the
probability of what looks best, it also supports pumping up the ratios of
the probabilities of second to third place, and so on. By Bayes’ theorem:

pAA) _ (A piled)
pAB)  pi(B) pui(elB)

If the likelihood is an increasing function of the expected utility of an
act, then the Bayes dynamics will modify the probabilities of those acts
with expected utility less than that of the status quo in a way that the
Nash dynamics does not.

It would be nice to have a concrete example of this sort of Bayesian
dynamics. The simplest way to make the likelihood an increasing func-
tion of the expected utility is to set the likelihood equal to the expected
utility (with respect to some appropriate utility scale). This gives:

U{A)
De ) = nA e
where utility should be measured on a scale which is nonnegative, and
positive on the interior of the space of indecision."”

Readers familiar with the evolutionary game theory of Maynard Smith
(1982) will recognize this as a dynamics that Nature implements through
the process of evolution. (The payoffs are in terms of reproductive fil-
ness.) For this reason we will call it the Darwin map. It's nice to know
that Mother Nature is a rough-and-ready Bayesian.

The continuous counterpart of the Darwin map is the Darwin flow:

dp(A) _ | U(A) ~ L(SQ)
dt L(SQ)
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The Appendix shows how to implement the Darwin dynamics on a per-
sonal computer. One can, of course, construct all sorts of other Bayesian
dynamics with more or less plausibility by setting the likelihood equal
to other continuous monotonic functions of the utility.

The connection between deliberational dynamics and the Nash equi-
librium concept becomes slightly more complicated if we accept these
Bayesian modifications of our viewpoint. Since Bayesian dynamics seeks
the good on the interior of the space of indecision, the connection
between deliberational equilibria and Nash equilibria remains the same
for points in the interior. But with respect to points not in the interior,
we must focus on limiting behavior. If Darwin dynamics starting in the
interior converges to a point, then that point corresponds to a Nash
equilibrium of the game.

Refinements of the Nash Equilibrium for the Normal Forim

Models of dynamic deliberation provide a setting which may make more
sense of the project of refining the Nash equilibrium concept than does
the metaphor of the trembling hand. If we think of perfection as being
motivated by considerations of a slight probability of irrationality on the
part of other players, we will have trouble making sense of the concept.
If the probability of irrational play really is zero, why not stick with the
Nash equilibrium? If it really isn’t zero, we open up a Pandora’s box
whose contents cannot be adequately dealt with by the concept of per-
fection. The situation is even more paradoxical with respect to proper
equilibria. Here the “trembles” must be considered more likely in the
direction of least loss, an assumption that requires a kind of rational
control of irrationality. In models of dynamic deliberation, however,
there is no irrationality—only uncertainty—as the players deliberate.
From this point of view, we see the examples used to motivate refine-
ments of the Nash equilibrium in a new light.

Let us begin by reconsidering a matrix game used in Chapter 1 to
motivate Selten’s notion of a perfect equilibrium:

C1 C2
R2 ‘ 00 00
R1 i1 0,0

We can get an idea of the deliberational dynamic structure under Nash
deliberation by examining the orbits plotted in Figure 2.2. Every point
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in the interior of the space of indecision is carried by dynamic delibera-
tion to the perfect equilibriumn {R1, C1). This is not a peculiarity of the
Nash dynamics, but is true for any dynamics which seeks the good. Of
course, if the players are both absolutely sure that [R2, C2] will be
played, then act 2 has maximal expected utility for each player. But in
this case, deliberation does not make sense. If, as | argued in the pre-
vious section, Bayesian deliberation must start in the interior of the
space of indecision, dynamic deliberation cannot lead to [R2, C2).

Thus there is a natural motivation for a refinement of the Nash equi-
librium concept in the theory of deliberational dynamics—that is, an
cquilibrivim which one can converge to by deliberation starting at a completely
ntixed state of indecision. Let us call such an equilibrium accessible. In the
foregoing example the odd equilibrium [R2, C2] is not accessible under
Nash or Darwin deliberation. Does Selten’s concept of perfection coin-
cide with some variety of accessibility?

