
 1 <!DOCTYPE html>
 2
 3 <html>
 4 <head>
 5 <meta charset="utf-8">
 6 <title>JS Play, v2_1</title>
 7 <style type="text/css">
 8 table { bboorrddeerr: double; wwiiddtthh: 60%; bboorrddeerr--ccoollllaappssee: collapse }
 9 table > caption { mmaarrggiinn--bboottttoomm: 10px; }
 10 th, td { ppaaddddiinngg: 15px; tteexxtt--aalliiggnn: center; }
 11 /* adding some invisible/visible interaction rule(s) */
 12 .interaction { vviissiibbiilliittyy: hidden; }
 13 /* improve table style? */
 14 th { bbaacckkggrroouunndd--ccoolloorr: lightgreen; }
 15 td {bbaacckkggrroouunndd--ccoolloorr: yellow; }
 16 </style>
 17 </head>
 18
 19 <body>
 20 <h1>Playing with JavaScript</h1>
 21 <!--
 22 The following table might just as well be
 23 generated by the Script. But, because we already
 24 know a lot about what it contains, it's easier to
 25 specify its main features here and delegate the actual
 26 computation and population of its cells to the script.
 27 Pay attention to this: it's a common "pattern."
 28 -->
 29 <table id="interaction">
 30 <!--
 31 The "caption" element will be generated by the script because
 32 its contents depend upon what the user typed.
 33 -->
 34 <caption id="caption"></caption>
 35 <thead>
 36 <!--
 37 Because we already know what's in this table, it's okay
 38 to provide these details in the document, leaving the
 39 heavy lifting to the script.
 40 -->
 41 <tr>
 42 <th>Sum</th> <th>Absolute Difference</th> <th>Product</th> <th>Quotient</th>
 43 </tr>
 44 </thead>
 45 <!--
 46 As a matter of practice: whenever I use a "thead" I also use the "tbody"
 47 (and sometimes, if relevant) a "tfoot" element.
 48 -->
 49 <tbody>
 50 <tr>
 51 <!--
 52 Pay attention to the use of "ids" here.
 53 This allows the script to easily provide the correct
 54 results to the corresponding cell(s).
 55 -->
 56 <td id="sum"></td>
 57 <td id="difference"></td>
 58 <td id="product"></td>
 59 <td id="quotient"></td>
 60 </tr>
 61 </tbody>
 62 </table>
 63 <!--
 64 Notice where I placed the Script in this buffer. Because the
 65 script references objects in the DOM, I need to ensure that those
 66 objects have "living" references when I attempt to dereference (use)
 67 them in this script:
 68 -->
 69 <script type="text/javascript">
 70 /**

/Users/tomreinhardt/Dropbox/CMSC122/Fall2016/Examples/InClass6/start-v2_1.html

1 of 3 10/17/16, 6:36 PM

 71 * Used by the various prompting routines to ensure that
 72 * users do not exceed a range.
 73 */
 74 ccoonnsstt MAX=100; // largest integer that user may enter.
 75 ccoonnsstt MIN=0; // smallest integer that the user may enter.
 76 /* The following functions are used to simplify the "main" logic. */
 77
 78 /**
 79 * Preconditions: the constants MIN and MAX have been set.
 80 * Postconditions: an integer >= MIN but <= the MAX is returned.
 81 * Note: this function will continue prompting the user until these conditions
 82 * are met. This is an example of a "nag" function.
 83 */
 84 ffuunnccttiioonn promptInt() {
 85 /*
 86 * Ask the user once ... if all goes well, then the while statement that
 87 * follows is never executed.
 88 */
 89 vvaarr input = window.prompt("Enter an integer greater than or equal to " + MIN + " but not greater than " + MAX + ":
 ");
 90 /*
 91 * Note: we distinguish between several "kinds" of iterative statements in programming
 92 * languages.
 93 * Bounded Iterators are constructions where the number of times that an
 94 * iteration is performed is "known ahead of time."
 95 * Unbounded Iterators: constructions where the number of iterations are unknown
 96 * at the time the computation begins. Presumably, some condition becomes true or false
 97 * and that signals the end of the iteration.
 98 * In the usage below: we use the "while" statement which is an "unbounded" iteration construct.
 99 */
 100 wwhhiillee(input < MIN || input > MAX) {
 101 input = window.prompt("Trying again: please enter an integer greater than or equal to " + MIN + " but not grea
 ter than " + MAX + ": ");
 102 }
 103 /* if we ever get out of the unbounded while loop above, then we have a "safe" integer ... */
 104 rreettuurrnn parseInt(input);
 105 }
 106
 107 /**
 108 * Preconditions: Given two integers
 109 * Postconditions: return the absolute difference between these two integers, meaning
 110 * that the difference between these two integers as a non-negative integer is returned.
 111 */
 112 ffuunnccttiioonn absDifference(number1, number2) {
 113 iiff(number1 < number2) {
 114 rreettuurrnn number2 - number1;
 115 } eellssee {
 116 rreettuurrnn number1 - number2;
 117 }
 118 }
 119
 120 /**
 121 * Precondition: two integers are given, where the second is NOT zero.
 122 * Postconditions: the "integer" quotient is returned, which is the floor of
 123 * the actual quotient.
 124 * [In this particular application, however, zeros should never appear.
 125 * The conditional is used to demonstrate how the "alert" method might
 126 * be used to help debug JavaScript]
 127 * But, consider what might happen if we shared some of these functions
 128 * with other web-pages ...
 129 */
 130 ffuunnccttiioonn intQuotient(number1, number2) {
 131 iiff(number2 === 0) {
 132 window.alert("Attempted division by zero! ");
 133 rreettuurrnn 0;
 134 } eellssee {
 135 rreettuurrnn Math.floor(number1 / number2);
 136 }
 137 }
 138
 139 /* end of private functions block */
 140

