
Using JavaScript Objects

CMSC 122

CMSC 122 Using JavaScript Objects 1 / 17



Outline

1 Introduction
What is an “Object”?
How are Objects defined/used in JavaScript?
Improving applications development with Objects
Adding behaviors to Objects
Why you will care

CMSC 122 Using JavaScript Objects 2 / 17



Introduction What is an “Object”?

What is an Object?

This is not such an easy question to answer!

Think of an “object” as any “computational entity.”

Numbers are objects.
Strings are objects.
Browsers are objects.
HTML Documents are objects!

Questions that we can ask of any object:

What are your properties?
What are your methods?
What is your “lineage,” who are your “parents?”

For our purposes, we will only focus on the first two: methods &
properties.

CMSC 122 Using JavaScript Objects 3 / 17



Introduction What is an “Object”?

What are the elements of an Object?

Objects are composed of properties and methods.

Examples of “properties”—the length of an array, the innerHTML

contained by HTML elements . . . and we’ll see many others.

Examples of “methods”—functions or procedures that allow us to do
things with these objects, such as the getElementById operator on
document, which is JavaScript’s variable for the HTML DOM
object.

We shall see many examples of both properties and methods shortly.

CMSC 122 Using JavaScript Objects 4 / 17



Introduction What is an “Object”?

Distinguishing “primitive” from “first-class” objects

For various reasons, many languages in current use distinguish
“primitive” objects from “first-class” objects.

Numbers, such as integers and floating point numbers that we use in
JavaScript, are “primitive,” meaning that we can treat them as
primitive data-types. They cannot be used as “supertypes” or “parent
types” of other objects.
DOM elements, however, are first-class objects, meaning that we have
access to a rich set of properties and methods (functions & procedures)
as well as access to their “parent” or supertype data.

We will focus on first-class object types.

CMSC 122 Using JavaScript Objects 5 / 17



Introduction What is an “Object”?

Familiar examples . . .

Consider the following examples that we have seen in this class:

DOM objects:

var output = document.getElementById( "output" );

The variable “output” references an object that has certain
“properties,” we use one of these properties all the time:

output.innerHTML = "The answer is 42.";

None of this makes sense unless the “document” itself was an object
that had the “method” (getElementById) that allowed us to
reference an element by name, such as “output.”

CMSC 122 Using JavaScript Objects 6 / 17



Introduction What is an “Object”?

Why are Objects a big-deal?

Objects allow us to group properties and behaviors under a
user-specified NAME.

Once defined, that NAME becomes part of the language—as though
it always existed.

Thus, we build a representation within the language of the problem
elements that we need for its solution!

Others can re-use these objects (NAMEs) in their own code.

CMSC 122 Using JavaScript Objects 7 / 17



Introduction What is an “Object”?

Using Objects to represent relationships

Objects are best used to associate common properties and
behaviors under a single name.

A playing card: this might be an object with two properities—a suit
and a numeral. We define methods by which we might compare two
cards as in a card game.

A “deck” of Cards—this might be an array of Card objects, or
another object itself, that has special “methods,” such as shuffle.

A single Die, which is a six-sided cube that contains “pips,”
representing the numbers 1 through 6. Rather than representing each
“side,” we define a “method” on the Dice object called roll(), that
returns a random integer 1 through 6.

CMSC 122 Using JavaScript Objects 8 / 17



Introduction How are Objects defined/used in JavaScript?

How does this look in JavaScript?

As in most languages . . . many ways of saying the same thing.

var person = { // using the "literal" syntax ...

firstName : "Tom",

lastName : "Reinhardt"

...

};

var person = new Object(); // creates a new empty object

// defines and sets each property, by name

person.firstName = "Tom";

person.lastName = "Reinhardt";

...

Most references prefer the first to the second syntax.

CMSC 122 Using JavaScript Objects 9 / 17



Introduction How are Objects defined/used in JavaScript?

Constructing many Objects

Often, we need to create thousands of Objects of a particular type.
We do this by defining “constructors” for each Object type.

function Person ( fn, ln) {

// "this" refers to the object being constructed

this.firstName = fn;

this.lastName = ln;

}

var TomR = new Person( "Tom", "Reinhardt" );

var BillH = new Person( "Bill", "Henneman" );

...

Pay attention to the subtle introduction of a new kind of word,
“this” in the example above!

CMSC 122 Using JavaScript Objects 10 / 17



Introduction How are Objects defined/used in JavaScript?

Some fine points . . .

Before continuing . . . , what do we know?

Objects roughly correspond to “nouns” in natural languages.

Objects associate properties (attributions) and methods (behaviors)
with a Name.

Objects’ properties (and methods) may be accessed through the
keyword “this.”

A surprising variety of commonly used data are first-class Objects in
the JavaScript language, such as strings, dates, arrays, booleans,
and numbers (more on this later).

CMSC 122 Using JavaScript Objects 11 / 17



Introduction Improving applications development with Objects

Using an Object definition to Improve a design

Before introducing additional mechanism, let’s consider a well-known
problem and explore how Objects might be used to improve our solution.

Revisit the Mascots Game (In-Class Activity that uses only the
mechanisms discussed to this point.)

CMSC 122 Using JavaScript Objects 12 / 17



Introduction Adding behaviors to Objects

Adding Methods to Object Definitions

Methods allow us to associate functions and procedures with Objects.

The syntax for adding methods is similar to that for adding properties.

We may use many standard Object methods, such as methods for
String, Arrays, Dates, and others.

CMSC 122 Using JavaScript Objects 13 / 17



Introduction Adding behaviors to Objects

Adding a method to print a Person object

Consider a common use-case:

var TomR = new Person( "Tom", "Reinhardt");

window.alert( "Created a new person named " + TomR.firstName +

" " + TomR.lastName);

Instead of “unpacking” the object’s properties every time we wish to print
any Person object, define a “method” called toString() on the Person
object and use that!

CMSC 122 Using JavaScript Objects 14 / 17



Introduction Adding behaviors to Objects

Writing a method for a class of objects

function Person ( ln, fn ) { // added method at bottom

this.firstName = fn;

this.lastName = ln;

this.toString = function () {

return this.firstName + " " + this.lastName

}

}

Look at the next slide, to see how it is used.

CMSC 122 Using JavaScript Objects 15 / 17



Introduction Adding behaviors to Objects

Calling a Method on an Object (instance)

Assuming that you added the method to the constructor on the last slide,
create an object and call the method to see what it does:

var TomR = new Person( "Tom", "Reinhardt" );

window.alert( "Created a person named " + TomR.toString() );

Compare that with

// same variable declaration....

window.alert("Created a person named " + TomR.firstName

+ " " + TomR.lastName );

CMSC 122 Using JavaScript Objects 16 / 17



Introduction Why you will care

Bringing Objects to a Project near to you

As we’d mentioned earlier: re-visualize the Mascots Game as a series
of interactions with Objects.

Think about what needs to be re-structured in your existing code.

Think now about the importance of documentation!

Think now about some of examples mentioned earlier as Objects . . . ,
such as PlayingCard, Deck, maybe Dice . . . ?

CMSC 122 Using JavaScript Objects 17 / 17


	Introduction
	What is an ``Object''?
	How are Objects defined/used in JavaScript?
	Improving applications development with Objects
	Adding behaviors to Objects
	Why you will care