Now let us consider the following example of the kind Myerson (1978)
used:

Figure 2.2, Perfect vs. Nash equilibrium
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C1 c2 3
R3 e -4,-4 —-4,-4
R2 0,0 0,0 -4,-4
R1 1,1 0,0 -9,-9

Nash deliberation can lead to both the proper equilibrium at [R1, C1]
and the improper equilibrium at [R2, C2]. Figure 2.3 shows the orbit
starting at p(R1) = 0.01, p(R2) = 0.5, p(R3) = 0.49, p(C1) = 0.01,
p(C2) = 0.5, p(C3) = 0.49 converging to the improper equilibrium at
[R2, C2]. (Because of the symmetry of the game and the starting points,
Row's orbit on the subspace with vertices R1, R2, and R3 is identical to

Figure 2.3.  Myerson's game with Nash dynamics:
orbit of [(0.01,0.5,0.49),(0.01,0.5,0.49)]
converges to a perfect but improper equilibrium
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Column’s orbit on the subspace with vertices C1, C2, and C3.) Conver-
gence to [R2, C2] is possible because the Nash dynamics is not affected
by the relative attractiveness of acts with expected utility less than that
of the status quo. Compare the orbit of the same point under Darwin
deliberation (with the utilities appropriately rescaled), shown in Figure

" 2.4. As the probability of act 2 increases for a given player, the relative

attractiveness of act 1 over act 3 increases for the other player. When the
relative probability of act 1 over act 3 for a player gets large enough, act
1 becomes more attractive to the other player than act 2. The orbit then
“turns the corner” and heads for the proper equilibrium.!® Thus we
have a natural motivation in deliberational dynamics for another refine-
ment: equilibrium that can be reached by the Bayes dynamics starting

Frgure 2.4.  Myerson’s game with Darwin dynamics:
orbit of [(0.01,0.5,0.49),(0.01,0.5,0.49)]
converges Lo a proper equilibrium
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from a completely mixed point. Does Myerson’s concept of proper equi-
librium coincide with accessibility under a Bayes dynamics?

Analysis by Larry Samuelson (1988)!7 shows that our Bayesian acces-
sibility concepts do not coincide with the refinements of the Nash equi-
librium that have been proposed by Selten and Myerson. Darwin delib-
eration can lead to an equilibrium that is not only improper but also
imperfect. Consider the following game:

c1 C2
R2 0,0 0,0
R1 1,1 =, ==l

As shown in Figure 2.5, the orbit starting at p(R2) = 0.5, p(C2) = 0.99
is carried to an imperfect equilibrium by Darwin deliberation. The rea-
son is that although CI looks better than the status quo to Column at
any completely mixed strategy, the velocity dp(C1)/dt depends on fow
much better it looks. Along the orbit leading to the imperfect equilibri-

Figure 2.5. Darwin can lead to an imperfect equilibrium
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um, R2 looks better than R1 to Row, and it looks enough better so that
the orbit converges to the imperfect mixed equilibrium shown.

Compare this outcome with the results of Nash deliberation for the
same game shown in Figure 2.6. The orbit of p(R2) = 0.05, p(C2) = 0.99
goes nicely to the perfect equilibrium, as do the other cases shown.
Notice, however, that this is due to the un-Bayesian nature of Nash
deliberation. The covetability of C2 is identically zero throughout the
interior of the space, even though C2 looks as nearly as pgood as ClI
when p(R2) is near one.

This example suggests that there may be a class of adaptive rules such
that for rules in that class the deliberationally accessible equilibria are
just the perfect ones. In fact, for two-person games Samuelson (1988)
has isolated such a class of rules. A key feature of this class is ordinality:
the velocity of probability change of a strategy depends only on the ordi-
nal ranking among strategies according to their expected utilities.

It is, however, not clear to me that the orbit of the Darwin deliberator
in this example is in any way unreasonable. In this respect, this example

Figure 2.6.  Nash converging to a perfect equilibrium
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is quite different from the one given earlier. I will be bold enough to
suggest that perhaps the correct response to this sort of example may
be to reconsider the motivation for the definitions of perfect and proper
equilibrium. In each of these definitions, it is required that the relative
probabilities of a better and a worse prospect change in a way that is not
sensitive to the magnitude of the difference. From the standpoint of
dynamic Bayesian deliberation, the ordinal nature of these definitions is
hard to justify.

The model of the dynamic deliberator may make more sense out of
the program of refining the Nash equilibrium concept than does the
metaphor of the trembling hand, but it also suggests that important
boundaries are to be drawn in somewhat different places.