/Users/tomreinhardt/Dropbox/CMSC122/Fall2016/Examples/InClass6/start-v2_1.html

2 of 3 10/17/16, 6:36 PM

 141 /* Main logic: program execution starts here ... */
 142
 143 /**
 144 * Note how the use of a function simplifies a tedious task here.
 145 *
 146 * [Think about how we might enhance this interaction in the future.]
 147 */
 148 vvaarr input1 = promptInt();
 149 vvaarr input2 = promptInt();
 150 /**
 151 * Perform the computations. Think about the following: What are out "options"
 152 * if the user entered something unexpected here? Suppose, for instance,
 153 * that we wanted ONLY non-negative integers, but the user entered negative
 154 * integers?
 155 * Take a look at the Chapter on Forms (Chapter 7?) in your textbook and keep
 156 * these kinds of questions in mind. Scripts are often used to "validate" forms
 157 * input!
 158 */
 159 vvaarr sum = input1 + input2;
 160 /** Note again: we use a function to "hide" any complicated processing. In
 161 * essence, we define a new "verb" and use it.
 162 */
 163 vvaarr difference = absDifference(input1, input2);
 164 vvaarr product = input1 * input2;
 165 /**
 166 * The intQuotient does something unorthodox: if the
 167 * second number is a zero, it complains and returns zero.
 168 * BUT, this should NEVER happen ...
 169 * Do you see why? (Hint: look at the promptInt function, above.)
 170 */
 171 vvaarr quotient = intQuotient(input1, input2);
 172 vvaarr remainder = input1 % input2;
 173 /**
 174 * Please observe the following "pattern." Get comfortable with it;
 175 * you will use it throughout the remainder of the semester.
 176 *
 177 * Reflect on who "owns" these "elemens." Clearly, these are objects
 178 * that reside in the "document."
 179 *
 180 * For those "forward thinking" readers: what would be the result of retrieving
 181 * a reference to an HTML element that was associated with a "class" instead of
 182 * an "id"? (Hint: what is the difference between things that are marked with
 183 * "id"s and those marked with "class"es?)
 184 */
 185 document.getElementById("sum").innerHTML=sum;
 186 document.getElementById("difference").innerHTML=difference;
 187 document.getElementById("product").innerHTML=product;
 188 iiff(remainder === 0) {
 189 document.getElementById("quotient").innerHTML=quotient;
 190 } eellssee { document.getElementById("quotient").innerHTML = quotient + ", with remainder: " + remainder; }
 191 document.getElementById("caption").innerHTML="Given " + input1 + " and " + input2 + ": computed the following...";

 192 /**
 193 * Turn on the visibility for objects of the class "interaction"
 194 */
 195 vvaarr interactionElements = document.getElementByClassName("interaction");
 196 ffoorr(index=0; index < interactionElements.length; index++) {
 197 interactionElements[index].visibility=":visible";
 198 }
 199
 200 </script>
 201
 202 </body>
 203 </html>

/Users/tomreinhardt/Dropbox/CMSC122/Fall2016/Examples/InClass6/start-v2_1.html

3 of 3 10/17/16, 6:36 PM