Refinements of the Nash Equilibrium for the Extensive Form

Dynamic deliberation for games in extensive form is a straightforward
generalization of deliberational dynamics for games in normal form. The
essential difference is that at an information set, the player’s expected
utilities are calculated using probabilities conditional on being at that infor-
mation set. ™ This is simply a matter of respecting the informational struc-
ture that is specified in the game tree, but it clearly leads to delibera-
tional inequivalences between an extensive form game and its strategic
normal form.

To illustrate the process, let us reconsider the simple extensive-form
game from Chapter 1 (Figure 2.7). Let us compare deliberation in the
extensive form with deliberation in the strategic normal form:

Blif A2  B2if A2

Al 0.0 0.0
A2 1,1 -1,-1

This is a familiar matrix. There are two Nash equilibria, a sensible one
[A2, Bl if A2] and a questionable one [Al, B2 if A2]. For deliberation
under Nash dynamics on the strategic normal form, both coincide with
deliberational equilibria with the sensible one being strongly stable and
the questionable one being unstable. But under Nash deliberation on
the extensive form game, the questionable Nash equilibrium [A1, B2 if
A2] is not a deliberational equilibrium at all. The reason is that the prob-
ability that A does A2 couditional on B’s information set where he chooses
betweeit Bl and B2 must be one, no matter what the unconditional prob-

i e T
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abilities are. Using these conditional probabilities, B is faced with a
choice of payoffs between 1 and 1. Deliberation on the strategic nor-
mal form uses the unconditional probabilities and ignores the informa-
tional structure of the tree.

This difference between deliberation on the strategic normal form and
that on the extensive form is evident in a more subtle way when we
consider accessibility from a completely mixed point under Darwin
deliberation. This is the normal-form matrix that | used to make Samu-
elson’s point. There are imperfect mixed equilibria, such as [Al,
p(B2|A2) = 0.96], that are accessible under the Darwin dynamics. These
equilibria are nof accessible under Darwin dynamics for deliberational
dynamics based on the true extensive form. Figure 2.8 shows the phase
portraits for this game under Darwin deliberation for (A) the strategic
normal form and (B} the extensive form. The difference between them
is this: in simultaneous deliberation about strategies (Figure 2.8A), B's
expected utility for the strategy B2 if A2 is a weighted average of B's
payoff from this strategy if A does Al and B’s payoff from the strategy
if A does A2; in extensive-form deliberation (Figure 2.8B), B uses his
expected utilities at his information set so that the utility of Bl if A2 is 1
and the utility of B2 if A2 is —1 throughout deliberation. It is true that
B1if A2 looks better than B2 if A2 to both deliberators, but the magnitude
of the difference shrinks to zero for deliberation in the normal form but
remains constant for deliberation in the extensive form. Deliberation
with a dynamical rule like Darwin, for which these relative magnitudes
are crucial, puts the difference between extensive form and strategic
normal form in the spotlight.

(0.0]

[1.1]

B2 [-1,-1]

Figure 2.7. A challenge to strategic normal form
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T

Figure 2.8A. Darwin dynamics on stralegic normal form

As another illustration of the same sort of phenomenon, consider the
sinister toy example of nuclear deterrence presented in Figure 2.9. At
the onset, A can either attack or not. Then B can retaliate or not. If A
attacks and B retaliates, A is devastated by B (A’s payoff is —10) and B
is devastated by A and suffers additional loss from the fallout from his
own strike (B's payoff is —11). If A attacks and B doesn't retaliate, A
gains an advantage (+1) and B is devastated (—10). If A doesn’t attack
and B “retaliates” anyway, A is devastated (—10) and B gains a slight
advantage but perhaps also invites retaliation from A—Ilet us say B's
payoffis — 5. If A doesn’t attack and B doesn’t retaliate, both get a payoff
of 0. In strategic normal form there are three pure Nash equilibria:
MAD—A doesn't attack and B retaliates if and only if attacked; First
strike 1—A attacks and B does not retaliate whether attacked or not; and
First strike 2—A attacks and B retaliates if and only if not attacked. But
strategic normal form conceals the fact that MAD rests on a noncredible
threat. Deliberation on the extensive-form game will lead from a state
of initial uncertainty to First strike. Once we see retaliation as a non-
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Figure 2.88.  Darwin dynamics on extensive form

B1:Retaliate [-10,-11]
A1:Attack
B2:Don't [1,-10]
B1:"Retaliate” [-10,-5]
A2:Don't
[0,0]

B2:Don't
Frgure 2.9.  MAD vs. First strike
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credible threat we might reconsider the payoffs when A doesn’t attack
and B “retaliates” anyway. B’s payoff here should be just +1 for the
advantage gained. I invite you to explore the deliberational dynamics of
this modified game and to think of further modifications or alternatives
to it.

Things become more interesting in games where some information
sets are not unit sets. In some such games the same point can be made
without worrying about the probabilities on the information set. Con-
sider the game due to Kreps and Wilson (1982b, p. 871) given in Figure
2.10. One Nash equilibrium has A playing Al and B having the strategy
of play B2 if he finds himself at the information set where A has played
either A2 or A3. B's strategy is not credible. No matter how B’s proba-
bilities might tilt between A2 and A3 at this information set, B will be
better off choosing B1 than B2, since B1 gives him a better payoff than
B2 in any case. Thus B would play Bl at this information set, and A,
realizing this, will play A2 and assure herself a payoff of 12. This more
credible equilibrium [A2, Bl if A2 or A3] is sequential in the sense of
Kreps and Wilson, whereas the noncredible one is not.!” The non-

[10,12]

[12,11]

[9.9]

(11.11]

B2 (8.10]

Figure 2.10.  Sequential equilibrium vs. [subgame perfect] Nash equilibrium
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credible equilibrium has B’s agent at the information set [A2 or A3] make
a choice that cannot maximize expected utility for any probability over
[Al, A2]. As is to be expected, deliberational dynamics will never lead
to the “bad” equilibrium and will always lead to the “good” one.

The power of dynamic deliberation is underutilized in the foregoing
examples, because although A has to worry about what B will do, B
doesn’t really have to worry about what A has done. Things are differ-
ent in the example due to Kohlberg and Mertens (1986) in Figure 2.11.
Here A must worry about what B will do at information set [A2 or A3},
and B must worry about what A has done to get him in that information
set. There is an equilibrium at [A1, B2 if A2 or A3), and one at [A2, Bl
if A2 or A3]. Both equilibria are sequential, but there is nevertheless
something wrong about the first one. If A plays A2, A will get a better
payoff than if A plays A3, no matter what B does. A can figure this out
and B can figure out that A can figure it out. So B should make his
probability of A2 conditional on A2 or A3 high, which will lead him to
play B1 if he finds himself at the information set [A2 or A3]. A should
be able to figure this out, and so will play A2 to secure a payoff of 16.

[14,14]

[16,16)

[13,10]

[10,10]

B2 [12,12)

Figure 2,11, Proper vs. sequential equilibrium
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This sort of reasoning can be implemented by deliberational dynamics
provided we implement some version of the Bayes dynamics with the
assumption of a tendency toward better response.?” Figure 2.12 shows the
action of the Darwin deliberation when this game is started near the
“bad” sequential equilibrium. This is most striking when viewed in real
time. The players appear to sit on the bad equilibrium for a long time,
mulling it over, and then they suddenly start moving to the good proper
sequential equilibrium. What is really happening is that very near the
“bad"” equilibrium, the ratios of the very tiny probabilities of A2 and A3
are being adjusted until [B1 if A2 or A3] begins to look better to B than
the alternative. Probabilities are adjusted until A2 looks best and then
the system moves rapidly toward the proper equilibrium.

A3

B2

At

A2

Figure 2.12.  Darwin deliberalors opt for a proper sequential equilibrium

* B1
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So far so good, but Kohlberg and Mertens have an example in which
the supposedly bad equilibrium is sequential and proper. In this exam-
ple, Bayesian deliberational dynamics can lead to the “bad” equilibrium.
| believe, however, that the arguments given here against the “bad”
equilibrium are not conclusive, and that whether it is bad or not
depends on the prior probabilities at the start of deliberation or on the
mode of deliberation. The example is given in Figure 2.13. There is a
perfect sequential equilibrium at [A1, B2 if A2 or A3] and another at [A2,
B1if A2 or A3]. Kohlberg and Mertens argue as follows: Al strictly dom-
inates A3 {in other words, no matter what B does, Al gives B a greater
payoff than A3). Therefore, B should know that A will play A2 or A3
only if she plays A2. Accordingly, B will play Bl rather than B2, and
knowing this A will play A2 rather than A1.

Notice the difference between the reasoning in this example and that
given in the preceding one. In the example given in Figure 2.12 it was
argued that upon reflection we would have to conclude that the proba-
bility of A2 conditional on A2 or A3 should be high because A2 strictly
dominates A3. In this example it is being argued that the same condi-

[14,14]

[16,16]

[10,10]

[10,10]

[12,12}

Figure 2.13.  Dominance and initial degrees of belief
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tional probability should be high because A1 dominates A3. This argu-
ment is a non sequitur unless it can be supplemented with some extra
assumptions.

Darwin deliberation can take players to either equilibrium. Questions
of timing here are crucial. If before deliberation begins player A has been
looking for strictly dominated strategies, and giving them probabilities
that are virtually zero and very small relative to the probabilities of all
other strategies, then deliberation will begin with p(A2|A2 or A3) large.
In this case, deliberational dynamics will lead to the “good” equilibrium
at [A2, Bl if A2 or A3]. On the other hand, the players may have started
deliberation without noticing dominance or they may for some reason
have started deliberation with A2 having a very small probability (or
both these conditions may hold), so that initially p(A3]A2 or A3) is large.
Suppose also that for whatever reasons, the players’ initial p(B2|A2 or
A3) is large. Then during deliberation dominance will be reflected by
the ratio p(A1)/p(A3) getting large, but at the same time the magnitudes
of the expected utilities will also lead to p(A1)/p(A2) getting larger. In
this case deliberation will lead to the “bad” equilibrium at [A1, B2 if A2
or A3]. Figure 2.14 shows the two kinds of orbit.

On the other hand, rather than pushing these considerations into the
predeliberational beliefs, one might focus on deliberators who build
temporal precedence of considerations of dominance into the delibera-
tional rules. For example, the players might begin deliberation with a
routine for iterated elimination of strictly dominated strategies and then
proceed to apply Nash or Darwin deliberation to the remaining prob-
lem. Such deliberators would go through essentially the same reasoning
as Kohlberg and Mertens and end up at the preferred equilibrium. This
sort of two-stage procedure constitutes one reasonable way for deliber-
ation to proceed; but is it the only reasonable way for deliberation to
proceed? If not, the Kohlberg-Mertens reasoning applies only to a prop-
er subclass of rational deliberators.

Correlated Equilibria

I will close this chapter with a discussion of the relation of dynamic
deliberation to a rather different equilibrium concept, Aumann'’s (1974)
notion of a corrclated equiltbrium. Two different points of view may be
adopted in discussions of “solution concepts” for games. One is the
point of view of the players themselves as rational actors. The other is
that of a disinterested rational observer or theorist. | have so far dis-
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cussed deliberational dynamics from the viewpoint of the deliberators
themselves, but the subject has interesting consequences for the exter-
nal point of view as well. [ shall illustrate these consequences in two
cases where the external point of view is taken by a philosopher or social
theorist: the question of the possibility of convention and the question
of the nature of the “state of nature.” In each case, rational deliberation
generales correlation. This phenomenon can be described generally
using the notion of a correlated equilibrinm.

How is convention possible? Quine (1936) challenged conventionalist
accounts of language to provide a satisfactory account of how the rele-
vant conventions are set up and maintained that does not presuppose
linguistic communication or competency. David Lewis (1969) replied
that convention is possible without communication. The mutual expec-

A3

Al

A2

Figure 2.14.  Darwin deliberators in Kohlberg and Mertens’ game

B2

B1
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tations of rational agents can explain the maintenance of a convention
at a game-theoretic equilibrium. Consider the pure coordination game:

The Winding Road
Left  Right
Left 1,1 0,0
Right 0,0 1,1

Two cars approach a blind curve from opposite directions. Each would
prefer that they are both driving on the left or both driving on the right.
There are two pure equilibria, equally attractive, but if Row goes for one
of them and Column goes for the other, they will end up in trouble. If,
however, Row believes Column expects him to drive on the left and
believes that Column believes him to believe this, and so on, and Col-
umn believes likewise about Row, and each believes that the other is
rational and that the other believes that he is, then they each have good
reason to drive on the left.

The question as to how convention without communication is possi-
ble between rational agents has two parts: (1) How can convention with-
out communication be sustained? and (2) How can convention without
communication be generated? Lewis gave the answer to the first ques-
tion in terms of equilibrium (or stable equilibrium) and common knowl-
edge of rationality. His discussion of the second question—following
Schelling (1960)—is framed in terms of salience, where a salient coordi-
nation equilibrium is “one which stands out from the others in some
conspicuous respect.” Salience could derive from preplay communica-
tion among the players, but it could also arise in other ways. It could
arise by precedent. In fact, since salience is a psychological rather than
a logical notion, the ways in which salience may arise are as various as
the possible psychologies of the players.

The informal discussions of salience by Lewis and Schelling are con-
vincing regarding the plausibility of real-world coordination by salienre,
but I believe that they give only a partial answer to the second question.
Here, deliberational dynamics has something to contribute.

Let us model The Winding Road as a game played by Nash delibera-
tors. (The results would be essentially the same here if we used Darwin
deliberation.) Row and Column each have predeliberational probabili-
ties of driving on the left or right. They can be anything at all. At the
onset of deliberation each player’s initial probabilities of driving left or
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right are announced and become common knowledge. (This idealization
will be weakened later.) You—the philosopher—have some probability
distribution over the space of Row’s and Column’s initial probabilities.
You needn't think it likely that they are anywhere near an equilibrium,
In fact, we will suppose only that your probability distribution is rea-
sonably smooth (that is, it is absolutely continuous with respect to
Lebesgue measure on the unit square), otherwise it can be anything at
all. Then you should believe with probability one that the deliberators
will converge to one of the pure Nash equilibria, as is evident from Fig-
ure 2.15.

[t is not surprising here that the players should be led to the state of
mutually reinforcing expectations that attend a Nash equilibrium. Coor-
dination is effected by rational deliberation. Precedent and other forms
of initial salience may influence the deliberators’ initial probabilities, and
thus may play a role in determining which equilibrium is selected. The
answer to the question of how convention can be generated for Bayesian
deliberators has both methodological and psychological aspects.

Figure 2.15.  The Winding Read
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Of course, Bayesian players are not always so lucky as to be involved
in pure coordination games. People have conflicting desires and limited
altruism. They are roughly equal in their mental and physical powers.
Elements of competition intrude. Thomas Hobbes argued that as a con-
sequence rational self-interested decisionmakers in a state of nature,
unrestrained by the power of a sovereign, will be engaged in a “war of
all against all.”

After Darwin, Hobbesian philosophy enjoyed a resurgence. Karl
Marx wrote to Engels: “It is remarkable how Darwin has discerned anew
among beasts and plants his English society . . . It is Hobbes" befltm
omnium contra omnes.”?! Marx was being somewhat unfair to Darwin,
but “Darwin’s Bulldog” lived up to the caricature. In an essay entitled
“The Struggle for Existence” (1888), T. H. Huxley popularized Hobbes-
ian Darwinism. Primitive man “fights out the struggle for existence to
the bitter end, like any other animal . . . Life was a continual free fight,
and beyond the limited and temporary relations of the family, the
Hobbesian war of each against all was the normal state of existence”
{p- 165). This picture seemed so perverted to Prince Petr Kropotkin that
he was moved to write Mutual Aid (1902), describing cooperation among
animals and also among men in all stages of civilization.

In a fine critical study, Gregory Kavka (1983) found Hobbes' argument
inconclusive although, as he points out, many other commentators
appear to regard it as obviously correct. Kavka and Gauthier (1969) mod-
eled conflict in the state of nature in terms of Prisoner’s Dilemma, but ]
think the game of Chicken models Hobbes’ premises at least as well.

Chicken

Don’t swerve Swerve

Don't swerve —-10,-10 5-5
Swerve =55 0,0

Each player would like to profit from his opponent’s loss. Each would
like, at the outset, to appear more aggressive than his opponent. But
aggression on the part of both creates an intolerable situation. There are
two Nash equilibria in pure strategies: Row swerves and Column
doesn’t and Column swerves and Row doesn’t. There is also a mixed
equilibrium where each player has equal chances of swerving and not
swerving. If the players are Bayesian deliberators coordination can again
be achieved by deliberation, just as in the coordination game. As shown
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in Figure 2.16, for Nash deliberators every initial point leads to a Nash
equilibrium, and almost every initial point leads to a pure Nash equilib-
rium.

In this example, it is easy to say which initial points go to which equi-
librium. For almost every initial point, one player is initially more likely
to swerve and if so that player ends up swerving while the other player
does not. In the case in which both players are initially equally likely to
swerve, they are carried to a mixed equilibrium where each adopts a
random strategy of swerving with chance of 0.5. Here there is a genuine
Hobbesian incentive for initial bellicosity. (There is none in Prisoner’s
Dilemma.) Nevertheless, crashes are almost always avoided as a result
of rational deliberation.

Did Hobbes attempt to derive a Prisoner’s Dilemma conclusion from
Chicken premises? It would be premature to draw this conclusion from
such an oversimplified model of the state of nature. A number of com-
plications need to be introduced before we could begin to do Hobbes
justice (see Chapter 6). One can find materials for more realistic models

Frigure 2.16.  Chicken
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in ethological descriptions of varieties of animal conflict. Of particular
interest is the prevalence of ritualized aggression in which little real
damage is done (Lorenz, 1966; Eibl-Eibesfeld, 1970). This is part of the
state of nature, and it does not agree with Hobbes’ description. Kropot-
kin's remark of 1902 is even more suitable now: “science has made some
progress since Hobbes’ time, and we have safer ground to stand upon
than the speculations of Hobbes and Rousseau.”

One might argue that the rationality of humans invalidates the anal-
ogy. but the analyses of evolutionary game theory do not support this
objection (see Maynard Smith and Price, 1973; Parker, 1974; Maynard
Smith, 1982). For these sorts of game-theoretic models, Bayesian delib-
erators of the kind considered here will decide by deliberational dy-
namics in a way analogous to the way that Mother Nature decides by
evolution. In the games considered by Maynard Smith and Price, self-
interested rational deliberaiors will play in a decidedly un-Hobbesian
way. In general, we must agree with the carefully considered conclusion
of Kavka (1986, p. 122) that “which strategy is better overall probably
cannot be determined a priori for ali state of nature situations. Instead,
it will depend on the value of a number of important variables and
parameters, which will vary according to the version of the state of
nature in question.”

These considerations, however incomplete they may be with respect
to Hobbes, nevertheless make the general point that deliberation may
play a role in the genesis of coordination in situations with a consider-
able amount of competition as well as in pure coordination games. There
is a general conception under which all these cases fall. It is a notion
usually discussed in cooperative game theory—a corrclated equilibrivm.
Aumann (1974) suggested that mixed strategies, where the chance
devices used by different players are assumed independent, be treated
as a special case of correlated strategies, where the chance devices may
have any joint probability distribution at all.

You might think of a referee observing the outcome of some random
process—say, the toss of a many-sided die—and communicating to each
player the aspect of the process that is that player's random variable. For
example, one player might get to know the color of the face, another the
number of spots showing. Any correlation of colors and spots in the
random device is allowed.

A random strategy for player i can be thought of as a probability assign-
ment to his space of possible actions, A;, namely, a random variable
mapping some probability space into Ay. A joint correlated strategy can be
thought of as any probability assignment on the product space of the
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action spaces of all players, A; X A; x ... x A, ora mapping of a
probability space into sequences of actions. A correlated strategy can
obviously be specified by giving the underlying joint probability space
together with a sequence of random variables on it: i, f5, . . . f,, where
f maps the probability space into the action space of player i. In the
special case of ordinary mixed strategies, the probability on the product
space is the product measure and the random strategies are indepen-
dent. An i-deviation from a correlated strategy C consists of the same
probability space and the same random variables f, except that each f,
is replaced by some random variable g(f) taking values in A. An
i-deviation represents player [ unilaterally deviating from the original
joint correlated strategy so that when the original strategy telis him to
do one thing he does something else, while all other players stick to the
original correlated strategy. A correlated equilibrium is a joint correlated
strategy such that for each player i expected utility on the joint correlat-
ed equilibrium strategy is greater than or equal to his expected utility
on any i-deviation from it (the expectation being taken according to the
underlying probability space). Thus, a correlated equilibrium is a joint
correlated strategy from which no player has anything to gain by uni-
lateral deviation.

In certain situations, it might be to all the players’ mutual advantage
to agree on a joint correlated equilibrium strategy and then either hire a
referee or construct a machine to carry out the random experiment and
communicate to each player the action selected for him. On the face of
it, it might appear that “for strategies to be correlated there must be
some mechanism for communicating and contracting between the play-
ers” (Shubik, 1982, p. 247). But, as we have seen in several examples,
rational deliberation can play a powerful role in establishing correlation.
Let us consider in a general way the sort of situation sketched at the
beginning of this section.

An observer, Theo, knows that n players will be induced to play a
certain n-person noncooperative game. Theo knows that the players are
all Bayesian dynamic deliberators with a common dynamics and that
this fact will be common knowledge to the players at the onset of delib-
eration, as will their prior probabilities. Theo has analyzed the game and
knows that in it (as in every example we have seen so far) the dynamics
always converges to a Nash equilibrium. Theo may or may not know
who the players are. He does not know what their initial probabilities
for their possible actions will be, but rather has his own probability mea-
sure over the possible initial states of indecision of the system. Although
the interpretation of the mathematics is quite different, we nevertheless
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see that with respect to Theo's probability measure the players are at a
correlated equilibrium.

When the true initial state of indecision is selected, a recommendation
for action is delivered up to each player by deliberational dynamics.
Since the dynamics leads from each initial state to a Nash equilibrium,
no player has anything to gain by deviating from that recommendation.
Thus no i-deviation from the joint correlated strategy defined by Theo's
probability is preferable to it for player i, so that joint correlated strategy
is, by definition, a correlated equilibrium. This is true no matter what
Theo's probability measure over the space of initial states of indecision.
This correlated equilibritun is a general result of the players’ commion knowledge
and Bayesian dynamic deliberation.

The same result may be obtained without the outside observer if prior
to deliberation the players themselves share the role of Theo. For exam-
ple, Sue and Dora are going to fly to the small country of Freedonia for
a vacation and each plans to rent a car. They are to pick up cars at a
deserted airport in Freedonia. Sue thinks it likely that Freedonians drive
on the left; Dora thinks it likely that Freedonians drive on the right.
There may be no one else in Freedonia then because it is a special holi-
day, and there are no road signs in Freedonia. Sue and Dora prepare to
be involved in a game of The Winding Road with one another. They
agree that before leaving the airport they will share their then current
probabilities of opting for Left or Right and then go their separate ways,
deliberate, and do the best they can.

This example brings us close to the point of view of Aumann (1987),
who argued that correlated equilibrium is a consequence of a common
prior probability together with common knowledge of Bayesian ration-
ality. The latter is taken to be common knowledge that the players will
each arrive at a decision that maximizes that player’s expected utility.
The former includes prior probabilities over what each player will ulti-
mately choose and is, then, itself interpreted as the probability setting
up the correlated strategy, with the joint maximization of expected util-
ity assuring that it is an equilibrium.

Aumann’s viewpoint is somewhat different from the one presented
here in that he does not consider the process of deliberation, but only
its result. So there is no analysis of how the players jointly arrive at
decisions where each maximizes his expected utility. In contrast, we
made additional assumptions to get stronger conclusions. We assumed
common knowledge of the dynamical law of deliberation, which is a
stronger commen-knowledge assumption than that used by Aumann.
This is what enables accurate updating by emulation and assures that a
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state at which each player is at a deliberational equilibrium corresponds
to a Nash equilibrium for the game. Consequently, our predeliberational
correlated equilibria are mixtures of Nash equilibria. As such they are a
proper subclass of Aumann’s correlated equilibria, that have especially
tight correlation. Considerations of deliberational dynamics add a fur-
ther dimension to the theory of correlated equilibria and provide an
account of one way in which correlated equilibria can be generated.

Equilibria and Rationality

We saw in Chapter 1 that it was hard to justify the Nash equilibrium
concept, even for two-person zero-sum games, without making further
assumptions. In this chapter we have considered some very simple
models of bounded Bayesian deliberators who, under quite strong con-
ditions of prior common knowledge, are at a joint deliberational equilib-
rium if and only if they are at a Nash equilibrium. Refinements of the
deliberational dynamics in a qualitatively Bayesian direction leads nat-
urally to refinements of the Nash equilibrium concept. There is also an
important connection between deliberational dynamics and Aumann’s
concept of a correlated equilibrium. These results about equilibria come
from strong assumptions, and one would like to know more about how
sensitive they are to small changes in those assumptions.



